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Relativistically invariant quantum information
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We show that quantum information can be encoded into entangled states of multiple indistin-
guishable particles in such a way that any inertial observer can prepare, manipulate, or measure
the encoded state independent of their reference frame. Such relativistically invariant quantum
information is free of the difficulties associated with encoding into spin or other degrees of freedom
in a relativistic context.

Information encoded into the states of quantum sys-
tems allows for powerful new computational and com-
munication tasks [1]. It is perhaps in situations in-
volving extremely long distances that quantum informa-
tion will find its most useful applications: quantum tele-
portation [2], entanglement-enhanced communication [3],
quantum clock synchonization [4, 5] and reference frame
alignment [6], and quantum-enhanced global position-
ing [5] are just some of the ways that quantum physics
offers an advantage over classical methods. In these long-
distance situations, relativistic effects can be expected
to arise [7]. Consider the canonical example of a qubit
encoded into the angular momentum state of a massive
spin-1/2 particle. The spin entropy, which quantifies the
purity of the encoded information, is not a covariant
quantity [8]: under a Lorentz transformation, the spin
state becomes entangled with the momentum of the par-
ticle. The effect of Lorentz transformations is to decohere

the qubit, reducing the applicability of such systems to
perform quantum information processing tasks in a rel-
ativistic setting [7, 8]. Photon polarization qubits be-
have similarly, with additional effects arising from the
transversality of polarization [7, 8].

We show that relativistically invariant quantum infor-
mation can be encoded into entangled states of multiple,
indistinguishable particles. This encoding allows any in-
ertial observer to prepare and manipulate quantum infor-
mation in a way that is independent of their particular
frame of reference. In particular, two observers can share
entanglement and thus perform any quantum informa-
tion processing task (teleportation, communication, etc.)
without sharing a reference frame. We do this by show-
ing that, under a general Lorentz transformation ΛAB,
the spin state of a particle will be transformed due to
three distinct effects: (i) a Wigner rotation due to the
Lorentz boost ΛBA, which occurs even for momentum
eigenstates, (ii) a decoherence due to the entangling of
the spin and momentum under the Lorentz transforma-
tion ΛAB because the particle is not in a momentum
eigenstate, and (iii) a decoherence due to Bob’s lack of
knowledge about the transformation relating his refer-
ence frame to Alice’s frame. Then, to construct encod-
ings that are protected from all these forms of decoher-

ence, we construct states of multiple indistingishable par-
ticles with well-defined momenta and use the techniques
of noiseless subsystems [9, 10]. We begin by consider-
ing massive spin-1/2 particles; massless photons are then
given a separate treatment.

Single spin-1/2 particle. Consider two inertial ob-
servers, Alice and Bob, who wish to exchange spin-1/2
particles (e.g., protons) for the purposes of some quantum
information processing task. First, we consider the ex-
change of a single particle and outline the associated diffi-
culties. To fix our notation, momentum eigenstates |0m〉
of a single spin-1/2 particle in the rest frame (p = 0) are
defined by [11],

Pµ|0m〉 = pµ
0 |0m〉 , (1)

J2|0m〉 = 3
4 |0m〉 , Jz|0m〉 = m|0m〉 , (2)

and are given in a boosted frame as |pm〉 = L(ξp)|0m〉
for L(ξp) a pure Lorentz boost. The Lorentz transfor-
mation Λ acts via the one-particle representation T1 as

T1(Λ)|pm〉 =
∑

m′

|(Λp)m′〉D1/2
m′,m(Ω(Λ,p)) , (3)

where Ω(Λ,p) = L(ξΛp)−1T1(Λ)L(ξp) ∈ SO(3) is a

Wigner rotation, and D
1/2
m′,m(Ω) is its the spin-1/2 rep-

resentation. Thus, on the spin degrees of freedom, the
Lorentz transformation acts as a rotation.

