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Abstract. We investigate a quantum parametric amplifier with dynamical
pump mode, viewed as a zero-dimensional model of Hawking radiation from
an evaporating black hole. We derive the conditions under which the spectrum of
particles generated from vacuum fluctuations deviates from the thermal spectrum
predicted for the conventional parametric amplifier. We find that significant
deviations arise when the pump mode (black hole) has emitted nearly half of
its initial energy into the signal (Hawking radiation) and idler (in-falling particle)
modes. As a model of black hole dynamics, this finding lends support to the view
that late-time Hawking radiation contains information about the quantum state
of the black hole and is entangled with the black hole’s quantum gravitational
degrees of freedom.
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1. Introduction

In the 35 years since Hawking’s seminal paper on the quantum emission of radiation from a
black hole [1], a large body of work has been devoted to solving the so-called information
loss problem. For a black hole of fixed mass M , this emission process yields a black body
spectrum with characteristic temperature TH = h̄c3/8πkBG M , irrespective of the initial state
of the matter from which the black hole is formed. The inability to reconstruct the initial,
possibly pure, state of the black hole from the total emitted radiation signals the apparent
breakdown of unitary evolution and the S-matrix description of the Hawking process. Although
Hawking’s calculations have since been verified in a number of ways [2]–[6], this breakdown at
the foundation of quantum mechanics suggests that our understanding of black hole dynamics
is not yet complete.

The information loss problem rests on two key assumptions made in the standard derivation
of Hawking radiation: (i) the perfectly thermal (i.e. mixed) character of the outgoing radiation;
and (ii) the validity of this emission process over the lifetime of the black hole. The notion
of a thermal spectrum considered here is not that of a blackbody frequency spectrum, but
rather the quantum thermal probability distribution defined by the temperature TH of a single
mode (single frequency) of Hawking radiation. The traditional picture of the Hawking process
leaves no room for deviations from this thermal distribution and thus breaks the requirement
of pure-state→pure-state evolution enforced by unitarity. By itself, this process need not lead
to information loss as the information content of the black hole may be stored in entanglement
between particle pairs created on opposite sides of the horizon [7, 8]. Results from many-body
theory suggesting that entanglement across a boundary scales with the area of the boundary
lends credence to this view [9]. However, with the second assumption, the black hole causes a
loss of entanglement and thus information.

With the expectation that information must be conserved, many suggestions for resolving
the information loss problem have been put forward. Current proposed solutions include
long-lived and stable Planck-scale remnants [10, 11], baby universes [12, 13] and the
possibility of information escaping as non-thermal Hawking radiation [14, 15]. In all of these
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proposals, corrections to the Hawking process manifest themselves when the black hole has
evaporated to a size near that of the Planck length, lp =

√
h̄G/c3 ≈ 10−35 m, at which quantum

gravitational effects, neglected in Hawking’s original analysis, are expected to play a role.
In considering quantum states of the gravitational field, there is the possibility of backreaction
and entanglement of the radiating matter degrees of freedom with those of gravity [16, 17].
Although it is natural to consider a quantized gravitational field for the Hawking process, the
current lack of a full quantum mechanical description of gravity severely limits progress in
addressing this scenario directly. In fact, exactly which degrees of freedom, if any, should be
quantized is still a subject of debate [18, 19]. In this paper, we investigate a simple, zero-
dimensional quantum optics model of Hawking radiation that mimics some of the essential
physics present in the original information loss problem.

As a zero-dimensional model we consider the following trilinear Hamiltonian:

Ĥ = h̄ωaâ+â + h̄ωbb̂+b̂ + h̄ωcĉ
+ĉ + ih̄χ

(
âb̂+ĉ+

− â+b̂ĉ
)
, (1)

