4,673 research outputs found

    A very brief introduction to quantum computing and quantum information theory for mathematicians

    Full text link
    This is a very brief introduction to quantum computing and quantum information theory, primarily aimed at geometers. Beyond basic definitions and examples, I emphasize aspects of interest to geometers, especially connections with asymptotic representation theory. Proofs of most statements can be found in standard references

    Likelihood inference for exponential-trawl processes

    Full text link
    Integer-valued trawl processes are a class of serially correlated, stationary and infinitely divisible processes that Ole E. Barndorff-Nielsen has been working on in recent years. In this Chapter, we provide the first analysis of likelihood inference for trawl processes by focusing on the so-called exponential-trawl process, which is also a continuous time hidden Markov process with countable state space. The core ideas include prediction decomposition, filtering and smoothing, complete-data analysis and EM algorithm. These can be easily scaled up to adapt to more general trawl processes but with increasing computation efforts.Comment: 29 pages, 6 figures, forthcoming in: "A Fascinating Journey through Probability, Statistics and Applications: In Honour of Ole E. Barndorff-Nielsen's 80th Birthday", Springer, New Yor

    Corticospinal excitability changes following blood flow restriction training of the tibialis anterior: a preliminary study

    Full text link
    © 2017 The Authors Aim To examine the neural excitability of projections to the tibialis anterior (TA) following blood flow restriction training (BFRT). This is the first study to examine the TA following BFRT. Methods Ten subjects performed each experiment. Experiment one consisted of BFRT at 130 mmHg (BFRT-low). Experiment two consisted of BFRT at 200 mmHg (BFRT-high), training (TR-only) and blood flow restriction at 200 mmHg (BFR-only) performed on separate days. Blood flow restriction was applied to the thigh and training consisted of rapid dorsiflexion contractions against gravity every 10 s for 15-min. The motor evoked potential (MEP) peak-to-peak amplitudes were recorded pre-intervention and 1-, 10-, 20- and 30-min post-intervention and expressed relative to the maximal peak-to-peak M-wave at each time-point. Results Experiment one revealed no difference in MEP amplitudes for BFRT-low over time (P = 0.09). Experiment two revealed a significant effect of time (P < 0.001), with 1-min post-intervention MEP amplitudes significantly facilitated compared to pre-intervention, but no effect of intervention (P = 0.79) or intervention*time interaction (P = 0.25). Post-hoc power calculations were performed for the intervention*time interaction. Discussion and conclusions Corticospinal excitability of projections to the TA did not change following BFRT-low and corticospinal excitability changes between BFRT-high, BFR-only and TR-only interventions were not different over time. In experiment two, there was a significant main effect of time 1-min post-intervention which was mainly due to the BFRT-high intervention. Post-hoc power calculations revealed that 15 subjects were required for a significant interaction effect 80% of the time however, as the changes in corticospinal excitability were not prolonged, a new dataset of ≥ 15 subjects was not acquired

    Impact of Tanzania's Wildlife Management Areas on household wealth

    Get PDF
    Large-scale area-based conservation measures affect millions of people globally. Understanding their social impacts is necessary to improve effectiveness and minimize negative consequences. However, quantifying the impacts of conservation measures that affect large geographic areas and diverse peoples is expensive and methodologically challenging, particularly because such evaluations should capture locally defined conceptions of well-being while permitting policy-relevant comparisons. Here, we measure the impact of Tanzania’s Wildlife Management Areas (WMAs), a national community-based conservation and poverty reduction initiative. We use a novel, cost-effective impact evaluation method based on participatory wealth ranking and Bayesian multilevel modelling. We find that from 2007 to 2015 the impacts of WMAs on wealth were small and variable, with no clear evidence of widespread poverty reduction. Accompanying qualitative data suggest that apparently positive effects in one WMA cannot be directly attributed to WMA activities. Our results suggest that current WMA policy needs to be revisited if it is to promote positive local development

    Extension of Information Geometry to Non-statistical Systems: Some Examples

    Full text link
    Our goal is to extend information geometry to situations where statistical modeling is not obvious. The setting is that of modeling experimental data. Quite often the data are not of a statistical nature. Sometimes also the model is not a statistical manifold. An example of the former is the description of the Bose gas in the grand canonical ensemble. An example of the latter is the modeling of quantum systems with density matrices. Conditional expectations in the quantum context are reviewed. The border problem is discussed: through conditioning the model point shifts to the border of the differentiable manifold.Comment: 8 pages, to be published in the proceedings of GSI2015, Lecture Notes in Computer Science, Springe

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    Complete quantum teleportation using nuclear magnetic resonance

