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Externally validated model predicting gait independence after stroke
showed fair performance and improved after updating
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Abstract

Objective: To externally validate recent prognostic models that predict independent gait following stroke.

Study Design and Setting: A systematic search identified recent models (<10 years) that predicted independent gait in adult
stroke patients, using easily obtainable predictors. Predictors from the original models were assigned proxies when required, and model
performance was evaluated in the validation cohort (n = 957). Models were updated to determine if performance could be improved.

Results: Three prognostic models met our criteria, all with high Risk of Bias. Validation data was only available for the Australian
model. This model used National Institute of Health Stroke Scale (NIHSS) and age to predict independent gait, using Motor Assessment
Scale (MAS) walking item. For validation, Scandinavian Stroke Scale (SSS) was a proxy for NIHSS, and Functional Independence
Measure (FIM) locomotion item was a proxy for MAS. The Area Under the Curve was 0.77 (0.74-0.80) and had good calibration in
the validation dataset. Adjustment of the intercept and regression coefficients slightly improved discrimination. By adding paretic leg
strength, the model further improved (AUC 0.82).

Conclusion: External validation of the Australian model with proxies showed fair discrimination and good calibration. Updating
the model by adding paretic leg strength further improved model performance. © 2021 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Stroke is the leading cause of adult disability and the
ability to walk is often affected [1,2]. Recovery of inde-
pendent walking is a common goal of stroke rehabilitation
[3]. Although individual recovery patterns vary between
individuals [4], studies suggest that recovery of gait can
be predicted in the first days after stroke [5—-8]. Early and
accurate predictions about a patient’s recovery can provide
clinicians, patients and relatives, with useful information to
set realistic rehabilitation goals, prioritize treatments, and
facilitate discharge planning [9].

Currently several prognostic models are published that
predict gait recovery after stroke, though few are routinely
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used in clinical practice [9—11]. Prior to a prognostic model
being recommended for clinical use, it is necessary for the
model to undergo internal and external validation, and as-
sessed for clinical impact [12]. The lack of validation and
impact evaluation studies are limiting factors in the trans-
lation of prognostic models into clinical practice. Other
potential barriers for use in clinical practice may be the
complexity of models. For example, models that include
predictors not routinely available (e.g., neuroimaging data),
or lack tools for clinician use (e.g., decision tree, online
calculator), may be more challenging to adopt clinically.
A recent narrative review identified five multivariable
prognostic models that predict walking post stroke [9].
Only one model, predicting 10-meter walking speed, had
undergone external validation [11]. External validation can
be difficult to perform due to the need for a sufficiently
large, separate, dataset with similar predictors and outcome
measures. However, without external validation the predic-
tive performance of a prognostic model can be overly opti-
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mistic, due to over-fitting of the data from which the model
was derived [12]. External validation is therefore essential
to ensure the generalizability of a prognostic model, and
validation studies are needed to facilitate the translation
of prognostic models from the literature and into clini-
cal practice. During external validation it is common for
a model’s performance to be poorer than the development
study [12]. To build upon previously developed prognostic
models, during external validation, it is recommended that
prognostic models are updated and/or recalibrated [13].

Therefore, we aimed to externally validate recent (<10
years) prognostic models that predict independent gait in
adults with a stroke, using predictors easily obtained in
clinical practice. Furthermore, the prognostic models were
updated if their performance in the validation cohort was
poorer compared to the development study.

2. Patients and methods
2.1. Prognostic model selection

A systematic search was performed to identify recently
published prognostic models for post stroke walking (Ap-
pendix 1). The search was restricted to April 1, 2009—April
1, 2019. The search strategy was based on a recommended
search for prognostic models [14]. Studies were included
if they were related to the development and/or validation
of a prognostic model/algorithm/nomogram, in adults (>18
years) with stroke, predicted walking/ambulation/gait (with
differentiation between dependent or independent gait),
outcome measured >30 days post stroke, and used pre-
dictors assessed within 7 days of stroke onset. We defined
independent gait as the ability to walk (with walking aid
if needed) but without assistance of another person over
short distances. Studies were excluded if the model used
predictors that were not easily obtained in clinical practice
(e.g., imaging, neurophysiological data).

Two authors (PS, AL) independently screened titles and
abstracts of articles and disagreements discussed until con-
sensus. Full texts were screened by two authors (AM, AL),
and a third (AV) consulted for disagreements. Data ex-
tracted (AL) included study design, participant baseline
characteristics, setting, location, sample size, time points,
outcome measurements, predictors used in the analysis, de-
veloped model, calibration and discrimination measures.
We contacted authors if articles did not provide sufficient
information. Two assessors (AL, AV) independently as-
sessed risk of bias (RoB) using the Prediction model Risk
Of Bias Assessment Tool (PROBAST) [15].

2.2. Validation cohort

Baseline data from the Danish Stroke Registry (DSR)
[16] were obtained and matched to discharge data from pa-
tients with stroke from Hammel Neurorehabilitation Centre
and University Research Clinic (HNRC) in Denmark be-

tween July 6, 2011 and November 30, 2018. HNRC is a
rehabilitation hospital for patients with moderate to severe
acquired brain injury. Baseline data from the DSR obtained
within the first few days post stroke were merged with
discharge data from HNRC to create the validation cohort.
Data handling (Danish Patient Safety Authority, ID3-3013-
2831/1), storage (Data Protection Agency Central Region
of Denmark, ID1-16-02-734-18), and ethical approval were
obtained (UTS-HREC:ETH19-4073N).