consisting of three harmonic oscillator modes with the frequency relation, ωa = ωb + ωc. We
designate the modes as pump (â), signal (b̂) and idler (ĉ), respectively. This Hamiltonian
describes several quantum optics processes including frequency conversion, Raman and
Brillouin scattering and the interaction of two-level atoms with a single mode resonant
EM field and is the full quantum generalization of the parametric amplifier [20]–[27]. The
connection between black hole radiance and parametric amplification was appreciated shortly
after Hawking’s discovery [28]. Both processes amplify vacuum fluctuations, resulting in the
production of correlated photon pairs. Tracing over one of the two subsystems (i.e. signal
and idler) yields statistics that are identical to those of a thermal distribution [29, 30]. The
energy source in the parametric amplifier is assumed to be a classical pump, such as a laser
or microwave generator with fixed amplitude driving a system with χ (2) nonlinearity, the first
nonlinear susceptibility in a medium without inversion symmetry [31]. Viewed as a black hole
model, the pump plays the role of black hole mass M , while the signal and idler modes of
the parametric amplifier represent the escaping and trapped Hawking photons, respectively, as
depicted schematically in figure 1. The trilinear Hamiltonian (1) generalizes the parametric
amplifier by quantizing the pump mode and allowing for energy loss to the signal and idler
modes. The expectation value of the pump mode energy is analogous to the mass M of a
quantum mechanical black hole. We explore this model by establishing the conditions under
which the signal mode spectrum of the trilinear Hamiltonian deviates from the predicted thermal
spectrum of the conventional parametric amplifier. We see that the quantization of the pump
mode degree of freedom results, over time, in entanglement with the signal and idler modes and
dynamics that become markedly different from the parametric approximation. In particular, the
signal mode develops a strongly non-thermal spectrum that is dependent on the initial pump
mode state. The corresponding entropy is reduced relative to that of a thermal (maximally
mixed) state, indicating the presence of information. These model system results lend support to
the view that late-time Hawking radiation contains an increasing amount of information about
the initial quantum state of the black hole and is composed of particles entangled with quantized
gravitational states.

The outline of this paper is as follows. In section 2, we review the derivation of the
amplification of vacuum fluctuations under parametric approximation. Section 3 considers
the semi-classical approximation whereby the backreaction from the quantized radiation
onto the classical pump is accounted for and derives the self-consistent equations of motion
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Figure 1. (a) Diagram depicting the dynamics of the trilinear Hamiltonian.
Initial vacuum modes are not shown for clarity. The nonlinear interaction
is generated by a system possessing a second-order susceptibility χ (2).
(b) Equivalent dynamical elements involved in the Hawking process.

for the signal and idler modes. In section 4, we consider the full quantum dynamics equation (1)
under the short-time analytical approximation and compare this result, together with the full
quantum numerical solution, to the parametric and semi-classical approximations from the
previous sections. Section 5 investigates the role of entropy and entanglement in the production
of non-thermal states. Finally, section 6 concludes with a brief discussion of the results and
consequences for black hole evaporation.

2. The parametric amplifier and Hawking emission

In the following, we derive the well-known thermal spectrum of the signal mode under
the parametric assumption of a fixed amplitude pump mode. Replacing the pump mode in
equation (1) with a fixed amplitude drive A results in the interaction frame Hamiltonian

HI = ih̄χ A
(
b+c+

− bc
)
. (2)

The Heisenberg equations of motion for the signal and idler mode operators are

db(t)

dt
= Aχc(t)+

;
dc(t)

dt
= Aχb(t)+. (3)

These can be readily solved yielding the Bogoliubov transformations

b(τ ) = b(0) cosh(Aτ) + c(0)+ sinh(Aτ),

c(τ ) = c(0) cosh(Aτ) + b(0)+ sinh(Aτ),
(4)

where we have expressed the dynamics in dimensionless time τ = χ t . If the system starts with
both signal and idler modes in the ground state, |9(0)〉 = |0, 0〉bc, then equation (4) gives, for
the number operators Nb and Nc,

Nb(τ ) = Nc(τ ) = sinh2(Aτ). (5)

Additionally, we are interested in the probability distribution of the individual signal and idler
subsystems in the number state basis. With the system initially in the ground state, the unitary
evolution corresponding to equation (2) can be expressed as

|9(τ)〉 = exp
[
Aτ

(
b+c+

− bc
)]

|0, 0〉bc . (6)
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Making use of the disentangling theorem [32]

exp
[
Aτ

(
b+c+

− bc
)]

= e0b+c+
e−g(b+b+c+c+1)e−0bc, (7)

with 0 = tanh(Aτ) and g = ln cosh(Aτ), where the last term in equation (7) vanishes for the
ground state and the middle term reduces to e−g, we have

e0b+c+
|0, 0〉bc =

∞∑
n=0

0n (b+c+)
n

n!
|0, 0〉bc =

∞∑
n=0

tanhn(Aτ) |n, n〉bc , (8)

with the evolving state vector |9(τ)〉 given by

|9(τ)〉 = sech(Aτ)
∑

n

tanhn(Aτ) |n, n〉bc . (9)

Let us now focus on operators acting on a subsystem spanned by the states of either the signal
or idler mode individually. Assuming we are interested in the signal mode only, tracing over the
idler subsystem in equation (9) gives the operator expectation value

〈O(τ )〉b = sech2(Aτ)
∑

n

tanh2n(Aτ) 〈n|O|n〉b (10)

for an arbitrary signal mode operator O . Comparing equation (10) with the spectrum of a
thermal state defined by temperature T ,

