53,157 research outputs found

    High purity bright single photon source

    Full text link
    Using cavity-enhanced non-degenerate parametric downconversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc

    A study of ingestion and dispersion of engine exhaust products in trailing vortex systems

    Get PDF
    Analysis has been made of the ingestion and dispersion of engine exhaust products into the trailing vortex system of supersonic aircraft flying in the stratosphere. The rate of mixing between the supersonic jet and the co-flowing supersonic stream was found to be an order of magnitude less than would be expected on the basis of subsonic eddy-viscosity results. The length of the potential core was 66 nozzle exit radii so that the exhaust gases remain at elevated temperatures and concentrations over much longer distances than previsously estimated. Ingestion started at the end of the potential core and all hot gas from the engine was ingested into the trailing vortex within two core lengths. Comparison between the buoyancy calculations for the supersonic case with nondimensionalized subsonic aircraft contrail data on wake spreading showed good agreement. Velocity and temperature profiles have been specified at various stages of the wake, and the analysis in this report can be used to predict variations of concentrations of species such as nitrogen oxides under conditions of chemical reaction

    Time gating of heralded single photons for atomic memories

    Full text link
    We demonstrate a method for time gating the standard heralded continuous- wave (cw) spontaneous parametric down-converted (SPDC) single photon source by using pulsed pumping of the optical parametric oscillator (OPO) below threshold. The narrow bandwidth, high purity, high spectral brightness and the pseudo-deterministic character make the source highly suitable for light-atom interfaces with atomic memories.Comment: Accepted for publication in Optics Letter

    Kochen-Specker theorem as a precondition for secure quantum key distribution

    Full text link
    We show that (1) the violation of the Ekert 91 inequality is a sufficient condition for certification of the Kochen-Specker (KS) theorem, and (2) the violation of the Bennett-Brassard-Mermin 92 (BBM) inequality is, also, a sufficient condition for certification of the KS theorem. Therefore the success in each QKD protocol reveals the nonclassical feature of quantum theory, in the sense that the KS realism is violated. Further, it turned out that the Ekert inequality and the BBM inequality are depictured by distillable entanglement witness inequalities. Here, we connect the success in these two key distribution processes into the no-hidden-variables theorem and into witness on distillable entanglement. We also discuss the explicit difference between the KS realism and Bell's local realism in the Hilbert space formalism of quantum theory.Comment: 4 pages, To appear in Phys. Rev.

    Maximal violation of Bell inequality for any given two-qubit pure state

    Full text link
    In the case of bipartite two qubits systems, we derive the analytical expression of bound of Bell operator for any given pure state. Our result not only manifest some properties of Bell inequality, for example which may be violated by any pure entangled state and only be maximally violated for a maximally entangled state, but also give the explicit values of maximal violation for any pure state. Finally we point out that for two qubits systems there is no mixed state which can produce maximal violation of Bell inequality.Comment: 3 pages, 1 figure

    Relation between Tcc,bbT_{cc,bb} and Xc,bX_{c,b} from QCD

    Full text link
    We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of TccT_{cc} and X(3872) assuming that they are respectively described by the DDD-{D}^* and DDˉD-\bar{D}^* molecular currents. We found (within our approximation) that the masses of these two states are almost degenerate. Since the pion exchange interaction between these mesons is exactly the same, we conclude that if the observed X(3872) meson is a DDˉ+c.c.D\bar{D}^*+c.c. molecule, then the DDDD^* molecule should also exist with approximately the same mass. An extension of the analysis to the bb-quark case leads to the same conclusion. We also study the SU(3) breakings for the TQQs/TQQT^s_{QQ}/T_{QQ} mass ratios. Motivated by the recent Belle observation of two ZbZ_b states, we revise our determination of XbX_b by combining results from exponential and FESR sum rules.Comment: revised version to appear on Phys. Lett.

    Exotic hadrons from dynamical clustering of quarks in ultrarelativistic heavy ion collisions

    Full text link
    Results from a model study on the formation of exotic quark clusters at the hadronization stage of a heavy ion collision are presented. The dynamical quark molecular dynamics (qMD) model which is used is sketched, and results for exotica made of up to six (anti-)quarks are shown. The second part focuses on pentaquarks. The rapidity distribution are shown, and the distribution of strangeness is found to yield an indicator of thermalization and homogenisation of the deconfined quark system. Relative Theta^+ yields are found to be lower than thermal model estimates.Comment: 4 pages, 5 figures, to appear in the proceedings of Strangeness in Quark Matter 2004 (SQM2004), Cape Town, South Africa, 15-20 September 200

    Entanglement dynamics for two harmonic oscillators coupled to independent environments

    Full text link
    We study the entanglement evolution between two harmonic oscillators having different free frequencies each leaking into an independent bath. We use an exact solution valid in the weak coupling limit and in the short time non-Markovian regime. The reservoirs are identical and characterized by an Ohmic spectral distribution with Lorents-Drude cut-off. This work is an extension of the case reported in [Phys. Rev. A 80, 062324 (2009)] where the oscillators have the same free frequency.Comment: 8 pages, 3 figures, submitted to Physica Script
    corecore