2.2.1. Participants

Data from 1,489 patients were obtained, termed the full
dataset. To establish the validation cohort, patients from
the full dataset were excluded when they were diagnosed
with transient ischemic attack (TIA), undergoing outpatient
rehabilitation, or able to walk independently at baseline
(Scandinavian Stroke Scale (SSS) - gait score <9 in acute
care).

2.2.2. Predictors

The DSR contains a range of patient variables from
acute care, including baseline demographic characteristics
and the SSS [16]. The SSS is a valid and reliable as-
sessment tool commonly used in Scandinavian countries,
which measures the severity of stroke impairments [17].
The SSS consists of nine items including consciousness,
eye movement, arm motor power, hand motor power, leg
motor power, orientation, speech, facial palsy, and gait.
Each item consists of scoring categories, ranging from 0
to 12 points, which are scored by the physician or special-
ized therapist. The maximum possible score is 58, ranging
from 0 “unconscious” to 58 “no neurological deficits.”

Based on the prognostic models that met inclusion cri-
teria, predictors were matched to variables available in the
validation cohort. For variables that did not have a direct
match, authors discussed suitable proxies based on pub-
lished literature until consensus (AL, AM, CQ, PS, AV)
[18].

2.2.3. Outcome measures

At HNRC, inpatients are assessed using the Functional
Independence Measure (FIM) at admission, every fourth
week, and at discharge. The FIM is a valid and reliable
tool to measure activity limitations in patients with stroke
[19,20]. The FIM is 18 items with motor and cognition
subscales, and each item is scored 1-7 [21]. In the present
study, gait independence was determined using the “Lo-
comotion: Walk, Wheelchair” item of the FIM. The lo-
comotion item consists of two parts; a categorical score
“wheelchair, ” “walking,” or “both” and a nominal score
of independence ranging from 1 to 7 [21].

tL)

2.3. Analysis

We summarized the characteristics of the validation co-
hort with mean and standard deviation (SD), or median
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and interquartile range (IQR) for continuous variables (as
appropriate) and number and percent (%) of total for cate-
gorical variables. Available case analyses were performed
as missing data were <10% [22].

To evaluate model performance of the selected prog-
nostic models in the validation cohort we obtained dis-
crimination, calibration, specificity, and sensitivity values.
The area under the receiver-operating characteristic curve
(AUC) was calculated to infer discriminative power. Cali-
bration was assessed by visual inspection of the observed
probabilities plotted against the predicted probabilities. To
evaluate a suitable cut-off for independent gait on the FIM
locomotion, we investigated model discrimination and cal-
ibration using the categories “walking” and “both” and
evaluated two FIM cut-off scores (>5 and >6), as both
descriptions could potentially fit the outcome measures in
the included models (Supplementary 1).

If after validation, model performance did not reach suf-
ficient calibration [23] and comparable discrimination as
reported during development, the model was updated in
the validation cohort, using the following steps; (1) re-
estimation of the intercept, (2) re-estimation of the regres-
sion coefficients of the predictors, and (3) re-estimation of
the intercept and regression coefficients with new predic-
tor(s) added to the model [13].

Selection of potential variables was based on the liter-
ature [5,9] and variable availability our dataset. We used
logistic regression to re-estimate the intercept and regres-
sion coefficients and to add new variables [24]. Correla-
tions between potential new variables were analyzed and
the standard errors of the regression coefficients were re-
viewed to diagnose multicollinearity between variables. If
variables were highly correlated (r>0.8), one variable was
included. For the final model we used backwards stepwise
regression analysis, with P = 0.10 threshold to remove
variables from the model. Bootstrapping (b = 300) was
performed to shrink coefficients and prevent overfitting.
Discrimination and calibration curves for the model and
updates were reported.

IBM SPSS Statistics (v25) was used to calculate sum-
mary statistics and R (R Core Team (2019) R Founda-
tion for Statistical Computing) with packages “tidyverse,”
[25] “proc” [26] and “rms” [27] for model validation and
adjustments. All data reported according to the reporting
guideline [24].

3. Results
3.1. Prognostic model selection

Of 2,728 articles retrieved, three prognostic models met
the inclusion criteria: the Australian model, [6] the EPOS
model [7] and the TWIST model [8] (Fig. 1). Studies col-
lected hospital inpatient data, with baseline assessments
predominantly taken within 7 days post stroke, and out-
comes predicted at six months [6,7] or 6- and 12-weeks

post stroke [8] (Table 1). Two studies included patients
with both hemorrhagic and ischemic stroke, [6,8] while
one study included ischemic patients only [7]. Calibration
curves and AUC were not reported in two studies [7,8].
Authors were contacted, and TWIST model data were un-
available due to the statistical approach used (i.e., Clas-
sification and regression tree analysis [8]), and no cor-
respondence was obtained from EPOS authors. Overall,
all models demonstrated high RoB due to the analysis
(Table 2).