〈O〉 =

∑
n

Pn 〈nb|O|nb〉 =
(
1 − e−h̄ωb/kBT

) ∑
n

e−nh̄ωb/kBT
〈nb|O|nb〉 (11)

indicates that the signal mode is in a thermal state provided that we define the temperature as

T (τ ) =
h̄ωb

2kB ln [coth(Aτ)]
, (12)

where the time dependence is a consequence of the rapid increase in the occupation number of
the modes, equation (5). As in the Hawking process [33], the particle pairs generated by the
parametric amplifier form an entangled two-mode squeezed state given by equation (9) [34].
The bipartite structure of this system allows calculating the entanglement between particle pairs
via the von Neumann entropy Si , also referred to as entanglement entropy. For mode i = b, c,
using the reduced density matrix ρi , we have

Si = −Tr (ρi ln ρi), (13)

where we drop the usual kB factor. For both the signal and idler modes, this entropy is given by

Sth
= − ln

[
1 − e−h̄ω/kBT (τ )

]
−

h̄ω

kBT (τ )

[
1 − eh̄ω/kBT (τ )

]−1
, (14)

which is the thermal entropy of a quantum harmonic oscillator with temperature defined by
equation (12). Thus, as for the Hawking thermal radiation, we see that the temperature of the
parametric oscillator is determined by the entropy generated from tracing over one of the two
modes in a particle pair squeezed state.
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3. Semi-classical analysis: backreaction on a classical pump mode

We now go beyond the just-considered parametric amplifier model and incorporate backreaction
effects due to the emission process using a semi-classical approximation where the pump mode
is treated as a classical variable, while the signal and idler modes are quantized. In order to
self-consistently solve for the system evolution, we first work out the dynamics of the pump
mode, assuming it behaves as a classical variable affected by the expectation values of the
signal and idler modes, after which we substitute the resulting c-number expressions for the
pump operators into the Hamiltonian and calculate the signal and idler evolution. A similar
procedure arises for the semi-classical Einstein equations:

Gµν =
8πG

c4

〈
9|T̂µν|9

〉
, (15)

where the mass M black hole spacetime geometry is modeled classically through the usual
Einstein tensor Gµν , interacting with the quantum matter/radiation fields via the expectation
value of the stress–energy–momentum tensor operator T̂µν with respect to a suitable incoming
quantum field state |9〉. Solving these semiclassical equations using an analogous procedure
to that outlined above yields a nonlinear Schrödinger equation [35] and also a possible loss
of spacetime stability [36]. In addition, issues such as non-causal dynamics [37] and possible
inconsistencies with wavefunction collapse [38] occur. In contrast, the semi-classical model
presented here can be readily solved by exploiting the symmetries present in the Hamiltonian.

To begin, we consider equation (1) in the interaction frame,

HI = ih̄χ
(
ab+c+

− a+bc
)

(16)

and obtain the following mode equations:

da

dt
= −χbc,

db

dt
= χac+,

dc

dt
= χab+ (17)

that lead to the evolution of the pump mode number operator,

dNa

dt
= −χ

(
ab+c+ + a+bc

)
. (18)

It is easy to show that the corresponding number operators for signal and idler modes are
given by dNb/dt = dNc/dt = −dNa/dt . To proceed, we will use the following Manley–Rowe
constants of motion [39]:

Mab = Na + Nb, Mac = Na + Nc, Mbc = Nb − Nc, (19)

expressing the underlying SU(2) and SU(1,1) symmetries in our model [40, 41]. Differentiating
equation (17) again results in decoupled equations of motion containing only commuting
operators:

d2 Na

dt2
= 2χ 2

[
3N 2

a − Na (2Mab + 2Mac + 1) + Mab Mac

]
,

d2 Nb

dt2
= −2χ2

[
3N 2

b − Nb (4Mab − 2Mac − 1) + Mab (Mab − Mac − 1)
]
, (20)

d2 Nc

dt2
= −2χ2

[
3N 2

c − Nc (4Mac − 2Mab − 1) + Mac (Mac − Mab − 1)
]
.
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We now take the expectation value of the pump number operator equation (20) for Na and make
the approximation 〈N 2

a 〉 ≈ 〈Na〉〈Na〉, the validity of which can be checked using full quantum
numerical simulations of equation (17) (see section 4). These approximations, along with the
condition that both signal and idler mode start in the vacuum state, lead to the semiclassical
evolution for the pump mode:

