1,820 research outputs found

    Relativistically invariant quantum information

    Get PDF
    We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.Comment: 5 pages, published versio

    Interference of Quantum Channels

    Full text link
    We show how interferometry can be used to characterise certain aspects of general quantum processes, in particular, the coherence of completely positive maps. We derive a measure of coherent fidelity, maximum interference visibility and the closest unitary operator to a given physical process under this measure.Comment: 4 pages, 5 figures, REVTeX 4, typographical corrections and added acknowledgemen

    Entanglement of zero angular momentum mixtures and black hole entropy

    Full text link
    We calculate the entanglement of formation and the entanglement of distillation for arbitrary mixtures of the zero spin states on an arbitrary-dimensional bipartite Hilbert space. Such states are relevant to quantum black holes and to decoherence-free subspaces based communication. The two measures of entanglement are equal and scale logarithmically with the system size. We discuss its relation to the black hole entropy law. Moreover, these states are locally distinguishable but not locally orthogonal, thus violating a conjecture that the entanglement measures coincide only on locally orthogonal states. We propose a slightly weaker form of this conjecture. Finally, we generalize our entanglement analysis to any unitary group.Comment: 5 pages, revtex4 Final version. A discussion of local orthogonality and entanglement is adde

    A Magnetic Resonance Realization of Decoherence-Free Quantum Computation

    Full text link
    We report the realization, using nuclear magnetic resonance techniques, of the first quantum computer that reliably executes an algorithm in the presence of strong decoherence. The computer is based on a quantum error avoidance code that protects against a class of multiple-qubit errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer successfully executes Grover's search algorithm in the presence of arbitrarily strong engineered decoherence. A control computer with no decoherence protection consistently fails under the same conditions.Comment: 5 pages with 3 figures, revtex4, accepted by Physical Review Letters; v2 minor revisions to conten

    Classicality in discrete Wigner functions

    Full text link
    Gibbons et al. [Phys. Rev. A 70, 062101(2004)] have recently defined a class of discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by one of us [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism.Comment: 10 pages, 1 figur

    The Generalized Lyapunov Theorem and its Application to Quantum Channels

    Get PDF
    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the "Lyapunov direct method". First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in Open Quantum Systems and Quantum Information, namely Quantum Channels. In this context we also discuss the relations between mixing and ergodicity (i.e. the property that there exist only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.Comment: 13 pages, 3 figure

    The Relation Between Galaxy ISM and Circumgalactic OVI Gas Kinematics Derived from Observations and Λ\LambdaCDM Simulations

    Full text link
    We present the first galaxy-OVI absorption kinematic study for 20 absorption systems (EW>0.1~{\AA}) associated with isolated galaxies (0.15<z<<z<0.55) that have accurate redshifts and rotation curves obtained using Keck/ESI. Our sample is split into two azimuthal angle bins: major axis (Φ<25\Phi<25^{\circ}) and minor axis (Φ>33\Phi>33^{\circ}). OVI absorption along the galaxy major axis is not correlated with galaxy rotation kinematics, with only 1/10 systems that could be explained with rotation/accretion models. This is in contrast to co-rotation commonly observed for MgII absorption. OVI along the minor axis could be modeled by accelerating outflows but only for small opening angles, while the majority of the OVI is decelerating. Along both axes, stacked OVI profiles reside at the galaxy systemic velocity with the absorption kinematics spanning the entire dynamical range of their galaxies. The OVI found in AMR cosmological simulations exists within filaments and in halos of ~50 kpc surrounding galaxies. Simulations show that major axis OVI gas inflows along filaments and decelerates as it approaches the galaxy while increasing in its level of co-rotation. Minor axis outflows in the simulations are effective within 50-75 kpc beyond that they decelerate and fall back onto the galaxy. Although the simulations show clear OVI kinematic signatures they are not directly comparable to observations. When we compare kinematic signatures integrated through the entire simulated galaxy halo we find that these signatures are washed out due to full velocity distribution of OVI throughout the halo. We conclude that OVI alone does not serve as a useful kinematic indicator of gas accretion, outflows or star-formation and likely best probes the halo virial temperature.Comment: 24 pages, 21 figures, 4 tables. Accepted to ApJ on November 14, 201

    Identifying an Experimental Two-State Hamiltonian to Arbitrary Accuracy

    Get PDF
    Precision control of a quantum system requires accurate determination of the effective system Hamiltonian. We develop a method for estimating the Hamiltonian parameters for some unknown two-state system and providing uncertainty bounds on these parameters. This method requires only one measurement basis and the ability to initialise the system in some arbitrary state which is not an eigenstate of the Hamiltonian in question. The scaling of the uncertainty is studied for large numbers of measurements and found to be proportional to one on the square-root of the number of measurements.Comment: Minor corrections, Accepted for publication in Physical Review
    corecore