3.2. Validation cohort

3.2.1. Participants

From the full dataset (n = 1489) we excluded 532 pa-
tients because of: a diagnosis of TIA (n = 11), undergoing
outpatient rehabilitation (n = 91), walking independently
at baseline (n = 388), and missing baseline walking in-
formation (n = 16). In addition, we excluded 26 patients
because the time between presentation to acute care and
baseline measurement was deemed unrealistic (e.g., val-
ues ranging from —1,849 to —10 days or +21 to +760
days). Identification of unrealistic values was based on vi-
sual inspection of the values matched to a normal distribu-
tion. In the full dataset there were 1.67% missing values,
mostly at discharge (i.e., FIM scores at discharge were
missing mostly due to the 91 outpatients and 11 TIA pa-
tients of which the FIM measurements were not part of the
routine assessments). In the validation dataset (n = 957)
there were 0.93% missing data overall, with 3.76% miss-
ing FIM scores at discharge. The time until baseline mea-
surements was within 7 days post stroke for 95.0% of
the included patients. For baseline characteristics of the
full dataset, validation cohort, and included studies see
Table 3. Patients in the validation cohort had lower
age compared to the development cohorts, included both
ischemic and hemorrhagic stroke, and included mild
(31.0%), moderate (37.2%), and severely (31.8%) affected
patients at baseline based on the SSS [28]. In the Aus-
tralian model development cohort, 43% of the patients
were classified as “mild” on the NIHSS at baseline [6],
whereas patients included in the TWIST model, were
mostly (83%) classified as “moderate to severe” on the
NIHSS [8]. The EPOS model development cohort included
only ischemic stroke, with the median Barthel Index indi-
cating that patients were mostly highly to totally depen-
dent (median, IQR: 6, 2—10) at baseline [7]. At discharge,
62.0% (567/914 available cases) of the validation cohort
achieved independent gait at a median of 72 (IQR: 45—
115) days post stroke, compared to 63-79% in the de-
velopment cohorts at respectively 3- and 6 months post
stroke.

3.2.2. Predictors and proxy selection
The predictors (Table 1) and proxy comparison (Sup-
plementary 1) are reported. For the EPOS model, the
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Fig. 1. Flow diagram of the search and selection of studies from the literature. MRS; Modified Rankin Scale. FIM, functional independence

measure; FIM, functional independence measure; Bl, Barthel index.

description of Motricity Index item lower limb, and for
the TWIST model, the Trunk Control Test did not match
any variables in the validation dataset (Supplementary 1).
Therefore, EPOS and TWIST models were unable to be
validated in our dataset.

For the Australian model, we selected SSS total as a
proxy for NIHSS total. The SSS score was converted to an
NIHSS score using a formula (Supplementary 2) [29] Po-
tential predictors to update the model were selected from
the available data and include gender, type of stroke (“is-

chemic,” “hemorrhage,” or “other”), mobility (SSS-gait)
and leg strength (SSS-leg).

3.2.3. Outcome

The FIM locomotion item was used as a proxy for the
Motor Assessment Scale (MAS) item “walking,” which
was the outcome measure in the Australian model. The
model performed slightly better with FIM cut-off >6 in-
stead of >5 as proxy for MAS walking >3 and was used
for all further analyses (Supplementary 3).
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Table 1. Characteristics of models predicting independent gait in stroke patients

Reference Australian model [6] EPOS model [7] TWIST model [8]

Study type Model development Model development Model development

Population 200 adult stroke patients: 221 ischemic first-ever anterior 41 adult stroke patients: ischemic
hemorrhage, ischemic and SAH circulation stroke patients, presenting and intracerebral hemorrhage with
(with symptoms still present after with hemiparesis (even after rTPa new lower limb weakness and
24hrs). treatment). required supervision or assistance for

walking.

Setting Hospital, acute care Hospital, acute care Hospital, acute care

Country Australia The Netherlands New Zealand

Time of recruitment 2009-2010 2007-2009 2015-2017

Patients included for
analysis

Potential predictors

Predictors in final model

Outcome variable

Follow-up

Independent gait at
follow-up (%)

AUC (95% ClI)
Calibration curve
Hosmer-Lemeshow test
goodness of fit
Specificity (95%
Cl)/sensitivity (95% Cl)

Not able to walk independently at

baseline (n = 141)

Age, NIHSS (stroke severity), MAS
item 4 (standing up ability),
premorbid Bl score, Tardieu Scale

score for spasticity.

Age per 10 years (beta: —0.11)
NIHSS (beta: —0.24) Constant:

—11.03

Independent gait (MAS item

walking, >3)
6 months

114/141 participants (80.9%)

0.84 (0.77-092)
Yes
0.7

Not able to walk independently at
baseline (n = 189)

Age, social support, comorbidity,
hemisphere of stroke, consciousness
at onset, days between stroke onset
and baseline assessment, type of
stroke, extinction or inattention,
hemianopia, conjugate deviation,
sensory loss, Bl urinary incontinence,
TCT item 3 (sitting balance), Ml leg,
MI arm, FIM arm, FIM leg.

TCT-3 (beta: 2.69) Ml-leg (beta:
2.08) Constant: —0.98
Independent gait (FAC >4)

6 months
122/154 participants (79.2%)

63% (43-78%)/93% (86-96%)

Not able to walk independently at
baseline (n = 41)

Age, sex, stroke classification, NIHSS
(stroke severity), stroke type, CCI
(comorbidities), initial FAC, MRC
grades for hip flexion, extension and
abduction, knee flexion and extension
and ankle dorsiflexion and
plantarflexion; Ml leg, TCT, therapy
dose, therapy intensity.

