38,339 research outputs found

    Emergence and Adult Biology of \u3ci\u3eAgrilus Difficilis\u3c/i\u3e (Coleoptera: Buprestidae), a Pest of Honeylocust, \u3ci\u3eGleditsia Triacanthos\u3c/i\u3e

    Get PDF
    Emergence and adult biology of Agrilus difficilis were examined in relation to its host Gleditsia triacanthos. began as early as 5 June in 1982 and completed as late as 22 July in 1983. Females lived significantly longer, 48 days, than males, 29 days. Average fecundity was one egg per day during a 36-day oviposition period

    Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations

    Full text link
    We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure, but non-maximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.Comment: 12 pages, 17 figures, revtex4. changes from v3: minor stylistic changes for journal reviewer, minor changes to figures for journal edito

    One qubit almost completely reveals the dynamics of two

    Get PDF
    From the time dependence of states of one of them, the dynamics of two interacting qubits is determined to be one of two possibilities that differ only by a change of signs of parameters in the Hamiltonian. The only exception is a simple particular case where several parameters in the Hamiltonian are zero and one of the remaining nonzero parameters has no effect on the time dependence of states of the one qubit. The mean values that describe the initial state of the other qubit and of the correlations between the two qubits also are generally determined to within a change of signs by the time dependence of states of the one qubit, but with many more exceptions. An example demonstrates all the results. Feedback in the equations of motion that allows time dependence in a subsystem to determine the dynamics of the larger system can occur in both classical and quantum mechanics. The role of quantum mechanics here is just to identify qubits as the simplest objects to consider and specify the form that equations of motion for two interacting qubits can take.Comment: 6 pages with new and updated materia

    Protecting, Enhancing and Reviving Entanglement

    Full text link
    We propose a strategies not only to protect but also to enhance and revive the entanglement in a double Jaynes-Cummings model. We show that such surprising features arises when Zeno-like measurements are performed during the dynamical process

    High-Fidelity Z-Measurement Error Correction of Optical Qubits

    Get PDF
    We demonstrate a quantum error correction scheme that protects against accidental measurement, using an encoding where the logical state of a single qubit is encoded into two physical qubits using a non-deterministic photonic CNOT gate. For the single qubit input states |0>, |1>, |0>+|1>, |0>-|1>, |0>+i|1>, and |0>-i|1> our encoder produces the appropriate 2-qubit encoded state with an average fidelity of 0.88(3) and the single qubit decoded states have an average fidelity of 0.93(5) with the original state. We are able to decode the 2-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 1-qubit decoded states arising from 16 real and imaginary single qubit superposition inputs have an average fidelity of 0.96(3).Comment: 4 pages, 4 figures, comments welcom

    Gravi-Weak Unification and the Black-Hole-Hedgehog's Solution with Magnetic Field Contribution

    Full text link
    In the present paper, we investigated the gravitational black-hole-hedgehog's solution with magnetic field contribution in the framework of the f(R)--gravity described by the Gravi-Weak unification model. Assuming the Multiple Point Principle (MPP), we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum with v1≈246v_1 \approx 246 GeV ("true vacuum"), and the second Planck scale ("false vacuum") with v2∼1018v_2 \sim 10^{18} GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehog configurations as defects of the "false vacuum". We have obtained the solution which corresponds to a global monopole, that has been "swallowed" by the black-hole with core mass MBH≈3.65×1018  GeVM_{BH}\approx 3.65\times 10^{18}\,\, {\rm{GeV}} and radius δ≈6⋅10−21GeV−1.\delta \approx 6\cdot 10^{-21} {\rm{GeV}}^{-1}. We investigated the metric in the vicinity of the black-hole-hedgehog and estimated its horizon radius: rh≈1.14δr_h\approx 1.14 \delta. We have considered the phase transition from the "false vacuum" to the "true vacuum" and confirmed the stability of the EW--vacuum.Comment: 22 pages. arXiv admin note: text overlap with arXiv:1703.05594, arXiv:1801.06979, arXiv:1605.01169; text overlap with arXiv:1002.4275 by other author

    Potentials to differentiate milk composition by different feeding strategies

    Get PDF
    To investigate the effect of the dietary intake of the cow on milk composition, bulk-tank milk was collected on 5 occasions from conventional (n = 15) and organic (n = 10) farms in Denmark and on 4 occasions from low-input nonorganic farms in the United Kingdom, along with management and production parameters. Production of milk based on feeding a high intake of cereals, pasture, and grass silage resulted in milk with a high concentration of α-linolenic acid (9.4 ± 0.2 mg/ kg of fatty acids), polyunsaturated fatty acids (3.66 ± 0.07 mg/kg of fatty acids), and natural stereoisomer of α-tocopherol (RRR-α-tocopherol, 18.6 ± 0.5 mg/kg of milk fat). A milk production system using a high proportion of maize silage, by-products, and commercial concentrate mix was associated with milk with high concentrations of linoleic acid (LA; 19.7 ± 0.4 g/kg of fatty acids), monounsaturated fatty acids (27.5 ± 0.3 mg/kg of fatty acids), and a high ratio between LA and α-linolenic acid (4.7 ± 0.2). Comparing these 2 production systems with a very extensive nonorganic milk production system relying on pasture as almost the sole feed (95 ± 4% dry matter intake), it was found that the concentrations of conjugated LA (cis-9,trans-11; 17.5 ± 0.7 g/kg of fatty acids), trans-11-vaccenic acid (37 ± 2 g/kg of fatty acids), and monounsaturated fatty acids (30.4 ± 0.6 g/kg of fatty acids) were higher in the extensively produced milk together with the concentration of antioxidants; total α-tocopherol (32.0 ± 0.8 mg/kg of milk fat), RRR-α-tocopherol (30.2 ± 0.8 mg/kg of milk fat), and β-carotene (9.3 ± 0.5 mg/kg of milk fat) compared with the organic and conventional milk. Moreover, the concentration of LA (9.2 ± 0.7 g/kg of fatty acids) in milk from the extensive milk production system was found to approach the recommended unity ratio between n-6 and n-3, although extensive milk production also resulted in a lower daily milk yield

    Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs

    Full text link
    The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.Comment: 14 pages, 2 figure
    • …
    corecore