32,509 research outputs found
Modulated phases in magnetic models frustrated by long-range interactions
We study an Ising model in one dimension with short range ferromagnetic and
long range (power law) antiferromagnetic interactions. We show that the zero
temperature phase diagram in a (longitudinal) field H involves a sequence of up
and down domains whose size varies continuously with H, between -H_c and H_c
which represent the edge of the ferromagnetic up and down phases. The
implications of long range interaction in many body systems are discussed.Comment: 5 pages, 3 figure
Quantum discord in finite XY chains
We examine the quantum discord between two spins in the exact ground state of
finite spin 1/2 arrays with anisotropic XY couplings in a transverse field B.
It is shown that in the vicinity of the factorizing field B_s, the discord
approaches a common finite non-negligible limit which is independent of the
pair separation and the coupling range. An analytic expression of this limit is
provided. The discord of a mixture of aligned pairs in two different
directions, crucial for the previous results, is analyzed in detail, including
the evaluation of coherence effects, relevant in small samples and responsible
for a parity splitting at B_s. Exact results for finite chains with first
neighbor and full range couplings and their interpretation in terms of such
mixtures are provided.Comment: 9 pages, 6 figure
Factorization and entanglement in general XYZ spin arrays in non-uniform transverse fields
We determine the conditions for the existence of a pair of degenerate parity
breaking separable eigenstates in general arrays of arbitrary spins connected
through couplings of arbitrary range and placed in a transverse field,
not necessarily uniform. Sufficient conditions under which they are ground
states are also provided. It is then shown that in finite chains, the
associated definite parity states, which represent the actual ground state in
the immediate vicinity of separability, can exhibit entanglement between any
two spins regardless of the coupling range or separation, with the reduced
state of any two subsystems equivalent to that of pair of qubits in an
entangled mixed state. The corresponding concurrences and negativities are
exactly determined. The same properties persist in the mixture of both definite
parity states. These effects become specially relevant in systems close to the
limit. The possibility of field induced alternating separable solutions
with controllable entanglement side limits is also discussed. Illustrative
numerical results for the negativity between the first and the
spin in an open spin chain for different values of and are as well
provided.Comment: 6 pages, figures adde
A Note on Asymptotic Freedom at High Temperatures
This short note considers, within the external field approach outlined in
hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the
high temperature limit. Its influence on a temperature- and field-dependent
running coupling constant is examined. The thermal imaginary part of the mode
is temperature-independent in our approach and exactly cancels the well-known
zero temperature imaginary part, thus rendering the Savvidy vacuum stable.
Combining the real part of the mode with the contributions from the higher
lying Landau modes and the vacuum contribution, a field-independent coupling
alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature
running coupling constant with average thermal momenta \approx 2pi T for
gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.
Quantum correlations and least disturbing local measurements
We examine the evaluation of the minimum information loss due to an unread
local measurement in mixed states of bipartite systems, for a general entropic
form. Such quantity provides a measure of quantum correlations, reducing for
pure states to the generalized entanglement entropy, while in the case of mixed
states it vanishes just for classically correlated states with respect to the
measured system, as the quantum discord. General stationary conditions are
provided, together with their explicit form for general two-qubit states.
Closed expressions for the minimum information loss as measured by quadratic
and cubic entropies are also derived for general states of two-qubit systems.
As application, we analyze the case of states with maximally mixed marginals,
where a general evaluation is provided, as well as X states and the mixture of
two aligned states.Comment: 10 pages, 3 figure
Mode-Field Radius of Photonic Crystal Fibers Expressed by the V-parameter
We numerically calculate the equivalent mode-field radius of the fundamental
mode in a photonic crystal fiber (PCF) and show that this is a function of the
V-parameter only and not the relative hole size. This dependency is similar to
what is found for graded-index standard fibers and we furthermore show that the
relation for the PCF can be excellently approximated with the same general
mathematical expression. This is to our knowledge the first semi-analytical
description of the mode-field radius of a PCF.Comment: Accepted for Opt. Let
Investigation of methods for predicting the aerodynamic characteristics of two-lobed parawings
Accurate methods for predicting longitudinal aerodynamic characteristics of two-lobed conical parawings with leading edge boom
Detecting separable states via semidefinite programs
We introduce a new technique to detect separable states using semidefinite
programs. This approach provides a sufficient condition for separability of a
state that is based on the existence of a certain local linear map applied to a
known separable state. When a state is shown to be separable, a proof of this
fact is provided in the form of an explicit convex decomposition of the state
in terms of product states. All states in the interior of the set of separable
states can be detected in this way, except maybe for a set of measure zero.
Even though this technique is more suited for a numerical approach, a new
analytical criterion for separability can also be derived.Comment: 8 pages, accepted for publication in Physical Review
Quantum discord and related measures of quantum correlations in XY chains
We examine the quantum correlations of spin pairs in the ground state of
finite XY chains in a transverse field, by evaluating the quantum discord as
well as other related entropic measures of quantum correlations. A brief review
of the latter, based on generalized entropic forms, is also included. It is
shown that parity effects are of crucial importance for describing the behavior
of these measures below the critical field. It is also shown that these
measures reach full range in the immediate vicinity of the factorizing field,
where they become independent of separation and coupling range. Analytical and
numerical results for the quantum discord, the geometric discord and other
measures in spin chains with nearest neighbor coupling and in fully connected
spin arrays are also provided.Comment: accepted in Int. J. Mod. Phys. B, special issue "Classical Vs Quantum
correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin
and V. Vedra
Low-loss photonic crystal fibers for transmission systems and their dispersion properties
We report on a single-mode photonic crystal fiber with attenuation and
effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively.
This is, to our knowledge, the lowest loss reported for a PCF not made from VAD
prepared silica and at the same time the largest effective area for a low-loss
(< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data
transmission and show for the first time, both numerically and experimentally,
how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres
- …