TCT score MRC grade for hip
extension strength

Independent gait (FAC >4)

6 weeks, 12 weeks

6 weeks: 21/41 (51%) 12 weeks:
26/41 (63%)

100% (90-100%)/80% (28-99%)

SAH, subarachnoid hemorrhage; rTPa, Tissue plasminogen activator; NIHSS, National Institutes of Health stroke scale; TCT, trunk control test;
MI, Motricity Index; FIM, Functional Independence Measure; MAS, Motor Assessment Scale; CCI, Charlson Comorbidity Index; MRC, Medical

Research Council scale; -, not reported.

Table 2. PROBAST Risk of Bias assessment per domain and overall

Study Participants Predictors Outcome Analysis Overall
Australian model [6] Low Low Low High High
EPOS model [7] Low Unclear Unclear High High
Twist model [8] Low Unclear Unclear High High

3.2.4. Model Validation and Updates

As there were less than 10% missing values, we per-
formed an available case analysis (n = 914) to analyze the
performance of the Australian model. First, the validation
with proxies had an AUC of 0.77 (95% CI: 0.74-0.80;
Table 4). The model showed good calibration; however it
slightly overestimated the predicted scores (Fig. 2). As dis-
crimination was lower compared to the development study
(AUC 0.84), model updates were performed.

Updating the model’s intercept alone (Update A),
did not improve calibration or discrimination (Table 4,
Fig. 2). Calibration improved after re-estimating the inter-
cept and regression coefficients (Update D). The intercept
and regression coefficients decreased relative to the original
model after re-estimation. Discrimination was improved
by re-estimation of all regression coefficients and further
improved by updating the model with a new variable.
The variables gender, type of stroke (“ischemic,” “hemor-
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Table 3. Baseline characteristics of the validation and development cohorts

Full dataset Validation cohort Australian model [6] EPOS model [7] TWIST model [8]
(n = 1489) (n = 957) (n = 114) (n = 154)" (n=41)

Age yrs, mean (sd) 62.6 (12.4) 63.9 (12.2) median 78 (IQR 67 67.5(14.2) 72 (43-96)

- 83)

Gender 954 (64.1)/535 587 (61.3) /370 53 (47.0) /61 61 (39.6) /93 17 (41.0) /24

male/female, n (%)

Type of stroke, n (%)

Infarction 1083 (72.7) 699 (73.0) 78 (68.0) 154 (100.0) 45 (85)

— Cerebral infarction 1064 (71.5) 690 (72.1) 154 (100.0)

— Other infarction 19 (1.3) 9(0.9)

Hemorrhage 259 (17.4) 191 (20.0) 25 (22.0) 6 (15)

— Intracerebral 237 (15.9) 182 (19.0) 24 (21.0)

hemorrhage

— Subarachnoid 17 (1.1) 7 (0.7) 1(1.0)

hemorrhage

— Other hemorrhage 5(0.3) 2(0.2)

Unknown 136 (9.1) 67 (7.0) 11 (10.0)

TIA 11 (0.8) 0 0

Stroke impairment, SSS: (n = 1450) SSS: (n = 946): NIHSS: Mild: 49 Bl: 6 (2-10) NIHSS Mild: 7

n (%) Mild: 717 (49.4) Mild: 293 (31.0) (43.0) Moderate: 43 Median (IQR) (17.0)
Moderate: 406 Moderate: 352 (38.0) Severe: 22 Moderate/Severe:
(28.0) Severe: 327 (37.2) Severe: 301 (19.0) 34 (83.0)
(22.6) (31.8)

Days in acute care, 7 (4-17) 7 (4-14)

median (IQR)

Days in 50 (28-85) 57 (34-96) 32 (13-82)

rehabilitation,

median (IQR)

sd, standard deviation; TIA, transient ischemic attack; IQR, interquartile range; SSS, Scandinavian Stroke Scale; NIHSS, National Institutes
of Health Stroke Scale; Bl, Barthel index.

! One hundred fourteen patients out of the initial included 200 patients were not able to walk independently at baseline.

I One hundred fifty-four patient out of the initial included 221 patients were not able to walk independently at baseline.

Table 4. Discrimination, specificity (spec) and sensitivity (sens) of original and updated Australian model with proxies in the validation cohort

Model Equation AUC (95% CI) Spec/Sens

Original (Cut-off > 6) 1/ 0.77 (0.74 - 0.80) 0.45/0.9
(1+ e—(11A0285 — 0.1053 age—0.2436 proxyNIHSS))

Update A Intercept 1/ 0.77 (0.74 - 0.80) 0.57/0.81
(1-‘1—67(10‘41 — 0.1053 age—0.2436 proxyNIHSS))

Update B Intercept, 1/ 0.8 (0.77 - 0.83) 0.61/0.84

regression coefficient age (1+e—(5A60717 —0.03188 age—0.2436 proxyNIHSS))