Na(τ ) = β+ + [Na(0) − β+] dn

[√
β+ − β−τ,

Na(0) − β−

β+ − β−

]−2

, (21)

where dn(u, k) is the Jacobi elliptic function and

β± =
1

4

[
1 + 2Na(0) ±

√
1 + 12Na(0) + 4Na(0)2

]
. (22)

It is important to note that both equations (21) and (22) are expressed in terms of the initial
conditions of the pump mode only, a consequence of relations (19) and the fact that the signal
and idler are initially in the vacuum (ground) state. Equations of motion for both the signal and
idler can then be obtained by the substitution of the c-number expressions for the pump mode
with amplitude given by equation (21),

a =

√
Na(τ )e−iφ(t), a+

=

√
Na(τ )eiφ(t), (23)

where φ(t) is a slowly varying function of time, into equation (16):

H̃I = ih̄χ Na(t)
1/2

(
b+c+e−iφ(t)

− bceiφ(t)
)
. (24)

The time evolution of this now bilinear Hamiltonian can be calculated straightforwardly if we
assume that [25]√

Na(t)
dφ(t)

dt
= const, (25)

which is the most general condition under which the Hamiltonian at different times commutes,
[H̃I(t), H̃I(t ′)] = 0. Combining equations (17) and (23) results in the phase relation

a+ da

dt
− a

da+

dt
= −2iNa

dφ(t)

dt
, (26)

which, expressing the left-hand side as equation (16) through the Heisenberg equations for the
operators equation (17), yields a second condition for the pump phase:

2Na(t)
dφ(t)

dt
= 〈H̃I〉. (27)

As long as the initial state contains at least one mode in the vacuum state, we have the constant
of motion 〈HI 〉 = 0. Thus, equations (25) and (27) are only consistent if φ(t) = 0. This leads to
a bilinear Hamiltonian of the form,

H̃I = ih̄χ Na(t)
1/2

(
b+c+

− bc
)
. (28)

Using a similar analysis to that employed in section 2 gives

db(τ )

dτ
= b(0) cosh (θ(τ )) + c+(0) sinh (θ(τ ))

dc(τ )

dτ
= c(0) cosh (θ(τ )) + b+(0) sinh (θ(τ )) ,

(29)
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where

θ(τ ) =

∫ τ

0

√
Na (τ ′) dτ ′. (30)

Therefore, we see that each mode behaves similarly, as in the parametric approximation, but
with the number of particles dependent on the pump dynamics:

Nb(τ ) = Nc(τ ) = sinh2 (θ(τ )). (31)

However, and most importantly, the modes are again in a thermal state with distribution

〈O(τ )〉 = sech2
(√

Na(τ )τ
) ∑

n

tanh2n
(√

Na(τ )τ
)

〈n|O|n〉. (32)

Thus, the spectrum of the signal mode (Hawking radiation) remains thermal when pump mode
energy loss due to signal and idler particle creation is taken into account within the semi-
classical approximation.

4. Full quantum description

4.1. Short-time approximation

In this section, we consider the full quantum dynamics of the trilinear Hamiltonian equation (1)
(i.e. quantize the pump mode as well). Although the trilinear system does not allow for a general
analytical solution, we can obtain approximate equations in the short-time limit τ = χ t � 1.
Using the condition ωb = ωc = ωa/2, appropriate for modeling particle generation by a black
hole, we can rewrite equation (1) ignoring constant terms as

H = H0 + Hint = h̄ωa

(
a+a + Kz

)
+ ih̄χ

(
aK+ − a+K−

)
, (33)

where

K+ = b+c+, K− = bc, Kz =
1
2 (b+b + c+c + 1). (34)

We now construct the Casimir operator

K 2
= K 2

z −
1
2 (K+K− + K−K+) =

1
4

(
M2

bc − 1
)
, (35)

where the second equality comes from definition (19). This operator obeys the eigenvalue
equation

K 2
|9〉 = k(k − 1) |9〉, (36)

where k = 1/2(|Mbc| + 1). We now look for simultaneous eigenstates of both K 2 and Kz: |k, nc〉,
where nc is the number of idler particles. These states can also be decomposed using the number
state basis

|k, nc〉 = |nc + 2k − 1〉b |nc〉c = |nb〉 |nc〉, (37)

with nb representing the number of particles in the signal. Operating on this state with Kz gives

Kz |k, nc〉 = (k + nc) |k, nc〉 =

(
nb + nc + 1

2

)
|nb〉 |nc〉, (38)

