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Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture
with lower overheads but has been questioned as a practical way of performing quantum computing due to
the fragility of diagonal states with large coherent amplitudes. We show that using error correction only
small amplitudes (�> 1:2) are required for fault-tolerant quantum computing. We study fault tolerance
under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level
resources are orders of magnitude lower than the best single photon scheme.
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Linear optical quantum computing uses off-line resource
states, linear optical processing, and photon resolving de-
tection to implement universal quantum processing on
optical quantum bits (qubits) [1]. This technique avoids a
number of serious problems associated with the use of in-
line nonlinearities for quantum information processing
including their limited strength, loss, and inevitable dis-
tortions of mode shape by the nonlinear interaction. The
trade-off for adopting the linear approach has been large
overheads in resource states and operations. In the standard
approach, which we will refer to as linear optical quantum
computing (LOQC) [2], single photons are used as the
physical qubits. Although progress has been made in re-
ducing the overheads [3], for a fault-tolerant operation they
remain very high [4].

An alternative version of linear optical quantum com-
puting, coherent state quantum computing (CSQC) [5],
uses coherent states for the qubit basis. This is an unusual
approach as the computational basis states are not energy
eigenstates and are only approximately orthogonal. Pre-
vious work on CSQC has concentrated on the regime
where coherent states are relatively large (�> 2) and the
orthogonality is practically zero. It has been shown that
CSQC has resource-efficient gates [6].

In this Letter we show how to build nondeterministic
CSQC gates for arbitrary amplitude coherent states that are
overhead efficient and (for �> 1:2) can be used for fault-
tolerant quantum computation. We estimate the fault-
tolerant threshold for a situation in which photon loss
and gate nondeterminism are the dominant sources of error.
As our gates operate for any amplitude coherent states,
proof of principal experiments are possible using even
smaller amplitudes. Given recent experimental progress
in generating the required diagonal resource states [7] we
suggest that CSQC should be considered a serious con-
tender for optical quantum processing.

For this Letter we use the CSQC qubit basis j0i � j�i,
j1i � �j�i, where j�i describes a coherent state with
(real) amplitude � (i.e., âj�i � �j�i). These states do

not define a standard qubit basis for all � as h��j�i �
e�2�2

� 0, but for �> 2 this overlap is practically zero
[5]. A general CSQC single-qubit state is

 N�;������j�i � �j��i�; (1)

where N�;���� normalizes the state and depends on the
coefficients of the state. A special case is the diagonal
states with � � �� which can be written as j�i �
N1;�1����j�i � j��i�. These states form the resource
used when constructing CSQC gates using linear optics
and photon detection. The diagonal state with a plus (re-
spectively, minus) sign has even (odd) symmetry and con-
tains only even (odd) Fock states. This means that a
diagonal (i.e., X-basis) measurement can be performed
by a photon counter and observing the parity.

The computational or Z-basis measurement is shown in
Fig. 1(a) and the Bell state measurement is shown in
Fig. 1(b). The Z basis and Bell state measurements must
distinguish between nonorthogonal states. For the mea-
surement to be unambiguous and error-free, it must have
a failure outcome [10]. This occurs in both measurements
when no photons are detected. The probability of failure
tends to zero as � increases.

A critical part of constructing CSQC gates for all � is
teleportation [5,9]. This is shown in Fig. 1(c). As the tele-
porter uses unambiguous Bell state measurements there are
5 outcomes to the measurement. Four outcomes corre-
spond to successfully identifying the respective Bell states.
When the appropriate Pauli corrections are made the input
qubit is successfully transferred to the output. The fifth
outcome corresponds to the measurement failure whose
probability again decreases to zero as � increases. Upon
failure the output of the teleporter is unrelated to the input
and hence the qubit is erased. It is this ability to unambig-
uously teleport the qubit value, in spite of the fact that the
basis states are nonorthogonal, that is key to the success of
our scheme.
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Unitary transformations on a CSQC qubit as defined in
Eq. (1) will not reach all transformations required to do
quantum computing. This is because unitary transforma-
tions preserve inner products while various transformations
that we might wish to implement (e.g., j��i ! j�i �
j��i) do not. We implement our gates using nonunitary,
measurement-induced gates which act like unitary gates on
the coefficients of our CSQC qubits for all �. This requires
gates which have in general a nonzero probability of
failure.

