1,982 research outputs found

    Scaling Separability Criterion: Application To Gaussian States

    Full text link
    We introduce examples of three- and four-mode entangled Gaussian mixed states that are not detected by the scaling and Peres-Horodecki separability criteria. The presented modification of the scaling criterion resolves this problem. Also it is shown that the new criterion reproduces the main features of the scaling pictures for different cases of entangled states, while the previous versions lead to completely different outcomes. This property of the presented scheme is evidence of its higher generality.Comment: 7 pages, 4 figure

    The effect of long or chopped straw on pig behaviour

    Get PDF

    The foundations of statistical mechanics from entanglement: Individual states vs. averages

    Full text link
    We consider an alternative approach to the foundations of statistical mechanics, in which subjective randomness, ensemble-averaging or time-averaging are not required. Instead, the universe (i.e. the system together with a sufficiently large environment) is in a quantum pure state subject to a global constraint, and thermalisation results from entanglement between system and environment. We formulate and prove a "General Canonical Principle", which states that the system will be thermalised for almost all pure states of the universe, and provide rigorous quantitative bounds using Levy's Lemma.Comment: 12 pages, v3 title changed, v2 minor change

    CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

    Get PDF
    Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease

    Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin-measurements

    Full text link
    The uncertainty principle generally prohibits determination of certain pairs of quantum mechanical observables with arbitrary precision and forms the basis of indeterminacy in quantum mechanics. It was Heisenberg who used the famous gamma-ray microscope thought experiment to illustrate this indeterminacy. A lower bound was set for the product of the measurement error of an observable and the disturbance caused by the measurement. Later on, the uncertainty relation was reformulated in terms of standard deviations, which focuses solely on indeterminacy of predictions and neglects unavoidable recoil in measuring devices. A correct formulation of the error-disturbance relation, taking recoil into account, is essential for a deeper understanding of the uncertainty principle. However, the validity of Heisenberg's original error-disturbance uncertainty relation is justifed only under limited circumstances. Another error-disturbance relation, derived by rigorous and general theoretical treatments of quantum measurements, is supposed to be universally valid. Here, we report a neutron optical experiment that records the error of a spin-component measurement as well as the disturbance caused on another spin-component measurement. The results confirm that both error and disturbance completely obey the new, more general relation but violate the old one in a wide range of an experimental parameter.Comment: 11 pages, 5 figures, Nature Physics (in press

    An Elementary Quantum Network of Single Atoms in Optical Cavities

    Full text link
    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.Comment: 8 pages, 5 figure

    In silico analyses of metagenomes from human atherosclerotic plaque samples

    Get PDF
    Background Through several observational and mechanistic studies, microbial infection is known to promote cardiovascular disease. Direct infection of the vessel wall, along with the cardiovascular risk factors, is hypothesized to play a key role in the atherogenesis by promoting an inflammatory response leading to endothelial dysfunction and generating a proatherogenic and prothrombotic environment ultimately leading to clinical manifestations of cardiovascular disease, e.g., acute myocardial infarction or stroke. There are many reports of microbial DNA isolation and even a few studies of viable microbes isolated from human atherosclerotic vessels. However, high-resolution investigation of microbial infectious agents from human vessels that may contribute to atherosclerosis is very limited. In spite of the progress in recent sequencing technologies, analyzing host-associated metagenomes remain a challenge. Results To investigate microbiome diversity within human atherosclerotic tissue samples, we employed high-throughput metagenomic analysis on: (1) atherosclerotic plaques obtained from a group of patients who underwent endarterectomy due to recent transient cerebral ischemia or stroke. (2) Presumed stabile atherosclerotic plaques obtained from autopsy from a control group of patients who all died from causes not related to cardiovascular disease. Our data provides evidence that suggest a wide range of microbial agents in atherosclerotic plaques, and an intriguing new observation that shows these microbiota displayed differences between symptomatic and asymptomatic plaques as judged from the taxonomic profiles in these two groups of patients. Additionally, functional annotations reveal significant differences in basic metabolic and disease pathway signatures between these groups. Conclusions We demonstrate the feasibility of novel high-resolution techniques aimed at identification and characterization of microbial genomes in human atherosclerotic tissue samples. Our analysis suggests that distinct groups of microbial agents might play different roles during the development of atherosclerotic plaques. These findings may serve as a reference point for future studies in this area of research

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
    corecore