43,662 research outputs found

    Overcoming a limitation of deterministic dense coding with a non-maximally entangled initial state

    Full text link
    Under two-party deterministic dense-coding, Alice communicates (perfectly distinguishable) messages to Bob via a qudit from a pair of entangled qudits in pure state |Psi>. If |Psi> represents a maximally entangled state (i.e., each of its Schmidt coefficients is sqrt(1/d)), then Alice can convey to Bob one of d^2 distinct messages. If |Psi> is not maximally entangled, then Ji et al. [Phys. Rev. A 73, 034307 (2006)] have shown that under the original deterministic dense-coding protocol, in which messages are encoded by unitary operations performed on Alice's qudit, it is impossible to encode d^2-1 messages. Encoding d^2-2 is possible; see, e.g., the numerical studies by Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. Answering a question raised by Wu et al. [Phys. Rev. A 73, 042311 (2006)], we show that when |Psi> is not maximally entangled, the communications limit of d^2-2 messages persists even when the requirement that Alice encode by unitary operations on her qudit is weakened to allow encoding by more general quantum operators. We then describe a dense-coding protocol that can overcome this limitation with high probability, assuming the largest Schmidt coefficient of |Psi> is sufficiently close to sqrt(1/d). In this protocol, d^2-2 of the messages are encoded via unitary operations on Alice's qudit, and the final (d^2-1)-th message is encoded via a (non-trace-preserving) quantum operation.Comment: 18 pages, published versio

    A study of ingestion and dispersion of engine exhaust products in trailing vortex systems

    Get PDF
    Analysis has been made of the ingestion and dispersion of engine exhaust products into the trailing vortex system of supersonic aircraft flying in the stratosphere. The rate of mixing between the supersonic jet and the co-flowing supersonic stream was found to be an order of magnitude less than would be expected on the basis of subsonic eddy-viscosity results. The length of the potential core was 66 nozzle exit radii so that the exhaust gases remain at elevated temperatures and concentrations over much longer distances than previsously estimated. Ingestion started at the end of the potential core and all hot gas from the engine was ingested into the trailing vortex within two core lengths. Comparison between the buoyancy calculations for the supersonic case with nondimensionalized subsonic aircraft contrail data on wake spreading showed good agreement. Velocity and temperature profiles have been specified at various stages of the wake, and the analysis in this report can be used to predict variations of concentrations of species such as nitrogen oxides under conditions of chemical reaction

    Effect of confinement potential geometry on entanglement in quantum dot-based nanostructures

    Full text link
    We calculate the spatial entanglement between two electrons trapped in a nanostructure for a broad class of confinement potentials, including single and double quantum dots, and core-shell quantum dot structures. By using a parametrized confinement potential, we are able to switch from one structure to the others with continuity and to analyze how the entanglement is influenced by the changes in the confinement geometry. We calculate the many-body wave function by `exact' diagonalization of the time independent Schr\"odinger equation. We discuss the relationship between the entanglement and specific cuts of the wave function, and show that the wave function at a single highly symmetric point could be a good indicator for the entanglement content of the system. We analyze the counterintuitive relationship between spatial entanglement and Coulomb interaction, which connects maxima (minima) of the first to minima (maxima) of the latter. We introduce a potential quantum phase transition which relates quantum states characterized by different spatial topology. Finally we show that by varying shape, range and strength of the confinement potential, it is possible to induce strong and rapid variations of the entanglement between the two electrons. This property may be used to tailor nanostructures according to the level of entanglement required by a specific application.Comment: 10 pages, 8 figures and 1 tabl

    Geometry induced entanglement transitions in nanostructures

    Full text link
    We model quantum dot nanostructures using a one-dimensional system of two interacting electrons. We show that strong and rapid variations may be induced in the spatial entanglement by varying the nanostructure geometry. We investigate the position-space information entropy as an indicator of the entanglement in this system. We also consider the expectation value of the Coulomb interaction and the ratio of this expectation to the expectation of the confining potential and their link to the entanglement. We look at the first derivative of the entanglement and the position-space information entropy to infer information about a possible quantum phase transition.Comment: 3 pages, 2 figures, to appear in Journal of Applied Physic

    Quantum logic gates using Stark shifted Raman transitions in a cavity

    Get PDF
    We present a scheme to realise the basic two-quibit logic gates such as quantum phase gate and controlle-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts which are as important as the terms leading to two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement.Comment: 5 pages, 1 figure, RevTeX4, Text is modifie

    Option Pricing in Multivariate Stochastic Volatility Models of OU Type

    Full text link
    We present a multivariate stochastic volatility model with leverage, which is flexible enough to recapture the individual dynamics as well as the interdependencies between several assets while still being highly analytically tractable. First we derive the characteristic function and give conditions that ensure its analyticity and absolute integrability in some open complex strip around zero. Therefore we can use Fourier methods to compute the prices of multi-asset options efficiently. To show the applicability of our results, we propose a concrete specification, the OU-Wishart model, where the dynamics of each individual asset coincide with the popular Gamma-OU BNS model. This model can be well calibrated to market prices, which we illustrate with an example using options on the exchange rates of some major currencies. Finally, we show that covariance swaps can also be priced in closed form.Comment: 28 pages, 5 figures, to appear in SIAM Journal on Financial Mathematic

    On the energy dependence of the D^+/D^- production asymmetry

    Get PDF
    In this paper we discuss the origin of the asymmetry present in D meson production and its energy dependence. In particular, we have applied the meson cloud model to calculate the asymmetries in D^-/D^+ meson production in high energy p-p collisions and find a good agreement with recent LHCb data. Although small, this non-vanishing asymmetry may shed light on the role played by the charm meson cloud of the proton.Comment: 8 pages, 8 figures. arXiv admin note: text overlap with arXiv:hep-ph/000927
    • …
    corecore