We construct a universal set of gates that allows us to
implement error correction in a standard way. Our objec-
tive is to use the error correction to deal with gate failure
errors. Unlike the gates introduced in [5] our gates work for
all values of �.

We choose our universal set of quantum gates as a Pauli
X gate, an arbitrary Z rotation [i.e., Z��� � ei��=2�Z], a
Hadamard gate, and a controlled-Z gate.

In CSQC the X gate is the only gate deterministic for all
�. The gate is performed by introducing a � phase shift on
the qubit [5]. The remainder of the gates are implemented
via quantum gate teleportation [11]. Just as we are able to
implement unambiguous state teleportation, we are able to
implement unambiguous gate teleportation. The gates are
implemented by altering the form of the entanglement
used in the teleporter. The Z rotation is achieved by using
the entangled state ei�=2j�;�i � e�i�=2j��;��i, the
Hadamard gate uses the entangled state j�;�i�j�;��i�
j��;�i�j��;��i, and the controlled-Z gate uses the
four qubit entangled state j�;�;�;�i�j�;�;��;��i�
j��;��;�;�i�j��;��;��;��i which is used as the
shared entanglement of two teleporters. The controlled-Z

entanglement can be generated from the Hadamard entan-
glement with coherent state amplitude

���
2
p
� by splitting the

outputs at 50:50 beam splitters. Hadamard and Z-rotation
entanglement generation are shown in Fig. 2.

Depending on the outcome of the Bell state measure-
ment in a teleported gate, it may be necessary to apply an X
and/or Z Pauli operator to the output. In this Letter, we
assume that these Pauli operators are not applied directly,
but rather absorbed into the error-correction process via the
Pauli frame technique [12]. If the outcome of the Bell state
measurement is failure, then we say the gate failed and the
qubit on which it acted upon is erased.

In calculating a noise threshold [13] for CSQC it is
necessary to establish a model for the noise experienced
by each operation (i.e., gates, measurements, and prepara-
tions). This model is expressed in terms of two parameters:
the qubit amplitude � and a loss parameter � (see below).
We use this model to simulate concatenated fault-tolerant
error-correction protocols. A particular setting of the pa-
rameters (�, �) is said to be below the threshold if the rate
of uncorrectable errors is observed to decrease to zero as
more levels of error correction are applied. Here we cal-
culate the threshold curve, defined to be the curve through
the �-� plane which lies at the boundary between the sets
of parameters that are above and below the threshold.

FIG. 2 (color online). Schematics for gate entanglement gen-
eration with the same layout as in Fig. 1. (a) shows Z-rotation
entanglement preparation. A j�i state with amplitude � ���������������������������������
�2 � �2 � 1=2

p
is split at a three way beam splitter (3BS)

generating the state j�0; �; �i � j��0;��;��i, where �0 �
1=

���
2
p

and � � � for the rotation. The �0 mode is mixed at a
beam splitter with reflectivity cos2��2� with a coherent state of
equal amplitude. The two output modes are then detected and the
output is accepted if one photon is measured in total (probability
of success approximately 0.3). (b) shows the Hadamard entan-
glement preparation. Two copies of the entanglement from (a)
are used but with different angles �=2 � 3�=4 and �0=2 � �=4
and one output mode with coherent state amplitude � �

��������
1=2

p
.

Next, one of the � modes is combined at a beam splitter with the
� mode from the other state. The beam splitter has reflectivity
cos2�=4, and the output modes are detected. The generation
succeeds when only one photon is detected in total. If we
perform an X correction on one of the modes the desired
entanglement is produced with a probability of success of
approximately 0.04.

