982 research outputs found

    Broken Symmetries from Minimally Doubled Fermions

    Full text link
    Novel chirally symmetric fermion actions containing the minimum amount of fermion doubling have been recently proposed in the literature. We study the symmetries and renormalization of these actions and find that in each case, discrete symmetries, such as parity and time-reversal, are explicitly broken. Consequently, when the gauge interactions are included, these theories radiatively generate relevant and marginal operators. Thus the restoration of these symmetries and the approach to the continuum limit require the fine-tuning of several parameters. With some assumptions, we show that this behavior is unavoidable for actions displaying minimal fermion doubling.Comment: 13 pages, 3 figures, published version, analysis reorganized and condense

    Universal Equation for Efimov States

    Full text link
    Efimov states are a sequence of shallow 3-body bound states that arise when the 2-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a 3-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of 4He atoms. We also extend Efimov's theory to include the effects of deep 2-body bound states, which give widths to the Efimov states.Comment: 8 pages, revtex4, 2 ps figures, table with numerical values of universal function adde

    Universality in the Three-Body Problem for 4He Atoms

    Full text link
    The two-body scattering length a for 4He atoms is much larger than their effective range r_s. As a consequence, low-energy few-body observables have universal characteristics that are independent of the interaction potential. Universality implies that, up to corrections suppressed by r_s/a, all low-energy three-body observables are determined by a and a three-body parameter \Lambda_*. We give simple expressions in terms of a and \Lambda_* for the trimer binding energy equation, the atom-dimer scattering phase shifts, and the rate for three-body recombination at threshold. We determine \Lambda_* for several 4He potentials from the calculated binding energy of the excited state of the trimer and use it to obtain the universality predictions for the other low-energy observables. We also use the calculated values for one potential to estimate the effective range corrections for the other potentials.Comment: 23 pages, revtex4, 6 ps figures, references added, universal expressions update

    Liberating Efimov physics from three dimensions

    Full text link
    When two particles attract via a resonant short-range interaction, three particles always form an infinite tower of bound states characterized by a discrete scaling symmetry. It has been considered that this Efimov effect exists only in three dimensions. Here we review how the Efimov physics can be liberated from three dimensions by considering two-body and three-body interactions in mixed dimensions and four-body interaction in one dimension. In such new systems, intriguing phenomena appear, such as confinement-induced Efimov effect, Bose-Fermi crossover in Efimov spectrum, and formation of interlayer Efimov trimers. Some of them are observable in ultracold atom experiments and we believe that this study significantly broadens our horizons of universal Efimov physics.Comment: 17 pages, 5 figures, contribution to a special issue of Few-Body Systems devoted to Efimov Physic

    Three-body problem in Fermi gases with short-range interparticle interaction

    Full text link
    We discuss 3-body processes in ultracold two-component Fermi gases with short-range intercomponent interaction characterized by a large and positive scattering length aa. It is found that in most cases the probability of 3-body recombination is a universal function of the mass ratio and aa, and is independent of short-range physics. We also calculate the scattering length corresponding to the atom-dimer interaction.Comment: 4 pages, 2 figure

    Weakly bound atomic trimers in ultracold traps

    Full text link
    The experimental three-atom recombination coefficients of the atomic states 23^{23}NaF=1,mF=1>|F=1,m_F=-1>, 87^{87}RbF=1,mF=1>|F=1,m_F=-1> and 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1<m(a/)2E3<6.9 1<m(a/\hbar)^2 E_3< 6.9 for large positive scattering lengths, aa. The contribution of a deep-bound state to our prediction, in the case of 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, for a particular trap, is shown to be relatively small.Comment: 5 pages, 1 figur

    Quantum Corrections to Dilute Bose Liquids

    Full text link
    It was recently shown (A. Bulgac. Phys. Rev. Lett. {\bf 89}, 050402 (2002)) that an entirely new class of quantum liquids with widely tunable properties could be manufactured from bosons (boselets), fermions (fermilets) and their mixtures (ferbolets) by controlling their interaction properties by the means of a Feshbach resonance. We extend the previous mean--field analysis of these quantum liquids by computing the lowest order quantum corrections to the ground state energy and the depletion of the Bose--Einstein condensate and by estimating higher order corrections as well. We show that the quantum corrections are relatively small and controlled by the diluteness parameter na31\sqrt{n|a|^3} \ll 1, even though strictly speaking in this case there is no low density expansion.Comment: final published version, typos corrected, updated references and added one referenc
    corecore