New Journal of Physics 12 (2010) 095013 (http://www.njp.org/)

http://www.njp.org/


9

valid only for initial conditions where both the signal and idler modes are in pure states
satisfying nb > nc. Including the pump mode state in the full state vector and expressing the
idler mode population as a function of the pump amplitude

|na〉 |k, Mac − na〉 , (39)

one may switch to the interaction frame where the evolution depends only on Hint (33)

|τ ; k, Mac〉 = eτ(aK+−a+ K−) |0; k, Mac〉, (40)

where the initial state with Mac = Na(0) is given by

|0; k, Mac〉 = |Mac〉 |k, 0〉 . (41)

The short-time approximation τ = χ t � 1 to equation (40) can be calculated using the
Baker–Campbell–Hausdorff (BCH) formula truncated to O(τ 2)

eτ(aK+−a+ K−) ≈ eτaK+e−τa+ K−e−τ 2/2[aK+,a+ K−]. (42)

Acting with the third exponential operator term on our initial state gives

e−τ 2/2[aK+,a+ K−]|Mac〉|k, 0〉 ≈
(
1 − k Macτ

2
)
|Mac〉|k, 0〉, (43)

indicating clearly that the time over which the approximation is valid t = τ/χ < 1/(χ
√

k Mac)

decreases with pump amplitude and coupling strength. Evaluating the BCH approximated
expression (42) on the initial state (41), we obtain for the full evolution of the state:

|τ ; k, Mac〉 =
1√

NMac(τ )

Mac∑
n=0

fn (k, Mac) τ n
|Mac − n〉|k, n〉, (44)

where NMac(τ ) is the time-dependent normalization factor

NMac(τ ) = eτ−2
τ 2Mac0

(
Mac + 1, τ−2

)
, (45)

with 0(a, b) being the reduced gamma function and

fn (k, Mac) =

[
Mac!0 (2k + n)

n! (Mac − n)!0 (2k)

]1/2

. (46)

Our interest in the crossover from classical to quantum dynamics for the pump mode suggests
that we use coherent states built from linear combinations of equation (44) for the initial pump
state. To this end, we consider a general initial state

|9(0)〉 =

∞∑
s=0

as
f0(s)

√
Ns(0)

|s〉|0〉|0〉, (47)

with the pump mode in an as yet unspecified initial pure state with probability Ps = |as|
2 of being

in state s and both signal and idler modes in the vacuum state (k = 1/2). Here we implicitly
assume the probabilities are normalized and add to unity. The density matrix at some later time
τ resulting from (47) is given by

ρ9
abc(τ ) =

∞∑
s=0

∞∑
r=0

s∑
i=0

r∑
j=0

asa
∗

r

fi(s)τ i

√
Ns(τ )

f j(r)τ j

√
Nr(τ )

|s − i〉|i, i〉〈r − j |〈 j, j |, (48)
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Figure 2. (a) Evolution of pump mode initially in coherent state 〈Na(0)〉 = 9 for
the parametric (red), semi-classical (blue), short-time quantum approximation
(green), and full quantum numerical solution (black), as a function of
dimensionless time τ = χ t . (b) Corresponding population of the signal mode.
Note that the semi-classical analysis ceases to be valid when the pump mode
becomes depleted.

which, after performing a partial trace, leads to the reduced density operators

ρ9
a (τ ) =

∞∑
s=0

∞∑
r=0

s∑
i=0

r∑
j=0

asa
∗

r

fi(s)τ i

√
Ns(τ )

f j(r)τ j

√
Nr(τ )

δi, j |s − i〉〈r − j |, (49)

where δi, j is the Kronecker delta, and

ρ9
b (τ ) =

∞∑
s=0

s∑
i=0

Ps
f 2
i (s)

Ns(τ )
τ 2i

|i〉〈i | (50)

for the pump and signal modes, respectively. Figure 2 compares the expectation values
of the pump and signal modes for the parametric, semi-classical and short-time quantum
approximations, as well as the full numerical solution to equation (17), where the pump mode is
initially in a coherent state with amplitude 〈Na(0)〉 = 9 corresponding to classical pump modes
with amplitude A = 3, and the signal and idler modes are initially in their vacuum (ground)
states.