FIG. 1. Schematics for unambiguous CSQC (a) Z basis,
(b) Bell state measurements, and (c) CSQC teleportation. Thin
lines represent modes whose state is a CSQC qubit with the
encoding amplitude shown near each line in square brackets.
Prepared CSQC qubit states are shown in the logical basis with
the boldface font. The Z-basis measurement in (a) as described
in [8] is performed by determining which mode photons are
present. The Bell state measurement in (b) as described in [5] is
performed by determining which mode photons are in and how
many photons are present. Both these measurements fail when
no photons are present. (c) shows how CSQC teleportation [5,9]
is achieved. A Bell state is generated by splitting a � �

���
2
p
�

diagonal state on a beam splitter and performing a Bell state
measurement on an unknown qubit and one-half of this en-
tangled state. All detectors are photon counters, all beam split-
ters are 50:50, and all unlabeled inputs are arbitrary CSQC qubit
states.
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An important feature of our noise model is the inclusion
of two types of error: unlocated and located errors. A
located error occurs when a gate fails. The experimenter
has knowledge about when and where these errors occur.
Unlocated errors are caused by photon loss as these errors
are not directly observable. We have chosen to utilize the
‘‘circuit-based telecorrector protocol’’ described in [4] as
this protocol has been designed to deal effectively with
these types of errors. This protocol uses error-location
information during ancilla-preparation and syndrome-
decoding routines, thus achieving a high tolerance to lo-
cated noise, while achieving a tolerance to unlocated noise
similar to that of standard protocols [14,15]. In practice,
other noise sources would be present, but the effect of these
errors will be similar to those in our simplified noise
model.

The probability of gate failure varies as a function of the
input qubit state. For simplicity in the simulations, we
apply the worst-case probability value, which corresponds
to the input state j�i. The maximum probability of failure
(per qubit) for Z-basis measurements, and Clifford group
operations [16] implemented by gate teleportation, is equal
to

 q �
2

1� e2�02
: (2)

In this equation �0 �
�������������
1� �
p

� is an effective encoding
amplitude which incorporates the effects of loss. Upon a
gate failure the input qubit is erased. For simplicity we
model this effect by completely depolarizing the qubit
upon a located error occurring.

We model photon loss by assuming that each optical
component, each detector, and each input coupling causes
some fraction of the input intensity to be lost, and that this
loss is equal for all modes. Because of the properties of a
linear network with loss it is possible to assign one effec-
tive input coupling loss which incorporates all of this loss
together. We also assume that the output of each gate
includes the loss due to the detectors from the next gate
or measurement. From this we can assign an effective input
loss rate � which combines the detector, component, and
input efficiencies together incorporating all these effects.

The effect of loss on a CSQC qubit is to induce a random
Z operation and decrease the coherent state amplitude [17].
We assume that the decrease in amplitude is compensated
by changing the amplitudes of the coherent states in the
entanglement used for the teleported gates so that perfect
interference is achieved with the input state and the output
has the same coherent state amplitude as the input.
However, after this correction the random Z operation
sill persists. The probability of Z error on a diagonal
CSQC state is

 p �
1

2

�
1�

sinh�2�� 1��2

sinh�2

�
; (3)

where � is the overall fractional loss as defined above.

In the Z rotation and the controlled-Z gates, photon loss
causes a Z error on the output state. These are due to the
loss in the diagonal states from the generation of the
entanglement. In the Hadamard gate, there are two diago-
nal states required, and a loss in one induces a X error on
the output and a loss on the other induces a Z error on the
output (these errors are uncorrelated).

In our analysis we consider two noise models which are
summarized in Table I. We are considering here an error-
correction protocol which consists of several levels of
concatenation. The noise model in Table I applies only to
the lowest level of concatenation. For all higher levels of
concatenation, we assume a noise model identical to that
considered in [4] for the ‘‘circuit-based telecorrection pro-
tocol,’’ since the arguments used to derive that noise model
are applicable to our situation. Thus, our noise model and
error-correction protocol are identical to that of [4] for
concatenation levels 2 and higher, and so we do not per-
form new simulations for these levels.

