1,237 research outputs found

    Lie Algebras and Suppression of Decoherence in Open Quantum Systems

    Full text link
    Since there are many examples in which no decoherence-free subsystems exist (among them all cases where the error generators act irreducibly on the system Hilbert space), it is of interest to search for novel mechanisms which suppress decoherence in these more general cases. Drawing on recent work (quant-ph/0502153) we present three results which indicate decoherence suppression without the need for noiseless subsystems. There is a certain trade-off; our results do not necessarily apply to an arbitrary initial density matrix, or for completely generic noise parameters. On the other hand, our computational methods are novel and the result--suppression of decoherence in the error-algebra approach without noiseless subsystems--is an interesting new direction.Comment: 7 page

    Multimode optomechanical system in the quantum regime

    Full text link
    We realise a simple and robust optomechanical system with a multitude of long-lived (Q>107Q>10^7) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz96~\mathrm{kHz}) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10K10\,\mathrm{K}). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths 90kHz\lesssim 90\,\mathrm{ kHz}. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.Comment: 19 pages, 9 figure

    Right-veering diffeomorphisms of compact surfaces with boundary II

    Full text link
    We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [HKM2]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group B_n on n strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Ro1,Ro2].Comment: 25 pages, 5 figure

    The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference

    Get PDF
    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8+ T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8+ T cell epitopes.Fil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: McMurtrey, Curtis. Oklahoma State University; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bardet, Wilfried. Oklahoma State University; Estados UnidosFil: Osborn, Sean C.. Oklahoma State University; Estados UnidosFil: Kaever, Thomas. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Hildebrand, Willliam H.. Oklahoma State University; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unido

    Quantum Nonlocality without Entanglement

    Get PDF
    We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles which also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A. Version 2: 30 pages, many small revisions and extensions, author added. Version 3: Proof in Appendix D corrected, many small changes; final version for Phys. Rev. A Version 4: Report of Popescu conjecture modifie

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a ϕ\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories

    Full text link
    In this paper we obtain the space-time generated by a time-like current-carrying superconducting screwed cosmic string(TCSCS). This gravitational field is obtained in a modified scalar-tensor theory in the sense that torsion is taken into account. We show that this solution is comptible with a torsion field generated by the scalar field ϕ\phi . The analysis of gravitational effects of a TCSCS shows up that the torsion effects that appear in the physical frame of Jordan-Fierz can be described in a geometric form given by contorsion term plus a symmetric part which contains the scalar gradient. As an important application of this solution, we consider the linear perturbation method developed by Zel'dovich, investigate the accretion of cold dark matter due to the formation of wakes when a TCSCS moves with speed vv and discuss the role played by torsion. Our results are compared with those obtained for cosmic strings in the framework of scalar-tensor theories without taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV- Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to appear in Phys. Rev.
    corecore