Update C Intercept, 1/ 0.78 (0.75-0.81) 0.59/0.81

regression coefficient (1-‘1—67(10‘6146 —0.1053 age 70.2596proxyNIHSS))

proxyNIHSS

Update D Intercept, 1/ 0.80 (0.77 - 0.83) 0.59/0.85

regression coefficients age (14¢—(4.80918 — 0.02765age —0.20291proxyNIHSS))

and proxyNIHSS

(2.4685 — 0.0330 * age
—0.0891 * proxyNIHSS
+ 0.3766 * sssjcq = 2

Update E Intercept, all 1/(1+ e )* 0.83 (0.80 - 0.85) 0.68/0.85
regression coefficients, new — 0.2368 * sssicq = 4 0.82!
variable added + 0.3673 * 5851cg = 5

—0.2853 * $8Sjeq = 6

Note: For example, Update E predicts that an 85-year-old patient with SSS total of 35 and the ability to raise a straight leg with reduced
strength (SSSleg = 5) at baseline would not walk independently at discharge from inpatient rehabilitation (predicted = 0).
I denotes after bootstrapping.
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Fig. 2. Calibration plots for independent gait in stroke patients, of the Australian model applied to the validation cohort. Calibration of the original
model equation is shown and model adjustments (Update A-E). Calibration for re-estimation of the intercept (Update A), re-estimation of the
intercept and regression coefficients of the predictor ‘age’ (Update B), re-estimation of the intercept and predictor ‘NIHSS’ (Update C) and finally
re-estimation for the intercept and both predictors (Update D) are shown in separate panels. Calibration for ‘Update E’ shows re-estimation of the
intercept and regression coefficients with a new predictor added to the model. The dotted 45° line from zero denotes ideal calibration (slope = 1,
intercept = 0) and the solid lines represent the smoothed calibration for each model update. The error bars represent the 5% error margin. For
Update E, the grey line represents the original values and the dark line shows the corrected calibration after bootstrapping.
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rhage,” or “other”) and leg strength (SSS-leg) were com-
bined with the original predictors, age and stroke severity
(proxy-NIHSS), in a multivariate analysis. SS§S-gait showed
a standard error of 1.2 and high correlation (r = 0.8) with
SSS-total and was excluded from the multivariate analysis.
Backwards stepwise selection showed that age, SSS-fotal,
and SSS-leg were significant predictors and were therefore
included in the final model. After bootstrapping, perfor-
mance analysis of the final model showed AUC 0.82 (Ta-
ble 4) and almost perfect calibration (Fig. 2, Update E).
The final updated model showed good sensitivity (0.85)
and specificity improved (0.68).

4. Discussion

Three prognostic models met inclusion criteria, though
only one could be validated in our dataset. The Australian
model, with proxies, for predicting independent gait at a
median of 72 days post stroke showed good calibration and
fair discrimination in the validation cohort, compared with
good calibration and discrimination reported in the devel-
opment study [6]. By updating the intercept and regression
coefficients, calibration and discrimination improved, and
the addition of a new predictor variable further improved
discrimination of the model. The final updated model ex-
hibited good discrimination and calibration, with good sen-
sitivity and moderate specificity.

External validation typically yields poorer predictive
performance of a prognostic model than the development
study [12]. The Australian model was not internally val-
idated, therefore predictive performance was likely opti-
mistic which may explain why the model showed poorer
discrimination in our validation dataset. In addition, pre-
dictive performance in the validation may have been in-
fluenced by differences in geographical setting and cohort
characteristics [30,31]. In the Australian model develop-
ment cohort, patients were generally younger and had less
severe stroke symptoms than the Danish validation cohort
[32]. Moreover, the proportion of patients achieving inde-
pendent gait in the development cohort was higher than
the validation cohort, possibly due to a longer follow-up
period (6 months), and/or use of a proxy outcome. The
MAS walking item >3 requires a patient to walk a min-
imum of 3 meters without assistance, whereas the FIM
requires longer distances [21,33]. It is possible the predic-
tive performance of the Australian model was influenced
by these differences during validation.

Rather than rejecting a model showing unfavorable
results after external validation, researchers are encour-
aged to recalibrate or update an already developed model
[13,24]. Recalibration builds upon information gained dur-
ing development, thereby improving the generalizability
of a model by incorporating characteristics of a new co-
hort [13,34]. Updating models prevents researchers from
again developing new models with the same clinical goals,
which may further delay translation to practice [35]. Pre-

dictive performance can be further improved by adding
new predictors that yield independent effects, not already
accounted for. There are several promising prognostic fac-
tors or biomarkers for stroke recovery reported in the liter-
ature that may yield additional prognostic ability [36,37].
Though consideration of the practical and cost implica-
tions of implementing a model that includes more complex
biomarkers [36-38] is advised, and should be examined
when testing the clinical impact of a model.

4.1. Strengths and limitations

The present study is the first external validation and re-
calibration of an existing prognostic model for post stroke
gait. A major strength was the use of a large validation co-
hort with over 200 events, reducing the risk of overfitting
[39]. Another strength was the inclusion of only predictors
that were already routinely used by clinicians, however,
measurements used to obtain predictors in clinical practice
may vary between countries.

