138 research outputs found

    Late quaternary Arctic Ocean sediment records : surface ocean conditions and provenance of ice rafted debris

    Get PDF
    Summary in GermanAvailable from TIB Hannover: RR 1846(65) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Neoglacial and historical glacier changes around Kangersuneq fjord in southern West Greenland

    Get PDF
    The Nuup Kangerlua region in southern West Greenland became eglaciated in the early Holocene and by the mid-Holocene, the margin of the Inland Ice was located east of its present position. Discussion of late Holocene changes in the frontal positions of outlets relies on descriptions, paintings, photographs, maps, data from investigations of Norse ruins, aerial photographs and satellite images.The Kangiata Nunaata Sermia glacier system has receded over 20 km during the last two centuries, indicating a marked response to climatic fluctuations during and since the Little Ice Age (LIA). A large advance between 1700 and 1800 was followed by rapid recession in the first half of the 1800s. Limited data from c. 1850–1920 indicate that although the long-term position of the glacier front remained c. 10–12 km behind the LIA maximum, the late 1800s and the early 1900s may have seen a recession followed by an advance that resulted in a pronounced moraine system. The ice-dammed lake Isvand formed during the LIA maximum when meltwater from the western side of Kangiata Nunaata Sermia drained to the Ameralla fjord in the west. This is in contrast to the drainage pattern before the 1700s, when water probably drained to Kangersuneq in the north. Thinning of Kangiata Nunaata Sermia resulted in total drainage of Isvand between 2000 and 2010 and the discharge of water through Austmannadalen has now returned to the same level as that in medieval times.Other outlets in the region, such as Akullersuup Sermia and Qamanaarsuup Sermia have varied in phase with Kangiata Nunaata Sermia, but with amplitudes of only a few kilometres. In contrast, Narsap Sermia has been nearly stationary and Kangilinnguata Sermia may have advanced until the middle of the 1900s.Lowland marine outlets in south-western Greenland were characterised by large amplitude changes during the Neoglacial. Extreme examples, in addition to Kangiata Nunaata Sermia, are Eqalorutsit Killiit Sermiat at the head of Nordre Sermilik fjord in southern Greenland and Jakobshavn Isbræ in Disko Bugt, central West Greenland. The Neoglacial advances appear to have occurred at different times, although this may in part reflect the limited information about fluctuations prior to the 1930s. The differences could also reflect variations in mass balance of different sectors of the ice sheet, different subglacial dynamics or topographical factors. The lowland areas are separated by uplands and highlands that extend below the marginal part of the Inland Ice; in such areas, the outlets have been advancing almost up to the present, so that the position of the glacier front around AD 2000 broadly coincides with the LIA maximum. Charting the fluctuations of the outlets thus illustrates the large variability of the glaciers’ response to changing climate but it is notable that the number of advancing outlets has decreased markedly in recent years

    Methane and possible gas hydrates in the Disko Bugt region, central West Greenland

    Get PDF
    Current climate models predict an annual temperature increase in the Arctic between 4° and 6°C by the end of the 21st century with widespread impact on the Arctic environment. Warming will lead to thawing of the widespread, permanently frozen, high-latitude peat-lands and to degradation of marine gas hydrates, both of which may increase the rate of methane release to the atmosphere. This will influence global climate as methane is a potent greenhouse gas with a large global warming potential. Marine gas hydrates are found worldwide on continental margins and frequently occur in the Arctic. Interpretation of seismic profiles has also indicated their presence in the Disko Bugt region in western Greenland

    TEMAREDAKTØRERNES FORORD:Nye perspektiver på udvikling i og af landdistrikterne - kampen om stedet

    Get PDF
    Forholdet mellem udviklingen i landdistriktskommunerne og bykommunerne – mellem centre og periferi – får stigende opmærksomhed i den offentlige debat og på de politiske dagsordner. Det har således også været et centralt tema i debatten op til det seneste folketingsvalg

    The Western Denmark Cardiac Computed Tomography Registry:a review and validation study

    Get PDF
    BACKGROUND: As a subregistry to the Western Denmark Heart Registry (WDHR), the Western Denmark Cardiac Computed Tomography Registry (WDHR-CCTR) is a clinical database established in 2008 to monitor and improve the quality of cardiac computed tomography (CT) in Western Denmark. OBJECTIVE: We examined the content, data quality, and research potential of the WDHR-CCTR. METHODS: We retrieved 2008–2012 data to examine the 1) content; 2) completeness of procedure registration using the Danish National Patient Registry as reference; 3) completeness of variable registration comparing observed vs expected numbers; and 4) positive predictive values as well as negative predictive values of 19 main patient and procedure variables. RESULTS: By December 31, 2012, almost 22,000 cardiac CTs with up to 40 variables for each procedure have been registered. Of these, 87% were coronary CT angiography performed in patients with symptoms indicative of coronary artery disease. Compared with the Danish National Patient Registry, the overall procedure completeness was 72%. However, an additional medical record review of 282 patients registered in the Danish National Patient Registry, but not in the WDHR-CCTR, showed that coronary CT angiographies accounted for only 23% of all nonregistered cardiac CTs, indicating >90% completeness of coronary CT angiographies in the WDHR-CCTR. The completeness of individual variables varied substantially (range: 0%–100%), but was >85% for more than 70% of all variables. Using medical record review of 250 randomly selected patients as reference standard, the positive predictive value for the 19 variables ranged from 89% to 100% (overall 97%), whereas the negative predictive value ranged from 97% to 100% (overall 99%). Stratification by center status showed consistently high positive and negative predictive values for both university (96%/99%) and nonuniversity centers (97%/99%). CONCLUSION: WDHR-CCTR provides ongoing prospective registration of all cardiac CTs performed in Western Denmark since 2008. Overall, the registry data have a high degree of completeness and validity, making it a valuable tool for clinical epidemiological research

    Rapid response of Helheim Glacier in Greenland to climate variability over the past century

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 37-41, doi:10.1038/ngeo1349.During the early 2000s the Greenland Ice Sheet experienced the largest ice mass loss observed on the instrumental record1, largely as a result of the acceleration, thinning and retreat of major outlet glaciers in West and Southeast Greenland2-5. The quasi-simultaneous change in the glaciers suggests a common climate forcing and increasing air6 and ocean7-8 temperatures have been indicated as potential triggers. Here, we present a new record of calving activity of Helheim Glacier, East Greenland, extending back to c. 1890 AD. This record was obtained by analysing sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates, and uses the annual deposition of sand grains as a proxy for iceberg discharge. The 120 year long record reveals large fluctuations in calving rates, but that the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with increased Atlantic Water and decreased Polar Water influence on the shelf, warm summers and a negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term (3-10 years) large-scale oceanic and atmospheric fluctuations.This study has been supported by Geocenter Denmark in financial support to the SEDIMICE project. CSA was supported by the Danish Council for Independent Research│Nature and Universe (Grant no. 09-064954/FNU). FSt was supported by NSF ARC 0909373 and by WHOI’s Ocean and Climate Change Institute and MHRI was supported by the Danish Agency for Science, Technology and Innovation.2012-06-1

    Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover

    Get PDF
    On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84–85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong
    corecore