Let Alice prepare a single spin-1/2 particle in a state ρ
with respect to her reference frame. This state cannot be
an (unphysical) eigenstate of momentum [7]; the spatial
state of the particle could be prepared, for example, in a
coherent state of minimum uncertainty in both position
and momentum. A generic pure state for a single particle
is given in terms of the basis above by

|Ψ〉1 =
∑

m

∫ ∞

−∞
ψm(p)|pm〉dµ(p) , (4)

where dµ(p) = (2π)−3(2p0)−1d3p. To encode a qubit
into this particle, Alice may prepare the spin of this parti-
cle in an arbitrary encoded state uncoupled (in a product
state) with a localized spatial state, i.e.,

|Ψ〉1 =

(

ζ
η

)
∫

ψ(p)|p〉dµ(p) , (5)
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where we take the wave function ψ to be concentrated
near zero momentum and with a characteristic spread
∆; i.e., to be of the Gaussian form

ψ(p) = N exp
(

−p2/2∆2
)

, (6)

where N is a normalization constant. The reduced den-
sity matrix for the spin component of this state in Alice’s
frame is

ρ1 =

(

|ζ|2 ζη∗

ζ∗η |η|2
)

, (7)

and in this frame is independent of the form of ψ(p).

Now consider the state of this particle as described by
another inertial observer, Bob. Let ΛBA be the element
of the Lorentz group that relates Bob’s inertial frame
B to Alice’s frame A; Bob thus assigns the transformed
state T1(ΛBA)|Ψ〉1 to the particle. Even if Bob has the
perfect knowledge of the relative orientation and velocity
of his reference frame with respect to Alice’s, the reduced
density matrix for the spin degrees of freedom of this
qubit decoheres [7]. For example, if the Lorentz trans-
formation ΛBA is a pure boost along the z-axis to the
velocity v, the effective state transformation is [8]

ρ′1 ≈ (1 − 1
4Γ2)ρ1 + 1

8Γ2(σxρ1σx + σyρ1σy) , (8)

where Γ = (1 −
√

1 − v2)∆/v.

Moreover, if Bob does not know the relation (i.e., the
Lorentz transformation ΛAB) that relates his frame to
the frame in which the state was prepared, the decohering
effects are much more significant. Without this knowl-
edge, he represents the state of the system as a mixture
over all possible Lorentz transformations. Specifically,
we would represent the state of the particle as

E1(|Ψ〉1〈Ψ|) =

∫

dΛ f(Λ)T1(Λ)|Ψ〉1〈Ψ|T1(Λ)† , (9)

where the integration is over the entire Lorentz group,
dΛ is its Haar measure and f(Λ) describes Bob’s prior
estimate of the Lorentz transformation relating the sys-
tems [13]. Viewing the quantum state |Ψ〉1 as a “cat-
alogue” of predictions for the outcomes of future mea-
surements on the particle (or retrodictions about possible
preparations by Alice), the process E1 describes the loss
of predictive power by Bob due to his lack of knowledge
about the reference frame in which the state of the par-
ticle was prepared [15]. It is useful to view the superop-
erator E1 as a form of decoherence. Rather than describ-
ing an interaction with an environment, this decoherence
represents the resulting decrease in Bob’s predictive and
retrodictive capacity due to his lack of knowledge.

Consider the action of this decoherence on the reduced
density matrix ρ1 of Eq. (7) for the spin component of
this particle. While the Lorentz group acts via Eq. (3)

on each momentum component as the spin-1/2 represen-
tation D1/2 of the rotation group, an effective transfor-
mation for the reduced density matrix of the state (5)
involves averaging over different noisy quantum channels
(as the one given in Eq. (8)), and not just rotations.
On the other hand, the lack of knowledge of the relative
orientation of the reference frames alone is sufficient to
completely decohere Bob’s qubit [15]. Thus, the decoher-
ence due to entanglement between spin and momentum
and the lack of knowledge about the relative motion can-
not make matters worse, and the total decoherence on
the reduced density matrix for the spin component of a
single particle is

E1(ρ1) =

∫

dΩD1/2(Ω)ρ1D
1/2(Ω)† = 1

2I , (10)

where Ω ∈SO(3) is a rotation, integration is over the en-
tire group SO(3), and 1