For the first level of concatenation, we perform new
numerical simulations, for the noise models in Table I.
The simulator utilized the Monte Carlo method and was
a modified version of the one used in [4] which incorpo-
rated the models considered here. All controlled-NOT gates
were replaced by controlled-Z gates, and two Hadamard
gates and simplifications of this circuit were performed.
Separate simulations were performed for protocols based
on the 7-qubit STEANE code and the 23-qubit GOLAY code
[4,14]. The resulting threshold curves are shown in Fig. 3.
An interesting feature is that increasing � beyond a certain
point causes a reduced tolerance to photon loss.

Table II shows resource-usage estimates calculated dur-
ing the numerical simulation for one round of error cor-
rection, for 5 levels of concatenation. An advantage of
CSQC over LOQC is lower resource usage. Using
Table II and the success probabilities in Fig. 2 we find
that CSQC consumes approximately 104 diagonal resource
states per error-correction round at the first level of con-

TABLE I. Error rates for the models used to calculate the
threshold curve for CSQC. These error rates are determined by
the calculated rate of a given error occurring in constructions
shown in Figs. 1 and 2. The coefficients in the H gate and the
C-Z gate arise from the larger � required for generating the
entanglement and are worse case. The rows labeled j�i and X
meas show the error rates for diagonal state preparation and X
basis measurement, respectively. Models for qubit storage with
photon loss (and without) are considered and shown in the row
labeled ‘‘Memory.’’

Loc. errors Unloc. X error Unloc. Z error

Memory 0 0 p or 0
H gate q 1:6p 1:6p
C-Z gate q 0 2:5p
j�i 0 0 p
X meas 0 0 0
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catenation. This approximation is calculated by multiply-
ing the average number of diagonal resource states re-
quired to construct the resource for a particular operation
by the number of times that operation is required and
aggregating this result. This result is 4 orders of magnitude
less than the number of Bell pair resource states consumed
under equivalent conditions by the most efficient known
LOQC scheme [4]. However, there is a trade-off. The
photon loss threshold we find for CSQC is an order of
magnitude smaller than that for LOQC. This means that if
the loss budget is too large, then CSQC may not be scalable
or may require so many levels of concatenation that the
resource advantage is lost. We note that the physical re-
sources in terms of specific optical states required to imple-

ment CSQC and LOQC are different. Nevertheless, we
believe comparing resource state counts still gives a good
estimate of the relative complexity of the two schemes. In
future work, it would be valuable to include other sources
of noise and improve upon some of the pessimistic as-
sumptions made in deriving the noise model.

We have shown how to construct a universal set of gates
for CSQC for any coherent state amplitude. Provided the
coherent state amplitudes are not too small (�> 1:2) and
photon loss is not too large (�< 5� 10�4), it is possible to
produce a scalable system. To our knowledge this is the
first estimation of a fault-tolerance threshold for nonor-
thogonal qubits. As our gates work for all �, proof of
principal experiments is possible using current technology.
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TABLE II. Effective error rates and resource usage for the
7-qubit STEANE code with memory noise enabled. The coherent
state amplitude used for this table is � � 1:56 and loss rate � �
0:8� 10�4. This corresponds to gate error rates in our model of
approximately (p, q). Resource usage is defined to be the total
number of gates, preparations, measurements, and quantum
memories used. Resources are used in the following fractions
for all levels of concatenation: memory 0.284, Hadamard 0.098,
controlled-Z 0.343, diagonal states 0.164, and X-basis measure-
ments 0.111. Also shown is an estimate of the maximum length
of computation possible assuming the entire computation suc-
ceeds with probability 1=2.

Level
Unloc.

rate
Loc.
rate

Max.
comp. steps

Resource
usage

1 4� 10�4 8� 10�3 82 1:0� 103

2 1:7� 10�4 2� 10�3 3:3� 102 8:7� 105

3 2:8� 10�5 2:1� 10�4 3:0� 103 4:5� 108

4 7:4� 10�7 3:6� 10�6 1:6� 105 2:1� 1011

5 5:3� 10�10 1:7� 10�9 3:1� 108 9:6� 1013
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FIG. 3. Thresholds for CSQC using the 7-qubit STEANE and the
23-qubit GOLAY code for both memory noise models.
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