Limitations were the use of proxy variables and that
two models could not be validated due unsuitable proxies.
Although the use of proxies is common in external valida-
tion [18,40], this may have reduced the predictive perfor-
mance of the Australian model. We used proxies for stroke
severity (predictor) and independent gait (outcome). For
stroke severity we used a conversion factor previously pub-
lished in the literature to convert NIHSS scores into SSS
scores, suggesting a strong correlation between the two
scales when converted 3 months after stroke (R> = 0.80)
[29,41]. However, the correlation is weaker (R = 0.60)
in the acute phase post stroke [29]. For the outcome, the
FIM locomotion item was chosen as a proxy for the MAS
walking item based on variable descriptions of gait inde-
pendence. To our knowledge, the relationship between both
is yet unknown. In addition, it was not clear if dichotomiz-
ing the FIM at >5 or >6 was the most comparable to the
dichotomization of the MAS walking item of >3 hence
we investigated the predictive performance of the model
with both cut-offs. Future research should consider devel-
oping an international core outcome set for recovery of
gait post stroke to ensure comparable outcomes are used
internationally, both clinically and for research [42].

4.2.Future. implications

Before implementing prognostic models in clinical prac-
tice, both external validation and impact studies should be
conducted to evaluate validity and effectiveness [34]. To
our knowledge, there are currently no externally validated
prognostic models for gait independence post stroke that
have been evaluated for clinical impact. Researchers are
encouraged to externally validate already developed mod-
els and test the clinical impact of promising models to fa-
cilitate the translation from research into clinical practice
[24,34,43]. Promising prognostic models should be made
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accessible for clinicians via apps or nomograms and the
usability of the tool should be evaluated by clinicians. To
our knowledge, prognostic models that predict gait inde-
pendence after stroke are not yet able to be recommended
for clinical use.

In conclusion, our final updated model used simple pre-
dictors easily obtained in routine practice, demonstrating
good calibration and discrimination. The final model was
corrected for overfitting by internal validation and should
now undergo validation before being tested for clinical im-
pact.
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What is new?

Many prognostic models for gait independence post
stroke have been published in the literature.

None had been externally validated and evaluated for
clinical impact, therefore limiting translation into clinical
practice.

We systematically searched for models predicting inde-
pendent gait post stroke, appraised the level of bias, and
summarized their predictive performance.

The present study is the first external validation of a
prognostic model obtained for post stroke gait indepen-
dence using a large Danish cohort. To improve perfor-
mance of the model, recalibration and updates were per-
formed and the updated model was corrected for overfitting
by internal validation.

The updated model uses easy to obtain parameters and
should now undergo validation in a separate dataset before
being tested for clinical impact.

Supplementary materials

Supplementary material associated with this article can
be found, in the online version, at doi:10.1016/j.jclinepi.
2021.03.022.

CRediT authorship contribution statement

Anthonia J. Langerak: Conceptualization, Methodol-
ogy, Formal analysis, Visualization, Writing - original
draft, Writing - review & editing. Alana B. McCam-
bridge: Conceptualization, Methodology, Writing - orig-
inal draft, Writing - review & editing. Peter W. Stubbs:
Conceptualization, Methodology, Writing - original draft.
Jesper Fabricius: Resources, Data curation, Writing - re-
view & editing. Kris Rogers: Formal analysis, Writing -
review & editing. Camila Quel de Oliveira: Conceptu-
alization, Writing - review & editing. Jorgen F. Nielsen:

Resources, Writing - review & editing. Arianne P. Verha-
gen: Conceptualization, Methodology, Writing - review &
editing, Supervision, Project administration.

References

[1] Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM,
Abera SF, et al. Global, regional, and national burden of neurological
disorders during 1990-2015: a systematic analysis for the Global
Burden of Disease. Study 2015 2017;16:877-97.

[2] Li S, Francisco GE, Zhou P. Post-stroke hemiplegic gait: new
perspective and insights. Front Physiol 2018;9 1021. 2018/08/22.
doi:10.3389/fphys.2018.01021.

[3] Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J
Med 2005;352:1677-84 2005/04/22. doi:10.1056/NEJMcp043511.

[4] Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of
functional recovery after stroke: facts and theories 2004;22:281-99.

[5] Craig LE, Wu O, Bernhardt J, Langhorne P. Predictors of poststroke

mobility: systematic review. Int J Stroke 2011;6:321-7 2011/07/13.

doi:10.1111/j.1747-4949.2011.00621 x.

Kwah LK, Harvey LA, Diong J, Herbert RD. Models containing age

and NIHSS predict recovery of ambulation and upper limb func-

tion six months after stroke: an observational study. J Physiother
2013;59:189-97. doi:10.1016/51836-9553(13)70183-8.

Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC,

Kwakkel G. Is accurate prediction of gait in nonambulatory stroke

patients possible within 72 hours poststroke? The EPOS study. Neu-

rorehabil Neural Repair 2011;25:268-74 2010/12/28. doi:10.1177/

1545968310384271.

Smith MC, Barber PA, Stinear CM. The TWIST algorithm predicts

time to walking independently after stroke. Neurorehabil Neural Re-

pair 2017;31:955-64 2017/11/02. doi:10.1177/1545968317736820.
[9] Stinear CM, Smith MC, Byblow WD. Prediction tools for stroke
rehabilitation. Stroke 2019;50:3314-22 2019/10/16. doi:10.1161/
STROKEAHA.119.025696.