2I is the completely mixed density
operator on the spin subsystem. The spin state of the
particle is decohered in Bob’s frame to the completely
mixed state, and thus no quantum information can be
conveyed to Bob by encoding into the spin of a single par-
ticle. When the relative orientation of frames is known,
but the relative velocity is not and/or the effects of spin-
momentum entanglement are taken into account, Bob’s
density matrix depends both on ψ(p) and f(Λ). This
result also proves that Alice and Bob cannot share spin
entanglement through the exchange of a single spin-1/2
particle without first sharing a reference frame. We note
that Bob may perform a measurement on the particle in
an attempt to gain information about the frame in which
it was prepared; however, such a measurement necessar-
ily disturbs the state in an unpredictable way.

Creating distinguishable qubits from indistinguishable

particles. As we will show, it is possible to use entan-
gled states of multiple particles to combat the deleteri-
ous effects of this decoherence. However, first we must
demonstrate that it is possible to use elementary indistin-

guishable particles as distinguishable qubits through an
appropriate preparation of their spatial wavefunctions.
Consider the states of N identical particles. To use these
particles as qubits to encode quantum information, they
must be prepared in such a way that they are (i) distin-
guishable and (ii) relatively localized and at rest with re-
spect to each other, so that joint (entangling) operations
such as preparations and measurements can be performed
on them. These conditions are mutually exclusive at first
glance: for the particles to all be at rest with respect to
each other, they must all be in the eigenstate of zero
momentum with respect to some frame, and thus are in-
distinguishable because they are all in the same spatial
state. By preparing particles in minimum-uncertainty
states that are well-localized (making them distinguish-
able) and with a sharp common momentum, we will show
that these conditions can be sufficiently satisfied.

Consider a translation of a single particle state |Ψ〉1 of
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Eq. (5),

|Ψa〉1 = e−iaPz |Ψ〉1 =

(

ζ
η

)
∫

e−ipzaψ(p)|p〉dµ(p) ,

(11)
where we arbitrarily choose the translation to be along
the z-axis. The overlap between two one-particle states
serves as a guide to their distinguishability; thus,

1〈Ψ|Ψa〉1 = N2

∫

dµ(p) e−p
2/∆2

e−ipza/~ , (12)

which should be small. Because ∆ ≪ mc, we expand
the energy as E = mc2(1 + p2/2mc2 + . . .) and obtain

1〈Ψ|Ψa〉1 ∝ exp(−a2∆2/4~
2). Thus, the condition for

distinguishability is a ≫ λ/ǫ, where ∆ ≡ ǫmc and λ =
mc/~ is Compton wavelength of the particle. Now we
apply our second condition: that the particles should be
nearly at rest in Alice’s frame, i.e., they should be cooled
down. Using a proton (hydrogen atom) in the millikelvin
range as an example, we obtain an upper bound for ǫ to
be 10−8, so λp/ǫ ∼ 100Å. Thus, it is possible to have both
relatively sharp momenta and good localization, and so
distinguishable qubits can be created from elementary
indistinguishable particles in an appropriate momentum
state. That is, an N -qubit state can be constructed from
N single-particle states as

|Ψ〉N = ⊗N
n=1e

−inaPz |Ψ〉1 , (13)

forming a one-dimensional lattice of particles with sepa-
ration a. In this case, we can loosely define a rest frame
of these particles (although they are not precisely in a
zero momentum eigenstate), and these particles are suf-
ficiently distinguishable via their spatial wavefunctions
so that we can apply labels 1, . . . , N . In other inertial
frames, these particles will no longer be at rest but are
still distinguishable. Alice prepares the N particles is a
state |Ψ〉N with respect to her reference frame, where
the spatial wavefunctions of the particles are determined
by the above localization technique to make distinguish-
able qubits, but the spin wavefunctions are completely
arbitrary. From now on we ignore the effects of momen-
tum spread and consider the particles to be eigenstates
of momentum p.