4.2. Mode spectrum dynamics under the short-time approximation

The main limitation of the short-time approximation is its inability to account for backreaction
effects resulting from the build-up of quanta in the signal and idler modes. For particles
produced in the Hawking process, however, the entangled pairs generated early in the evolution
do not, to first-order, affect those created later from the black hole [42]. Furthermore, the emitted
radiation does not build up in the vicinity of the black hole, but escapes to spatial infinity.
Therefore, in this section we will suppose that the expressions derived above for the evolving
pump and signal states, equations (49) and (50) respectively, in fact provide a more relevant
zero-dimensional model of a radiating blackhole when extrapolated beyond their original
short-time domain of validity. The pump and signal modes contain in general a large number
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of coefficients for each number state and cannot be easily evaluated. However, in the long-time
limit where the pump is nearly depleted, these equations can be considerably simplified by
noting that a general element of equation (50) for fixed s is given by

Ps
f 2
i (s)

Ns(τ )
τ 2i

= Ps
e−τ−2

u!τ 2u

0(s + 1)

0
(
s + 1, τ−2

) , u = s − i. (51)

As such, only those elements where i = s remain nonzero, leading to the signal mode density
matrix

ρ9
b =

∞∑
s=0

Ps|s〉〈s|, (52)

which is in general a mixed state with number-state probability distribution Ps identical to that
of the initial pump state. Therefore, by measuring the late-time signal or idler mode distribution
we recover all but the phase information associated with the initial pure state of the pump mode.
Additionally, equation (52) shows that the number of quanta in the signal mode is equal to the
initial number of quanta in the pump mode, indicating that the pump (49) ends up in the vacuum
(ground) state.

The most important knowledge gained from equation (52) is that the signal mode spectrum
will no longer be that of a thermal state, in contrast to the parametric and semi-classical
approximations in sections 2 and 3, respectively. Focusing on coherent states, in figure 3 we give
an example of the evolution of equations (49) and (50) by plotting the probability distributions
for both modes as a function of time τ for a pump initially in a coherent state with amplitude
〈Na(0)〉 = 9 and initial vacuum state for both the signal and idler. Additionally, in figure 3(b)
we highlight what the thermal distribution would be at each time step by equating 〈Nb(τ )〉 with
a Bose–Einstein distribution to extract an effective temperature

〈Nb(τ )〉 =
[
eh̄ωb/kbTeff(τ )

− 1
]−1

. (53)

In figure 3(a), we see the evolution of the initial coherent state as it loses quanta to the signal
and idler modes and evolves towards the ground state represented by a peak in the probability
distribution at the n = 0 number state. The corresponding evolution of the signal mode in
figure 3(b) starts with the vacuum state and progresses towards the state with probability
distribution identical to that of the initial pump coherent state, equation (52). By comparison
with the effective thermal state (53), we can see that the initial probability distribution for the
signal mode is nearly that of a thermal state until the pump mode has transferred nearly half of
its initial energy corresponding to 〈Nb(τ )〉 = 4.5. As the evolution continues, figure 3(b) shows
the increasing deviation from the effective thermal description for the signal mode distribution
as expected from equation (52).

4.3. Non-thermal spectra and information

We now quantify the deviations of the signal mode spectrum equation (50) from that of a thermal
state using the fidelity [43]

Fb(τ ) = Tr
√

ρb(τ )1/2σ(τ)ρb(τ )1/2, (54)

where ρb(τ ) is the density matrix of the signal mode and σ(τ) is a thermal density matrix with
effective temperature determined by equation (53) using the occupation number 〈Nb(τ )〉. The
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Figure 3. (a) The spectrum of the pump mode at several timesteps when the
pump is initially in a coherent state with 〈Na(0)〉 = 9. (b) The corresponding
spectrum of the signal mode. Red lines indicate what the distribution would be at
each timestep if in a thermal state corresponding to occupation number 〈Nb(τ )〉,
equation (53).

fidelity provides a measure of the distance between these two states in distribution space with
range 06 F 6 1, where unity indicates that the two density matrices are identical. In figure 4(a),
we plot the fidelity of the signal mode assuming a pump mode initially in a coherent state
starting with several occupation numbers ranging from 1 to 9. By comparison with figure 2,
we can see that for the initial coherent state 〈Na(0)〉 = 9, the fidelity remains essentially unity,
indicating that the signal mode density matrix equation (50) is nearly thermal until the pump has
transferred close to half of its initial energy into the signal and idler modes, beyond which point
there is a strong deviation from the thermal state as the signal mode asymptotically approaches
the state given by equation (52). This is in agreement with the qualitative description presented
in figure 3(b) and remains true for all the initial states considered in figure 4(a).

This deviation from a thermal distribution also indicates that the signal mode spectrum
contains information defined as [14]

Ib(τ ) = Sth
b (τ ) − Sb(τ ), (55)

where Sth
b (τ ) is the von Neumann entropy of the signal mode in a thermal state with equal

average occupation number, equation (14), and Sb(τ ) is the actual entropy of the mode
calculated using equation (13) and the reduced density matrix of the signal mode ρb(τ ). In
figure 4(b) we plot the information contained in the signal mode for the initial pump coherent
states considered in figure 4(a). Given that the fidelity is nearly unity until the pump mode
transfers half of its original quanta to the signal and idler modes, it follows that the information
content of the signal or idler mode is close to zero over the same time interval before increasing
as the signal spectrum becomes identical to that of the initial coherent states.