[10] Kwah LK, Herbert RD. Prediction of walking and arm recovery
after stroke: a critical review. Brain Sci 2016 6 2016/11/10. doi:10.
3390/brainsci6040053.

[11] Bland MD, Sturmoski A, Whitson M, Connor LT, Fucetola R,
Huskey T, et al. Prediction of discharge walking ability from ini-
tial assessment in a stroke inpatient rehabilitation facility population.
Arch Phys Med Rehabil 2012;93:1441-7 2012/03/27. doi:10.1016/
j-apmr.2012.02.029.

[12] Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P,
Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: prog-
nostic model. research 2013;10:e1001381.

[13] Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Alt-
man DG, et al. Risk prediction models: II. External validation, model
updating, and impact assessment. Heart 2012;98:691-8 2012/03/09.
doi:10.1136/heartjnl-2011-301247.

[14] Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M,
Moons KG. Search filters for finding prognostic and diagnostic pre-
diction studies in Medline to enhance systematic reviews. PLoS One
2012;7:€32844 2012/03/07. doi:10.1371/journal.pone.0032844.

[15] Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M,
Collins GS, et al. PROBAST: a tool to assess the risk of bias
and applicability of prediction model studies. Ann Intern Med
2019;170:51-8 2019/01/01. doi:10.7326/M18-1376.

[16] Johnsen SP, Ingeman A, Hundborg HH, Schaarup SZ, Gyllen-
borg J. The Danish Stroke Registry. Clin Epidemiol 2016;8:697-702
2016/11/16. doi:10.2147/CLEP.S103662.

[17] Stubbs PW, Mortensen J. Clinimetrics: The Scandinavian stroke
scale. J Physiother 2020;66:132 2019/09/16. doi:10.1016/j.jphys.
2019.08.010.

[6

—_

[7

—

[8

—_


https://doi.org/10.1016/j.jclinepi.2021.03.022
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0001
https://doi.org/10.3389/fphys.2018.01021
https://doi.org/10.1056/NEJMcp043511
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0004
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0004
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0004
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0004
https://doi.org/10.1111/j.1747-4949.2011.00621.x
https://doi.org/10.1016/s1836-9553(13)70183-8
https://doi.org/10.1177/1545968310384271
https://doi.org/10.1177/1545968317736820
https://doi.org/10.1161/STROKEAHA.119.025696
https://doi.org/10.3390/brainsci6040053
https://doi.org/10.1016/j.apmr.2012.02.029
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0012
https://doi.org/10.1136/heartjnl-2011-301247
https://doi.org/10.1371/journal.pone.0032844
https://doi.org/10.7326/M18-1376
https://doi.org/10.2147/CLEP.S103662
https://doi.org/10.1016/j.jphys.2019.08.010

82 A.J. Langerak et al./Journal of Clinical Epidemiology 137 (2021) 73-82

[18] Steyerberg EW. Clinical prediction models: a practical approach to
development, validation, and updating. Springer Science & Business
Media; 2008.

[19] Gosman-Hedstrom G, Svensson E. Parallel reliability of the
functional independence measure and the Barthel ADL in-
dex. Disabil Rehabil 2000;22:702-15 2000/12/16. doi:10.1080/
09638280050191972.

[20] Ottenbacher KJ, Hsu Y, Granger CV, Fielder RC. The reliabil-
ity of the functional independence measure: a quantitative review.
Arch Phys Med Rehabil 1996;77:1226-32 1996/12/01. doi:10.1016/
s0003-9993(96)90184-17.

[21] UDSfM Rehabilitation. The FIM Instrumen; It’s background, struc-
ture and usefulness. Buffalo; 2012.

[22] Bennett DA. How can I deal with missing data in my study? Aust
N Z J Public Health 2001;25:464-9 2001/11/02.

[23] Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyer-
berg EW. Calibration: the Achilles heel of predictive analytics. BMC
Med 2019;17:230 2019/12/18. doi:10.1186/s12916-019-1466-7.

[24] Collins GS, Altman DG, Reitsma JB, Moons KG. Transparent Re-
porting of a multivariable prediction model for Individual Prognosis
or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern
Med 2015;162:W1-73 2015/01/07. doi:10.7326/M14-0698.

[25] Wickham H, Averick M, Bryan J, Chang W, McGowan L, Fran-
cois R, et al. Welcome to the Tidyverse. J Open Source Softw
2019:4:1686.

[26] Robin X, Turck N, Hainard A, et al. Package ‘pROC’. 2020. 2012-
09-10 09: 34.

[27] Harrell Jr FE, Harrell Jr MFE, Hmisc D. Package ‘rms’, 229. Van-
derbilt University; 2019.

[28] Govan L, Langhorne P, Weir CJ. Categorizing stroke prognosis using
different stroke scales. Stroke 2009;40:3396-9 2009/08/08. doi:10.
1161/STROKEAHA.109.557645.

[29] Gray LJ, Ali M, Lyden PD, Bath PM. Interconversion of the Na-
tional Institutes of Health Stroke Scale and Scandinavian Stroke
Scale in acute stroke. J Stroke Cerebrovasc Dis 2009;18:466-8
2009/11/11. doi:10.1016/j.jstrokecerebrovasdis.2009.02.003.