Encoding in multiple particles. We now consider the
state of these particles in Bob’s reference frame. Let
TN be the (reducible) collective representation of the
Lorentz group acting on states of the N particles, i.e.,
TN(Λ) = T1(Λ)⊗T1(Λ)⊗· · ·⊗T1(Λ). A Lorentz transfor-
mation acts on the spin state of each particle as a Wigner
rotation via the SU(2) representation D1/2. In fact, be-
cause these particles posses a common momentum and
they were all prepared with respect to a common refer-
ence frame (Alice’s), the group SU(2) acts identically on
each spin via the reducible collective representation

[D1/2(Ω)]⊗N = D1/2(Ω)⊗D1/2(Ω)⊗· · ·⊗D1/2(Ω) , (14)

for Ω ∈ SO(3). If Bob does not know the Lorentz trans-
formation that relates his frame to Alice’s, then he rep-
resents the state of the N particles as

EN (|Ψ〉N 〈Ψ|) =

∫

S

dΛ f(Λ)TN(Λ)|Ψ〉N 〈Ψ|TN(Λ)† .

(15)
We show that, for any prior distribution f(Λ), there ex-
ists an efficient encoding scheme that allows for quantum
communication. The superoperator EN has a decohering
effect on the state of the particles, but unlike (9) this de-
coherence is not complete on the N -particle Hilbert space
because TN does not act irreducibly on the states of N
particles. Because all the particles are now considered
to have well-defined momentum, so the action on the re-
duced density operator ρN describing the spin states of
the N particles is

EN (ρN ) =

∫

dΩ f̃(Ω)[D1/2(Ω)]⊗NρN [D1/2(Ω)†]⊗N .

(16)
where f̃(Ω) is induced by f(Λ). In the following we as-
sume the worst case scenario of a uniform prior f̃(Ω) = 1.
Because [D1/2(Ω)]⊗N acts reducibly on the spin states,
it is not completely decohering for N > 1. By appeal-
ing to the techniques of decoherence-free subspaces [9]
and noiseless subsystems [10], it is possible use entan-
gled states of multiple particles for encodings that are
completely protected against this form of decoherence.
Remarkably (and conveniently), the noiseless subsystems
for the superoperator EN are completely determined by
the noiseless subsystems for the spins under collective de-
coherence [9, 16], i.e., decoherence that acts identically
on each particle. The Hilbert space of the N -particle spin
states decomposes as

H⊗N
j=1/2 =

N/2
⊕

j=0

HjR ⊗HjS , (17)

where SU(2) acts irreducibly on each subsystem HjR (via
the irreducible representation of SU(2) labelled by j), and
acts trivially on the noiseless subsystems HjS . Thus,
states encoded into a noiseless subsystem HjS are rela-

tivistically invariant ; they appear the same to all inertial
observers, regardless of their reference frame.

The following example illustrates how a relativistically-
invariant qubit can be encoded into the state of four phys-
ical qubits. Let four particles be prepared in the spatial
state as described above, making them distinguishable,
and let the spin states of these particles be prepared in
the N = 4 singlet (j = 0) subspace spanned by the logical
basis

|0L〉 = 1
2 (|↑↓〉12 − |↓↑〉12)(|↑↓〉34 − |↓↑〉34) (18)

|1L〉 = 1√
3
(|↑↑↓↓〉1234 + |↓↓↑↑〉1234) (19)

− 1
2
√

3
(|↑↓〉12 + |↓↑〉12)(|↑↓〉34 + |↓↑〉34) ,
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where {| ↑〉, | ↓〉} is any orthogonal basis for the sin-
gle qubit spin Hilbert space. Because all states in
this subspace possess zero total angular momentum, the
group of rotations acts trivially on this subspace. Thus,
the superoperator E4 preserves the two-dimensional sub-
space spanned by these states, i.e., this subspace is a
decoherence-free subspace. Encodings become more effi-
cient for larger N , and also if noiseless subsystems [10]
(rather than subspaces) are used. Asymptotically, the
number of logical qubits that can be encoded into N spin-
1/2 particles in this manner is N − log2N [16].

