31,416 research outputs found

    Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror

    Full text link
    It has previously been shown theoretically that the exchange of linear momentum between the light field in an optical cavity and a vibrating end mirror can entangle the electromagnetic field with the vibrational motion of that mirror. In this paper we consider the rotational analog of this situation and show that radiation torque can similarly entangle a Laguerre-Gaussian cavity mode with a rotating end mirror. We examine the mirror-field entanglement as a function of ambient temperature, radiation detuning and orbital angular momentum carried by the cavity mode.Comment: 5 figures, 1 table, submitted to Phys.Rev.

    Dimension minimization of a quantum automaton

    Full text link
    A new model of a Quantum Automaton (QA), working with qubits is proposed. The quantum states of the automaton can be pure or mixed and are represented by density operators. This is the appropriated approach to deal with measurements and dechorence. The linearity of a QA and of the partial trace super-operator, combined with the properties of invariant subspaces under unitary transformations, are used to minimize the dimension of the automaton and, consequently, the number of its working qubits. The results here developed are valid wether the state set of the QA is finite or not. There are two main results in this paper: 1) We show that the dimension reduction is possible whenever the unitary transformations, associated to each letter of the input alphabet, obey a set of conditions. 2) We develop an algorithm to find out the equivalent minimal QA and prove that its complexity is polynomial in its dimension and in the size of the input alphabet.Comment: 26 page

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Quantum Kaleidoscopes and Bell's theorem

    Full text link
    A quantum kaleidoscope is defined as a set of observables, or states, consisting of many different subsets that provide closely related proofs of the Bell-Kochen-Specker (BKS) and Bell nonlocality theorems. The kaleidoscopes prove the BKS theorem through a simple parity argument, which also doubles as a proof of Bell's nonlocality theorem if use is made of the right sort of entanglement. Three closely related kaleidoscopes are introduced and discussed in this paper: a 15-observable kaleidoscope, a 24-state kaleidoscope and a 60-state kaleidoscope. The close relationship of these kaleidoscopes to a configuration of 12 points and 16 lines known as Reye's configuration is pointed out. The "rotations" needed to make each kaleidoscope yield all its apparitions are laid out. The 60-state kaleidoscope, whose underlying geometrical structure is that of ten interlinked Reye's configurations (together with their duals), possesses a total of 1120 apparitions that provide proofs of the two Bell theorems. Some applications of these kaleidoscopes to problems in quantum tomography and quantum state estimation are discussed.Comment: Two new references (No. 21 and 22) to related work have been adde

    Limits on entanglement in rotationally-invariant scattering of spin systems

    Full text link
    This paper investigates the dynamical generation of entanglement in scattering systems, in particular two spin systems that interact via rotationally-invariant scattering. The spin degrees of freedom of the in-states are assumed to be in unentangled, pure states, as defined by the entropy of entanglement. Because of the restriction of rotationally-symmetric interactions, perfectly-entangling S-matrices, i.e. those that lead to a maximally entangled out-state, only exist for a certain class of separable in-states. Using Clebsch-Gordan coefficients for the rotation group, the scattering phases that determine the S-matrix are determined for the case of spin systems with σ=1/2\sigma = 1/2, 1, and 3/2.Comment: 6 pages, no figures; v.2: sections added, edited for clarity, conclusions and calculation unchanged, typos corrected; v.3: new abstrct, revised first two sections, added reference

    Fault-tolerant linear optical quantum computing with small-amplitude coherent states

    Get PDF
    Quantum computing using two optical coherent states as qubit basis states has been suggested as an interesting alternative to single photon optical quantum computing with lower physical resource overheads. These proposals have been questioned as a practical way of performing quantum computing in the short term due to the requirement of generating fragile diagonal states with large coherent amplitudes. Here we show that by using a fault-tolerant error correction scheme, one need only use relatively small coherent state amplitudes (α>1.2\alpha > 1.2) to achieve universal quantum computing. We study the effects of small coherent state amplitude and photon loss on fault tolerance within the error correction scheme using a Monte Carlo simulation and show the quantity of resources used for the first level of encoding is orders of magnitude lower than the best known single photon scheme. %We study this reigem using a Monte Carlo simulation and incorporate %the effects of photon loss in this simulation

    Experimental approximation of the Jones polynomial with DQC1

    Full text link
    We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state nuclear magnetic resonance quantum information processor. This is the first experimental implementation of a complete problem for the deterministic quantum computation with one quantum bit model of quantum computation, which uses a single qubit accompanied by a register of completely random states. The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that for the restricted case of knots whose braid representations have four strands and exactly three crossings, identifying distinct knots is possible 91% of the time.Comment: 5 figures. Version 2 changes: published version, minor errors corrected, slight changes to improve readabilit

    Transition behavior in the capacity of correlated-noisy channels in arbitrary dimensions

    Full text link
    We construct a class of quantum channels in arbitrary dimensions for which entanglement improves the performance of the channel. The channels have correlated noise and when the level of correlation passes a critical value we see a sharp transition in the optimal input states (states which minimize the output entropy) from separable to maximally entangled states. We show that for a subclass of channels with some extra conditions, including the examples which we consider, the states which minimize the output entropy are the ones which maximize the mutual information.Comment: 11 pages, Latex, 4 figures, Accepted for publication in Physical Review

    Economic Ethics Bibliography: Ethical Studies

    Get PDF
    This Economic Ethics Bibliography documents some current literature in three disciplines: economics, philosophical ethics, and theological ethics

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR
    corecore