32,322 research outputs found
Upper limits on the luminosity of the progenitor of type Ia supernova SN2014J
We analysed archival data of Chandra pre-explosion observations of the
position of SN2014J in M82. No X-ray source at this position was detected in
the data, and we calculated upper limits on the luminosities of the progenitor.
These upper limits allow us to firmly rule out an unobscured supersoft X-ray
source progenitor with a photospheric radius comparable to the radius of white
dwarf near the Chandrasekhar mass (~1.38 M_sun) and mass accretion rate in the
interval where stable nuclear burning can occur. However, due to a relatively
large hydrogen column density implied by optical observations of the supernova,
we cannot exclude a supersoft source with lower temperatures, kT < 80 eV. We
find that the supernova is located in the centre of a large structure of soft
diffuse emission, about 200 pc across. The mass, ~3x10^4 M_sun and short
cooling time of the gas, tau_cool ~ 8 Myrs, suggest that it is a
supernova-inflated super-bubble, associated with the region of recent star
formation. If SN2014J is indeed located inside the bubble, it likely belongs to
the prompt population of type Ia supernovae, with a delay time as short as ~ 50
Myrs. Finally, we analysed the one existing post-supernova Chandra observation
and placed upper limit of ~ (1-2) 10^37 erg/s on the X-ray luminosity of the
supernova itself.Comment: 8 pages, 6 figure
Ginsparg-Wilson Relation and Ultralocality
It is shown that it is impossible to construct a free theory of fermions on
infinite hypercubic Euclidean lattice in four dimensions that is: (a)
ultralocal, (b) respects symmetries of hypercubic lattice, (c) corresponding
kernel satisfies D gamma5 + gamma5 D = D gamma5 D (Ginsparg-Wilson relation),
(d) describes single species of massless Dirac fermions in the continuum limit.Comment: 4 pages, REVTEX; few minor change
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
One of the main advantages of an optical approach to quantum computing is the
fact that optical fibers can be used to connect the logic and memory devices to
form useful circuits, in analogy with the wires of a conventional computer.
Here we describe an experimental demonstration of a simple quantum circuit of
that kind in which two probabilistic exclusive-OR (XOR) logic gates were
combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio
Interpreting quantum discord through quantum state merging
We present an operational interpretation of quantum discord based on the
quantum state merging protocol. Quantum discord is the markup in the cost of
quantum communication in the process of quantum state merging, if one discards
relevant prior information. Our interpretation has an intuitive explanation
based on the strong subadditivity of von Neumann entropy. We use our result to
provide operational interpretations of other quantities like the local purity
and quantum deficit. Finally, we discuss in brief some instances where our
interpretation is valid in the single copy scenario.Comment: 5 pages, no figures. See http://arxiv.org/abs/1008.3205 for similar
results. Typos fixed, references and acknowledgements updated. End note adde
Hyperfine and Optical Barium Ion Qubits
State preparation, qubit rotation, and high fidelity readout are demonstrated
for two separate \baseven qubit types. First, an optical qubit on the narrow
6S to 5D transition at 1.76 m is implemented. Then,
leveraging the techniques developed there for readout, a ground state hyperfine
qubit using the magnetically insensitive transition at 8 GHz is accomplished
Why Nature has made a choice of one time and three space coordinates?
We propose a possible answer to one of the most exciting open questions in
physics and cosmology, that is the question why we seem to experience four-
dimensional space-time with three ordinary and one time dimensions. We have
known for more than 70 years that (elementary) particles have spin degrees of
freedom, we also know that besides spin they also have charge degrees of
freedom, both degrees of freedom in addition to the position and momentum
degrees of freedom. We may call these ''internal degrees of freedom '' the
''internal space'' and we can think of all the different particles, like quarks
and leptons, as being different internal states of the same particle. The
question then naturally arises: Is the choice of the Minkowski metric and the
four-dimensional space-time influenced by the ''internal space''?
Making assumptions (such as particles being in first approximation massless)
about the equations of motion, we argue for restrictions on the number of space
and time dimensions. (Actually the Standard model predicts and experiments
confirm that elementary particles are massless until interactions switch on
masses.)
Accepting our explanation of the space-time signature and the number of
dimensions would be a point supporting (further) the importance of the
''internal space''.Comment: 13 pages, LaTe
Probabilistic Quantum Encoder for Single-Photon Qubits
We describe an experiment in which a physical qubit represented by the
polarization state of a single-photon was probabilistically encoded in the
logical state of two photons. The experiment relied on linear optics,
post-selection, and three-photon interference effects produced by a parametric
down-conversion photon pair and a weak coherent state. An interesting
consequence of the encoding operation was the ability to observe entangled
three-photon Greenberger-Horne-Zeilinger states.Comment: 4 pages, 4 figures; submitted to Phys. Rev.
Robust Trapped-Ion Quantum Logic Gates by Continuous Dynamical Decoupling
We introduce a novel scheme that combines phonon-mediated quantum logic gates
in trapped ions with the benefits of continuous dynamical decoupling. We
demonstrate theoretically that a strong driving of the qubit decouples it from
external magnetic-field noise, enhancing the fidelity of two-qubit quantum
gates. Moreover, the scheme does not require ground-state cooling, and is
inherently robust to undesired ac-Stark shifts. The underlying mechanism can be
extended to a variety of other systems where a strong driving protects the
quantum coherence of the qubits without compromising the two-qubit couplings.Comment: Slightly longer than the published versio
Ginsparg-Wilson-Luscher Symmetry and Ultralocality
Important recent discoveries suggest that Ginsparg-Wilson-Luscher (GWL)
symmetry has analogous dynamical consequences for the theory on the lattice as
chiral symmetry does in the continuum. While it is well known that inherent
property of lattice chiral symmetry is fermion doubling, we show here that
inherent property of GWL symmetry is that the infinitesimal symmetry
transformation couples fermionic degrees of freedom at arbitrarily large
lattice distances (non-ultralocality). The consequences of this result for
ultralocality of symmetric actions are discussed.Comment: 18 pages, LATEX. For clarity changed to infinitesimal
transformations, typos corrected, explicit hypothesis adde
Preparation of Dicke States in an Ion Chain
We have investigated theoretically and experimentally a method for preparing
Dicke states in trapped atomic ions. We consider a linear chain of ion
qubits that is prepared in a particular Fock state of motion, . The
phonons are removed by applying a laser pulse globally to the qubits, and
converting the motional excitation to flipped spins. The global nature of
this pulse ensures that the flipped spins are shared by all the target ions
in a state that is a close approximation to the Dicke state \D{N}{m}. We
calculate numerically the fidelity limits of the protocol and find small
deviations from the ideal state for and . We have demonstrated
the basic features of this protocol by preparing the state \D{2}{1} in two
Mg target ions trapped simultaneously with an Al
ancillary ion.Comment: 5 pages, 2 figure
- âŠ