914 research outputs found
Maintaining pre-school children's health and wellbeing in the UK: A qualitative study of the views of migrant parents
© The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. Background There is evidence that key health behaviours of people who migrate deteriorate over time, which has a consequent impact upon the health of dependent children. As health in the early years sets the course for lifelong health, it is important to explore parents' views on maintaining children's health following migration. Methods Five focus groups were held with parents of preschool children who had migrated to the UK within the last 10 years (n = 28). Parents originated from Romania, Poland, Somalia and Pakistan, with one group of Roma Gypsy parents. Data collection took place in January to March 2015. Results All groups, apart from the Roma, perceived barriers to maintaining optimal health and well-being for their preschool children following migration to the UK. Eastern European parents experienced difficulties in ensuring family financial security, while parents from more established communities focused on barriers to children's exercise, play and nutrition. Conclusions This study highlights aspects of public health where migrants and their children can experience adverse effects in the UK. These findings have implications for policymakers, commissioners and providers of health services who aim to promote good health among preschool children
A QCD Sum Rule Approach to the Contribution to the Radiative Decay
QCD sum rules are used to calculate the contribution of short-distance
single-quark transition , to the amplitudes of the
hyperon radiative decay, . We re-evaluate the
Wilson coefficient of the effective operator responsible for this transition.
We obtain a branching ratio which is comparable to the unitarity limit.Comment: 15 pages, Revtex, 13 figures available as a uuencoded, gz-compressed
ps fil
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Progress in the determination of the cross section
Improving previous calculations, we compute the cross section using QCD sum rules. Our sum rules for the , , and hadronic
matrix elements are constructed by using vaccum-pion correlation functions, and
we work up to twist-4 in the soft-pion limit. Our results suggest that, using
meson exchange models is perfectly acceptable, provided that they include form
factors and that they respect chiral symmetry. After doing a thermal average we
get mb at T=150\MeV.Comment: 22 pages, RevTeX4 including 7 figures in ps file
How brains make decisions
This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum
Decision Theory (QDT) that we have developed in a series of publications since
2008. We formulate a general mathematical scheme of how decisions are taken,
using the point of view of psychological and cognitive sciences, without
touching physiological aspects. The basic principles of how intelligence acts
are discussed. The human brain processes involved in decisions are argued to be
principally different from straightforward computer operations. The difference
lies in the conscious-subconscious duality of the decision making process and
the role of emotions that compete with utility optimization. The most general
approach for characterizing the process of decision making, taking into account
the conscious-subconscious duality, uses the framework of functional analysis
in Hilbert spaces, similarly to that used in the quantum theory of
measurements. This does not imply that the brain is a quantum system, but just
allows for the simplest and most general extension of classical decision
theory. The resulting theory of quantum decision making, based on the rules of
quantum measurements, solves all paradoxes of classical decision making,
allowing for quantitative predictions that are in excellent agreement with
experiments. Finally, we provide a novel application by comparing the
predictions of QDT with experiments on the prisoner dilemma game. The developed
theory can serve as a guide for creating artificial intelligence acting by
quantum rules.Comment: Latex file, 20 pages, 3 figure
A knowledge graph to interpret clinical proteomics data
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making
Abnormal number of Nambu-Goldstone bosons in the color-asymmetric 2SC phase of an NJL-type model
We consider an extended Nambu--Jona-Lasinio model including both (q \bar q)-
and (qq)-interactions with two light-quark flavors in the presence of a single
(quark density) chemical potential. In the color superconducting phase of the
quark matter the color SU(3) symmetry is spontaneously broken down to SU(2). If
the usual counting of Goldstone bosons would apply, five Nambu-Goldstone (NG)
bosons corresponding to the five broken color generators should appear in the
mass spectrum. Unlike that expectation, we find only three gapless diquark
excitations of quark matter. One of them is an SU(2)-singlet, the remaining two
form an SU(2)-(anti)doublet and have a quadratic dispersion law in the small
momentum limit. These results are in agreement with the Nielsen-Chadha theorem,
according to which NG-bosons in Lorentz-noninvariant systems, having a
quadratic dispersion law, must be counted differently. The origin of the
abnormal number of NG-bosons is shown to be related to a nonvanishing
expectation value of the color charge operator Q_8 reflecting the lack of color
neutrality of the ground state. Finally, by requiring color neutrality, two
massive diquarks are argued to become massless, resulting in a normal number of
five NG-bosons with usual linear dispersion laws.Comment: 13 pages, 4 figures, revtex
decays into and mesons
We consider the nonleptonic and semileptonic decays of -mesons into
and mesons. QCD sum rules are used to calculate the form
factors associated with these decays, and the correspondig decay rates. On the
basis of data on , which goes dominantly via the
transition , we conclude that there is space for a
sizeable light quark component on .Comment: 14 pages, RevTeX4 including 5 figures in ps file
A study of orientational ordering in a fluid of dipolar Gay-Berne molecules using density-functional theory
Published versio
- …