1,665 research outputs found
Schmidt Analysis of Pure-State Entanglement
We examine the application of Schmidt-mode analysis to pure state
entanglement. Several examples permitting exact analytic calculation of Schmidt
eigenvalues and eigenfunctions are included, as well as evaluation of the
associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria
Alternative Mathematical Technique to Determine LS Spectral Terms
We presented an alternative computational method for determining the
permitted LS spectral terms arising from electronic configurations. This
method makes the direct calculation of LS terms possible. Using only basic
algebra, we derived our theory from LS-coupling scheme and Pauli exclusion
principle. As an application, we have performed the most complete set of
calculations to date of the spectral terms arising from electronic
configurations, and the representative results were shown. As another
application on deducing LS-coupling rules, for two equivalent electrons, we
deduced the famous Even Rule; for three equivalent electrons, we derived a new
simple rule.Comment: Submitted to Phys. Rev.
Entanglement Evolution in the Presence of Decoherence
The entanglement of two qubits, each defined as an effective two-level, spin
1/2 system, is investigated for the case that the qubits interact via a
Heisenberg XY interaction and are subject to decoherence due to population
relaxation and thermal effects. For zero temperature, the time dependent
concurrence is studied analytically and numerically for some typical initial
states, including a separable (unentangled) initial state. An analytical
formula for non-zero steady state concurrence is found for any initial state,
and optimal parameter values for maximizing steady state concurrence are given.
The steady state concurrence is found analytically to remain non-zero for low,
finite temperatures. We also identify the contributions of global and local
coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been
significantly expanded in response to referee comments. The revised
manuscript has been accepted for publication in Journal of Physics
A Taxonomy of Causality-Based Biological Properties
We formally characterize a set of causality-based properties of metabolic
networks. This set of properties aims at making precise several notions on the
production of metabolites, which are familiar in the biologists' terminology.
From a theoretical point of view, biochemical reactions are abstractly
represented as causal implications and the produced metabolites as causal
consequences of the implication representing the corresponding reaction. The
fact that a reactant is produced is represented by means of the chain of
reactions that have made it exist. Such representation abstracts away from
quantities, stoichiometric and thermodynamic parameters and constitutes the
basis for the characterization of our properties. Moreover, we propose an
effective method for verifying our properties based on an abstract model of
system dynamics. This consists of a new abstract semantics for the system seen
as a concurrent network and expressed using the Chemical Ground Form calculus.
We illustrate an application of this framework to a portion of a real
metabolic pathway
Multiobjective genetic programming can improve the explanatory capabilities of mechanism-based models of social systems
The generative approach to social science, in which agent-based simulations (or other complex systems models) are executed to reproduce a known social phenomenon, is an important tool for realist explanation. However, a generative model, when suitably calibrated and validated using empirical data, represents just one viable candidate set of entities and mechanisms. The model only partially addresses the needs of an abductive reasoning process - specifically it does not provide insight into other viable sets of entities or mechanisms, nor suggest which of these are fundamentally constitutive for the phenomenon to exist. In this
paper, we propose a new model discovery framework that more fully captures the needs of realist explanation. The framework exploits the implicit ontology of an existing human-built
generative model to propose and test a plurality of new candidate model structures. Genetic programming is used to automate this search process. A multi-objective approach is used, which enables multiple perspectives on the value of any particular generative model - such as goodness-of-fit, parsimony, and interpretability - to be represented simultaneously. We demonstrate this new framework using a complex systems modeling case study of change and stasis in societal alcohol use patterns in the US over the period 1980-2010. The framework is successful in identifying three competing explanations of these alcohol use patterns, using novel integrations of social role theory not previously considered by the human modeler. Practitioners in complex systems modeling should use model discovery to improve the explanatory utility of the generative approach to realist social science
Topological Charge and The Spectrum of Exactly Massless Fermions on the Lattice
The square root of the positive definite hermitian operator in Neuberger's proposal of exactly massless quarks on the lattice is
implemented by the recursion formula with Y_0 = \Id, where converges to
quadratically. The spectrum of the lattice Dirac operator for single massless
fermion in two dimensional background U(1) gauge fields is investigated. For
smooth background gauge fields with non-zero topological charge, the exact zero
modes with definite chirality are reproduced to a very high precision on a
finite lattice and the Index Theorem is satisfied exactly. The fermionic
determinants are also computed and they are in good agreement with the
continuum exact solution.Comment: 18 pages (LaTeX), 2 figures (EPS
A Stochastic Broadcast Pi-Calculus
In this paper we propose a stochastic broadcast PI-calculus which can be used
to model server-client based systems where synchronization is always governed
by only one participant. Therefore, there is no need to determine the joint
synchronization rates. We also take immediate transitions into account which is
useful to model behaviors with no impact on the temporal properties of a
system. Since immediate transitions may introduce non-determinism, we will show
how these non-determinism can be resolved, and as result a valid CTMC will be
obtained finally. Also some practical examples are given to show the
application of this calculus.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Single-qubit gates and measurements in the surface acoustic wave quantum computer
In the surface acoustic wave quantum computer, the spin state of an electron
trapped in a moving quantum dot comprises the physical qubit of the scheme. Via
detailed analytic and numerical modeling of the qubit dynamics, we discuss the
effect of excitations into higher-energy orbital states of the quantum dot that
occur when the qubits pass through magnetic fields. We describe how
single-qubit quantum operations, such as single-qubit rotations and
single-qubit measurements, can be performed using only localized static
magnetic fields. The models provide useful parameter regimes to be explored
experimentally when the requirements on semiconductor gate fabrication and the
nanomagnetics technology are met in the future.Comment: 13 pages, 10 figures, submitted to Phys. Rev.
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
- …