In order to account for the dynamics of the signal mode information, we first consider a
general bipartite pure state of a system with fixed total energy that is composed of subsystems
A and B, each with finite Hilbert space dimensions dA and dB, respectively. It is known
that subsystem B will be nearly thermal and thus contain approximately no information as
long as dA � dB, with the information content of subsystem B becoming apparent only after
dA ≈ dB [14, 44, 45]. Similar dynamics for the information content of the signal mode is shown
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Figure 4. (a) Fidelities of the signal mode given a pump mode initially in a
coherent state with occupation number 〈Na〉 = 1 (blue), 3 (red), 6 (green) and 9
(black) under the short-time approximation. b) Information present in the signal
spectrum calculated from equation (55). Equivalently colored vertical lines
denote the time at which the effective subspace dimensions satisfy, deff

a = deff
bc .

in figure 4. However, the three Harmonic oscillator modes from which a pure state of the
trilinear Hamiltonian equation (1) is composed all contain an infinite set of states, preventing the
direct application of dimensional arguments to our model. One can, however, define an effective
subspace dimension for each mode [45]

deff
i (τ ) =

1

Tr
[
σ 2

i (τ )
] , i = a, b, c (56)

determined by the purity of the effective thermal state σi(τ ), with the temperature given by
equation (53). This definition is motivated by the fact that the purity of a mixed state density
matrix is proportional to the number of basis states over which the fractional population of
the mixed state is nonzero. For a state with an energy (quanta) constraint, using the thermal
state σ(τ) gives the minimal value for the purity, and as such equation (56) represents an
effective maximum number of states constrained by the number of quanta in the mode at time τ .
Therefore, if we partition our initial pure state into bipartite subsystems da and dbc composed
of pump and combined signal and idler modes, respectively, then the initial effective subspace
dimensions satisfy deff

a � deff
bc = (deff

b )2, where the equality is due to the symmetry between the
signal and idler modes. In figure 4(b), we plot the times at which deff

a = deff
bc for each of the

initial pump mode coherent states considered in figure 4(a). Just as for finite dimensional pure
states, the information contained in the signal or idler subsystems remains nearly zero until after
deff

a (τ ) ≈ deff
bc (τ ), provided we define the effective subspace dimension using equation (56). Our

results are in agreement with those of Page [14] where a similar argument was put forth for the
evolution of information in the Hawking radiation from a finite-dimensional black hole.

4.4. Numerical results for the full trilinear evolution

Unlike Hawking radiation, which is well modeled using the quantum short-time approximation,
backaction due to the build-up of quanta in the signal and idler modes has a strong effect on the
evolution of the trilinear Hamiltonian (16). In figure 2, we see that backreaction effects quickly
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Figure 5. (a) Fidelities of the signal mode using numerical simulations of
equation (17) with a pump mode initially in a coherent state with occupation
number 〈Na〉 = 1 (blue), 3 (red), 6 (green) and 9 (black). (b) The corresponding
information present in the signal mode spectrum and times at which deff

a (τ ) =

deff
bc (τ ) (dashed lines).

lead to differing evolutions between the short-time and full quantum dynamics; backreaction
prevents the full transfer of quanta from the pump mode [46] and results in the oscillation of
quanta between the pump and signal/idler modes. To account for these backaction terms we
repeat the analysis in section 4.3 by numerically calculating the full dynamics of equation (17).
Figure 5 shows the modifications to both the fidelity and information content of the signal mode
when backaction is included in the dynamics, as well as the subspace dimension condition
deff

a (τ ) = deff
bc (τ ). As expected, the short-time dynamics in figure 5 are nearly identical to those

in figure 4 until deff
a (τ ) ≈ deff

bc (τ ), which occurs later than in the short-time approximation as the
backaction from particles in the signal mode begins to impede the transfer of quanta from the
pump. The peaks in the information content of the signal mode correspond to the times at which
backaction from the pump mode has completely stopped the transfer of energy between modes.
With the majority of quanta now in the signal and idler modes, the flow of energy reverses
directions as the signal and idler now drive the pump mode, leading to the oscillations seen
in figure 5. As a model for black hole evaporation these oscillations represent the unphysical
process of Hawking radiation flowing back into the black hole; the connection between the
trilinear Hamiltonian and Hawking emission is valid only for the initial transfer of quanta from
pump to signal/idler modes.