[30] Riley RD, Ensor J, Snell KI, Harrel FE, Martin GP, Reitsma JB,
et al. External validation of clinical prediction models using big
datasets from e-health records or IPD meta-analysis: opportunities
and challenges. BMJ 2016;353:i3140 2016/06/24. doi:10.1136/bmj.
13140.

[31] Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW,
Moons KG. A new framework to enhance the interpretation of ex-
ternal validation studies of clinical prediction models. J Clin Epi-
demiol 2015;68:279-89 2014/09/03. S0895-4356(14)00275-3 [pii]
doi:10.1016/j.jclinepi.2014.06.018.

[32] Vergouwe Y, Moons KG, Steyerberg EW. External validity of risk
models: use of benchmark values to disentangle a case-mix ef-

[33]

(34]

[35]

[36]

(371

[38]

(391

[40]

[41]

(42]

(43]

fect from incorrect coefficients. Am J Epidemiol 2010;172:971-80
2010/09/03. doi:10.1093/aje/kwq223.

Carr JH, Shepherd RB, Nordholm L, Lynne D. Investigation of
a new motor assessment scale for stroke patients. Phys Ther
1985;65:175-80 1985/02/01. doi:10.1093/ptj/65.2.175.

Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P,
Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: prog-
nostic model research. PLoS medicine 2013;10:e1001381.

Cowley LE, Farewell DM, Maguire S, Kemp AM. Methodologi-
cal standards for the development and evaluation of clinical pre-
diction rules: a review of the literature. Diagnostic Prognostic Res
2019;3:16. doi:10.1186/s41512-019-0060-y.

Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ,
et al. Biomarkers of stroke recovery: consensus-based core recom-
mendations from the stroke recovery and rehabilitation roundtable.
Neurorehabil Neural Repair 2017;31:864-76 2017/12/14. doi:10.
1177/1545968317732680.

Stinear CM. Prediction of motor recovery after stroke: advances
in biomarkers. Lancet Neurol 2017;16:826-36 2017/09/19. doi:10.
1016/S1474-4422(17)30283-1.

Connell LA, Smith MC, Byblow WD, Stinear CM. Implementing
biomarkers to predict motor recovery after stroke. NeuroRehabilita-
tion 2018;43:41-50 2018/07/30. doi:10.3233/NRE-172395.

Collins GS, Ogundimu EO, Altman DG. Sample size consider-
ations for the external validation of a multivariable prognostic
model: a resampling study. Stat Med 2016;35:214-26 2015/11/11.
doi:10.1002/sim.6787.

Ettema RG, Peelen LM, Schuurmans MJ, Nierich AP, Kalkman CJ,
Moons KG. Prediction models for prolonged intensive care unit
stay after cardiac surgery: systematic review and validation study.
Circulation 2010;122:682-9 687 p following p 689. 2010/08/04.
doi:10.1161/CIRCULATIONAHA.109.926808.

Goldie FC, Fulton RL, Frank B, Lees KR. Interdependence of
stroke outcome scales: reliable estimates from the Virtual Interna-
tional Stroke Trials Archive (VISTA). Int J Stroke 2014;9:328-32
2013/11/12. doi:10.1111/ijs.12178.

Kwakkel G, Lannin NA, Borschmann K, English C, Ali M,
Churilov L, et al. Standardized measurement of sensorimotor re-
covery in stroke trials: consensus-based core recommendations
from the stroke recovery and rehabilitation roundtable. Neu-
rorehabil Neural Repair 2017;31:784-92 2017/09/25. doi:10.1177/
1545968317732662.

Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and
prognostic research: application and impact of prognostic models in
clinical practice. BMJ 2009;338:b606 2009/06/09. doi:10.1136/bmj.
b606.


http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0018
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0018
https://doi.org/10.1080/09638280050191972
https://doi.org/10.1016/s0003-9993(96)90184-7
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0021
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0021
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0022
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0022
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.7326/M14-0698
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0025
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0027
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0027
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0027
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0027
https://doi.org/10.1161/STROKEAHA.109.557645
https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.02.003
https://doi.org/10.1136/bmj.i3140
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0031
https://doi.org/10.1093/aje/kwq223
https://doi.org/10.1093/ptj/65.2.175
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
http://refhub.elsevier.com/S0895-4356(21)00104-9/sbref0034
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1177/1545968317732680
https://doi.org/10.1016/S1474-4422(17)30283-1
https://doi.org/10.3233/NRE-172395
https://doi.org/10.1002/sim.6787
https://doi.org/10.1161/CIRCULATIONAHA.109.926808
https://doi.org/10.1111/ijs.12178
https://doi.org/10.1177/1545968317732662
https://doi.org/10.1136/bmj.b606

	Externally validated model predicting gait independence after stroke showed fair performance and improved after updating
	1 Introduction
	2 Patients and methods
	2.1 Prognostic model selection
	2.2 Validation cohort
	2.2.1 Participants
	2.2.2 Predictors
	2.2.3 Outcome measures

	2.3 Analysis

	3 Results
	3.1 Prognostic model selection
	3.2 Validation cohort
	3.2.1 Participants
	3.2.2 Predictors and proxy selection
	3.2.3 Outcome
	3.2.4 Model Validation and Updates


	4 Discussion
	4.1 Strengths and limitations
	4.2.Future implications

	Funding
	What is new?
	Supplementary materials
	CRediT authorship contribution statement
	References