This scheme for encoding quantum information into
noiseless subsystems is relativistically invariant because
the encoded states (in a noiseless subsystem HjS) are
decoupled from any degree of freedom associated with a
reference frame (i.e., spatial and angular momentum de-
grees of freedom). The states describe entirely relative

properties of the particles[17], evidenced by the fact that
the noiseless subsystems carry irreducible representations
of the symmetric group for N particles. Thus, it is also
interesting to note that, for states of this form, Bob can
perform measurements of linear and angular momentum
without disturbing the encoded states, and in doing so
obtain information about Alice’s reference frame. For
example, measuring the total linear momentum provides
information about the boost that relates Alice’s frame to
Bob’s, whereas performing measurements on the SU(2)
representation subsystems HjR can provide information
about the orientation of Alice’s frame relative to Bob’s
(provided that Alice prepared an appropriate state in this
subsystem) [6]. Thus, the decomposition (17) of states of
N particles into subsystems provides a division between
states describing extrinsic (spatial) and intrinsic proper-
ties. A key observation about this encoded relativistically
invariant quantum information is that it cannot be used
for tasks such as reference frame alignment because if its
fundamentally intrinsic nature.

Photons. Much of the analysis for the massive par-
ticles applies to massless photons as well, albeit with a
different little group; thus, only the key points of the
photonic case will be mentioned. The discrete degrees
of freedom for photons transform under a representation
of the little group for massless particles, and not under
SU(2). The invariant subspaces under this group are
the subspaces with zero helicity. Consider two entangled
well-separated and therefore distinguishable wave pack-
ets, with the same momentum profile centered on p (the
construction for creating distinguishable qubits follows
the massive case). For example, the states

|Ψ±
p 〉 = 1√

2

(

|p,+〉|p,−〉 ± |p,−〉|p,+〉
)

, (20)

both satisfy J · P|Ψ±
p 〉 = 0. The little group element for

photons in the fiducial state pµ = (k, 0, 0, k) is decom-
posed as [11, 18]

W (Λ, p) = S(α, β)Rz(ω(Λ, p̂)) (21)

where Rz(ω) is a rotation by ω ∈ [0, 2π) about the z-axis
and S acts trivially on the physical states. The unitary
representation of the little group is just Uσσ′(W (Λ, p)) =
eiωσδσσ′ where σ = ±1 denotes helicity. The states trans-
form as:

U(Λ)|p,±〉 = e±iω(Λ,p̂)|Λp,±〉 (22)

Thus under a general Lorentz transformation the states
|Ψ±

p 〉 will transform as

U(Λ)|Ψ±
p 〉 = 1√

2

(

|Λp,+〉1|Λp,−〉2 ± |Λp,−〉1|Λp,+〉2
)

= |Ψ±
Λp〉 . (23)

Thus one logical qubit can be encoded with two phys-
ical qubits (photons) using the states |Ψ±

p 〉 as a basis.
Asymptotically, it is possible to encode N − 2−1 log2N
qubits in N photons. This encoding is analogous to the
case of massive particles with one direction shared be-
tween Alice and Bob [15], which uses the noiseless sub-
systems that protect against collective dephasing [19].

For quantum information processing, it is also neces-
sary to perform encoded logical operations. Using the
noiseless subsystems for encoded states, the encoded op-
erations are all given by exchange interactions [16]. For
elementary spin-1/2 particles confined to a lattice as we
describe, one would naturally expect exchange interac-
tions between the qubits; to perform encoded operations,
these interactions must be controlled using electromag-
netic fields. Finally, measurements may be performed by
performing projective measurements pairwise onto sin-
glet states. For photons, recent progress in single photon
sources (c.f. [20]) may soon be able to create the en-
tangled encoded states of Eq. (20) with the necessary
wavepacket profiles and these advances give promise for
experimental realizations in the near future.
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helpful discussions with Gerard Milburn, Terry Rudolph,
Enrique Solano, Robert Spekkens and Frank Verstraete.
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