5. Tripartite entanglement

With the pump mode quantized, one can consider the entanglement between the pump and
signal/idler modes. In section 2, it was shown that ignoring this entanglement (pump mode
treated classically) and tracing over one mode of a two-mode squeezed state lead directly
to the thermal characteristics of the remaining system. In the full quantum description, the
statistics of the signal mode is obtained by tracing over both idler and pump modes and, as such,
the distribution of entanglement between modes of this now tripartite system is important for
characterizing the spectrum of the signal mode. Additionally, entanglement with the pump mode
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Figure 6. (a) Signal–idler mutual information Ib−c for a pump with 〈Na(0)〉 = 9
in the parametric (red), semi-classical (blue), quantum short-time (green) and
full numerical solution (black). Dashed lines represent mutual information
Ia−bc, indicating entanglement with the pump mode. (b) Quadrature squeezing
parameters q± of the pump mode given the pump is initially in a coherent
state with occupation number 〈Na〉 = 1 (blue), 3 (red), 6 (green) and 9 (black).
Negative values indicating squeezing of the q− quadrature. Dashed lines
represent the corresponding q+ quadrature.

may appreciably alter the state dynamics of the pump compared to the classical approximations
in sections 2 and 3. Given that multipartite entanglement is not as well understood as for the
bipartite case, we begin by again considering the system to be partitioned into two subsystems,
consisting of the pump mode and the combined signal–idler. This bipartite separation into pump
and signal–idler subsystems allows us to use the mutual information [43]

Ia−bc = Sa + Sbc − Sabc (57)

as a measure of total correlations, both classical and quantum, between subsystems [47]. Since
our tripartite system state remains pure throughout its evolution, the total entropy Sabc = 0 and
the subsystem entropies satisfy Sa = Sbc. The mutual information is therefore twice the entropy
of the pump mode subsystem, Ia−bc = 2Sa. Thus, the subsystem entropy of the pump is a direct
measure of entanglement with the signal and idler modes, which is not taken into account in
either the parametric or semi-classical solutions. Of course the signal and idler subsystems are
also entangled with each other as in sections 2 and 3. With both signal and pump modes in
identical states, the signal–idler mutual information is given by

Ib−c = Sb + Sc − Sbc = 2Sb − Sa, (58)

indicating the tradeoff between the entanglement of the signal/idler and that of the pump mode
equation (57). In figure 6(a), we plot the mutual information equations (57) and (58) for a pump
initially in a coherent state of amplitude 〈Na(0)〉 = 9 for the parametric, semi-classical and
short-time approximations along with the full numerical solution obtained using equation (17).
We see that the mutual information (pump entanglement) Ia−bc begins to become appreciable
around the same time as the information content of the signal mode becomes apparent in
figures 4(b) and 5(b), indicating the increasing role of the pump mode in the dynamics. The
numerical solution shows that this increase in pump entanglement reduces the signal–idler
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mutual information Ib−c with respect to the semi-classical and parametric approximations, as
expected from equation (58). In the full quantum dynamics the pump is never allowed to be
fully depleted and is therefore always entangled with the signal and idler. However, in the short-
time approximation, the late-time pump mode is depleted and approaches the ground state where
Sa = 0.

Finally, we show that the entanglement build-up with the pump mode given by Ia−bc not
only affects the signal and idler modes, but also results in amplitude-dependent squeezing of the
pump. In figure 6(b), we plot the amplitude of the squeezing parameters [34]

q± = 4
〈
1X 2

±

〉
− 1, X± =

a(τ ) ± a+(τ )

2
(59)

for the pump mode, where 〈1X 2
±
〉 is the variance of the quadratures. As can be seen, the

entanglement with the signal and idler modes leaves the pump mode in a non-classical squeezed
state over the time range of interest.

6. Conclusion

In this paper, we have investigated the effect of a dynamical quantized pump mode on the
generation of quanta in a parametric amplifier. We have shown that a quantized pump mode
leads naturally to a non-thermal spectrum for the signal and idler modes once the pump has
released nearly half of its initial energy, such that the effective subspace dimensions of the
pump and signal/idler mode systems approximately coincide. The departure from a thermal
state indicates that the signal spectrum contains information that may be used to partially
reconstruct the initial state of the pump mode. Once quantized, the pump mode becomes
entangled with the signal and idler, leading to non-classical squeezed states of the pump. As
a simple, zero-dimensional model of the Hawking effect, the present findings lend support to
the possibility of non-thermal emission from a quantum (as opposed to semiclassical) black
hole; the emitted radiation is entangled with the quantized gravitational degrees of freedom and
yields information concerning the initial formation of the black hole.
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