    Full text link
    Quantum mechanics provides spectacular new information processing abilities (Bennett 1995, Preskill 1998). One of the most unexpected is a procedure called quantum teleportation (Bennett et al 1993) that allows the quantum state of a system to be transported from one location to another, without moving through the intervening space. Partial implementations of teleportation (Bouwmeester et al 1997, Boschi et al 1998) over macroscopic distances have been achieved using optical systems, but omit the final stage of the teleportation procedure. Here we report an experimental implementation of the full quantum teleportation operation over inter-atomic distances using liquid state nuclear magnetic resonance (NMR). The inclusion of the final stage enables for the first time a teleportation implementation which may be used as a subroutine in larger quantum computations, or for quantum communication. Our experiment also demonstrates the use of quantum process tomography, a procedure to completely characterize the dynamics of a quantum system. Finally, we demonstrate a controlled exploitation of decoherence as a tool to assist in the performance of an experiment.Comment: 15 pages, 2 figures. Minor differences between this and the published versio

    Contributions of genetic and non‐genetic sources to variation in cooperative behaviour in a cooperative mammal

    Get PDF
    This is the author accepted manuscript. the final version is available from Wiley via the DOI in this recordData archiving: Data and code for reproducing the main analyses are available through the Dryad Digital Repository database (https://doi.org/10.5061/dryad.cfxpnvx68). The data and code for the meta-analysis of heritability estimates of selected traits in wild mammals are available in Files S3–S5.The evolution of cooperative behavior is a major area of research among evolutionary biologists and behavioral ecologists, yet there are few estimates of its heritability or its evolutionary potential, and long-term studies of identifiable individuals are required to disentangle genetic and nongenetic components of cooperative behavior. Here, we use long-term data on over 1800 individually recognizable wild meerkats (Suricata suricatta) collected over 30 years and a multigenerational genetic pedigree to partition phenotypic variation in three cooperative behaviors (babysitting, pup feeding, and sentinel behavior) into individual, additive genetic, and other sources, and to assess their repeatability and heritability. In addition to strong effects of sex, age, and dominance status, we found significant repeatability in individual contributions to all three types of cooperative behavior both within and across breeding seasons. Like most other studies of the heritability of social behavior, we found that the heritability of cooperative behavior was low. However, our analysis suggests that a substantial component of the repeatable individual differences in cooperative behavior that we observed was a consequence of additive genetic variation. Our results consequently indicate that cooperative behavior can respond to selection, and suggest scope for further exploration of the genetic basis of social behaviorEuropean Union Horizon 2020Human Frontier Science ProgramUniversity of Zurich.Swiss National Science FoundationMammal Research Institute at the University of Pretoria, South Afric

    Externally validated model predicting gait independence after stroke showed fair performance and improved after updating

    Get PDF
    ObjectiveTo externally validate recent prognostic models that predict independent gait following stroke.Study design and settingA systematic search identified recent models (ResultsThree prognostic models met our criteria, all with high Risk of Bias. Validation data was only available for the Australian model. This model used National Institute of Health Stroke Scale (NIHSS) and age to predict independent gait, using Motor Assessment Scale (MAS) walking item. For validation, Scandinavian Stroke Scale (SSS) was a proxy for NIHSS, and Functional Independence Measure (FIM) locomotion item was a proxy for MAS. The Area Under the Curve was 0.77 (0.74-0.80) and had good calibration in the validation dataset. Adjustment of the intercept and regression coefficients slightly improved discrimination. By adding paretic leg strength, the model further improved (AUC 0.82).ConclusionExternal validation of the Australian model with proxies showed fair discrimination and good calibration. Updating the model by adding paretic leg strength further improved model performance

    Recreational soccer is an effective health-promoting activity for untrained men

    Get PDF
    Copyright BMJ publishing GroupTo examine the effects of regular participation in recreational soccer on health profile, 36 healthy untrained Danish men aged 20-43 years were randomised into a soccer group (SO; n=13), a running group (RU; n=12) and a control group (CO; n=11). Training was performed for 1 h two or three times per week for 12 weeks; at an average heart rate of 82% (SEM 2%) and 82% (1%) of HRmax for SO and RU, respectively. During the 12 week period, maximal oxygen uptake increased (p < 0.05) by 13% (3%) and 8% (3%) in SO and RU, respectively. In SO, systolic and diastolic blood pressure were reduced (p < 0.05) from 130 (2) to 122 (2) mm Hg and from 77 (2) to 72 (2) mm Hg, respectively, after 12 weeks, with similar decreases observed for RU. After the 12 weeks of training, fat mass was 3.0% (2.7 (0.6) kg) and 1.8% (1.8 (0.4) kg) lower (p < 0.05) for SO and RU, respectively. Only SO had an increase in lean body mass (1.7 (0.4) kg, p < 0.05), an increase in lower extremity bone mass (41 (8) g, p < 0.05), a decrease in LDL-cholesterol (2.7 (0.2) to 2.3 (0.2) mmol/l; p < 0.05) and an increase (p < 0.05) in fat oxidation during running at 9.5 km/h. The number of capillaries per muscle fibre was 23% (4%) and 16% (7%) higher (p < 0.05) in SO and RU, respectively, after 12 weeks. No changes in any of the measured variables were observed for CO. In conclusion, participation in regular recreational soccer training, organised as small-sided drills, has significant beneficial effects on health profile and physical capacity for untrained men, and in some aspects it is superior to frequent moderate-intensity running
    corecore