1,321 research outputs found

    The Trilinear Hamiltonian: A Zero Dimensional Model of Hawking Radiation from a Quantized Source

    Get PDF
    We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.Comment: 18 pages, 6 figures, Submitted to New Journal of Physics focus issue: "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects

    Generalized Limits for Parameter Sensitivity via Quantum Ziv-Zakai Bound

    Get PDF
    We study the generalized limit for parameter sensitivity in quantum estimation theory considering the effects of repeated and adaptive measurements. Based on the quantum Ziv-Zakai bound, we derive some lower bounds for parameter sensitivity when the Hamiltonian of system is unbounded and when the adaptive measurements are implemented on the system. We also prove that the parameter sensitivity is bounded by the limit of the minimum detectable parameter. In particular, we examine several known states in quantum phase estimation with non-interacting photons, and show that they can not perform better than Heisenberg limit in a much simpler way with our result.Comment: 8pages, 5 figure

    Unfrustrated Qudit Chains and their Ground States

    Full text link
    We investigate chains of 'd' dimensional quantum spins (qudits) on a line with generic nearest neighbor interactions without translational invariance. We find the conditions under which these systems are not frustrated, i.e. when the ground states are also the common ground states of all the local terms in the Hamiltonians. The states of a quantum spin chain are naturally represented in the Matrix Product States (MPS) framework. Using imaginary time evolution in the MPS ansatz, we numerically investigate the range of parameters in which we expect the ground states to be highly entangled and find them hard to approximate using our MPS method.Comment: 5 pages, 5 figures. Typos correcte

    Single-qubit gates and measurements in the surface acoustic wave quantum computer

    Full text link
    In the surface acoustic wave quantum computer, the spin state of an electron trapped in a moving quantum dot comprises the physical qubit of the scheme. Via detailed analytic and numerical modeling of the qubit dynamics, we discuss the effect of excitations into higher-energy orbital states of the quantum dot that occur when the qubits pass through magnetic fields. We describe how single-qubit quantum operations, such as single-qubit rotations and single-qubit measurements, can be performed using only localized static magnetic fields. The models provide useful parameter regimes to be explored experimentally when the requirements on semiconductor gate fabrication and the nanomagnetics technology are met in the future.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Exact limiting relation between the structure factors in neutron and x-ray scattering

    Full text link
    The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.Comment: 7 pages, no figure

    High-fidelity simulations of CdTe vapor deposition from a new bond-order potential-based molecular dynamics method

    Full text link
    CdTe has been a special semiconductor for constructing the lowest-cost solar cells and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor for radiation detection applications. The performance currently achieved for the materials, however, is still far below the theoretical expectations. This is because the property-limiting nanoscale defects that are easily formed during the growth of CdTe crystals are difficult to explore in experiments. Here we demonstrate the capability of a bond order potential-based molecular dynamics method for predicting the crystalline growth of CdTe films during vapor deposition simulations. Such a method may begin to enable defects generated during vapor deposition of CdTe crystals to be accurately explored

    Entanglement Evolution in the Presence of Decoherence

    Get PDF
    The entanglement of two qubits, each defined as an effective two-level, spin 1/2 system, is investigated for the case that the qubits interact via a Heisenberg XY interaction and are subject to decoherence due to population relaxation and thermal effects. For zero temperature, the time dependent concurrence is studied analytically and numerically for some typical initial states, including a separable (unentangled) initial state. An analytical formula for non-zero steady state concurrence is found for any initial state, and optimal parameter values for maximizing steady state concurrence are given. The steady state concurrence is found analytically to remain non-zero for low, finite temperatures. We also identify the contributions of global and local coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been significantly expanded in response to referee comments. The revised manuscript has been accepted for publication in Journal of Physics

    The exact Darwin Lagrangian

    Get PDF
    Darwin (1920) noted that when radiation can be neglected it should be possible to eliminate the radiation degrees-of-freedom from the action of classical electrodynamics and keep the discrete particle degrees-of-freedom only. Darwin derived his well known Lagrangian by series expansion in v/cv/c keeping terms up to order (v/c)2(v/c)^2. Since radiation is due to acceleration the assumption of low speed should not be necessary. A Lagrangian is suggested that neglects radiation without assuming low speed. It cures deficiencies of the Darwin Lagrangian in the ultra-relativistic regime.Comment: 2.5 pages, no figure

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure
    • …
    corecore