160 research outputs found

    Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    Get PDF
    Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Results Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Conclusions Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.ISSN:1477-595

    Functionalized Anatomical Models for Computational Life Sciences

    Get PDF
    The advent of detailed computational anatomical models has opened new avenues for computational life sciences (CLS). To date, static models representing the anatomical environment have been used in many applications but are insufficient when the dynamics of the body prevents separation of anatomical geometrical variability from physics and physiology. Obvious examples include the assessment of thermal risks in magnetic resonance imaging and planning for radiofrequency and acoustic cancer treatment, where posture and physiology-related changes in shape (e.g., breathing) or tissue behavior (e.g., thermoregulation) affect the impact. Advanced functionalized anatomical models can overcome these limitations and dramatically broaden the applicability of CLS in basic research, the development of novel devices/therapies, and the assessment of their safety and efficacy. Various forms of functionalization are discussed in this paper: (i) shape parametrization (e.g., heartbeat, population variability), (ii) physical property distributions (e.g., image-based inhomogeneity), (iii) physiological dynamics (e.g., tissue and organ behavior), and (iv) integration of simulation/measurement data (e.g., exposure conditions, “validation evidence” supporting model tuning and validation). Although current model functionalization may only represent a small part of the physiology, it already facilitates the next level of realism by (i) driving consistency among anatomy and different functionalization layers and highlighting dependencies, (ii) enabling third-party use of validated functionalization layers as established simulation tools, and (iii) therefore facilitating their application as building blocks in network or multi-scale computational models. Integration in functionalized anatomical models thus leverages and potentiates the value of sub-models and simulation/measurement data toward ever-increasing simulation realism. In our o2S2PARC platform, we propose to expand the concept of functionalized anatomical models to establish an integration and sharing service for heterogeneous computational models, ranging from the molecular to the organ level. The objective of o2S2PARC is to integrate all models developed within the National Institutes of Health SPARC initiative in a unified anatomical and computational environment, to study the role of the peripheral nervous system in controlling organ physiology. The functionalization concept, as outlined for the o2S2PARC platform, could form the basis for many other application areas of CLS. The relationship to other ongoing initiatives, such as the Physiome Project, is also presented

    SAR distribution in human beings when using body-worn RF transmitters

    Get PDF
    This study analyzes the exposure of the human torso to electromagnetic fields caused by wireless body-mounted or handheld devices. Because of the frequency and distance ranges from 30-5800 MHz and 10 to 200 mm, respectively, both near-field and far-field effects are considered. A generic body model and simulations of anatomical models are used to evaluate the worst case tissue composition with respect to the absorption of electromagnetic energy. Both standing wave effects and enhanced coupling of reactive near-field components can lead to a specific absorption rate (SAR) increase in comparison to homogeneous tissue. In addition, the exposure and temperature increase of different inner organs is assessed. With respect to compliance testing, the observed SAR enhancement may require the introduction of a multiplication factor for the spatial peak SAR measured in the liquid-filled phantom in order to obtain a conservative exposure assessment. The observed tissue heating at the body surface under adiabatic conditions can be significant, whereas the temperature increase in the inner organs turned out to be negligible for the cases investigate

    Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Because <it>in vitro </it>studies suggest that low levels of electromagnetic fields may modify cancer cell growth, we hypothesized that systemic delivery of a combination of tumor-specific frequencies may have a therapeutic effect. We undertook this study to identify tumor-specific frequencies and test the feasibility of administering such frequencies to patients with advanced cancer.</p> <p>Patients and methods</p> <p>We examined patients with various types of cancer using a noninvasive biofeedback method to identify tumor-specific frequencies. We offered compassionate treatment to some patients with advanced cancer and limited therapeutic options.</p> <p>Results</p> <p>We examined a total of 163 patients with a diagnosis of cancer and identified a total of 1524 frequencies ranging from 0.1 Hz to 114 kHz. Most frequencies (57–92%) were specific for a single tumor type. Compassionate treatment with tumor-specific frequencies was offered to 28 patients. Three patients experienced grade 1 fatigue during or immediately after treatment. There were no NCI grade 2, 3 or 4 toxicities. Thirteen patients were evaluable for response. One patient with hormone-refractory breast cancer metastatic to the adrenal gland and bones had a complete response lasting 11 months. One patient with hormone-refractory breast cancer metastatic to liver and bones had a partial response lasting 13.5 months. Four patients had stable disease lasting for +34.1 months (thyroid cancer metastatic to lung), 5.1 months (non-small cell lung cancer), 4.1 months (pancreatic cancer metastatic to liver) and 4.0 months (leiomyosarcoma metastatic to liver).</p> <p>Conclusion</p> <p>Cancer-related frequencies appear to be tumor-specific and treatment with tumor-specific frequencies is feasible, well tolerated and may have biological efficacy in patients with advanced cancer.</p> <p>Trial registration</p> <p>clinicaltrials.gov identifier NCT00805337</p

    Continuous Wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not induce hsp16-1 heat-shock gene expression in Caenorhabditis elegans

    Get PDF
    Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small-heat-shock-protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg-1) than those routinely tested in many other published studies (SAR ~2 W kg-1). To resolve this disparity, we have exposed the same transgenic hsp16-1::lacZ strain of C. elegans (PC72) to higher intensity RF fields (1.8 GHz; SAR ~1.8 W kg-1). For both continuous wave (CW) and Talk-pulsed RF exposures (2.5 h at 25?C), there was no indication that RF exposure could induce reporter expression above sham control levels. Thus, at much higher induced RF field strength (close to the maximum permitted exposure from a mobile telephone handset), this particular nematode heat-shock gene is not up-regulated. However, under conditions where background reporter expression was moderately elevated in the sham controls (perhaps as a result of some unknown co-stressor), we found some evidence that reporter expression may be reduced by ~15% following exposure to either Talk-pulsed or CW RF fields

    Exposure of the human body to professional and domestic induction cooktops compared to the basic restrictions

    Get PDF
    We investigated whether domestic and professional induction cooktops comply with the basic restrictions defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Based on magnetic field measurements, a generic numerical model of an induction cooktop was derived in order to model user exposure. The current density induced in the user was simulated for various models and distances. We also determined the exposure of the fetus and of young children. While most measured cooktops comply with the public exposure limits at the distance specified by the International Electrotechnical Commission (standard IEC 62233), the majority exceeds them at closer distances, some of them even the occupational limits. The maximum current density in the tissue of the user significantly exceeds the basic restrictions for the general public, reaching the occupational level. The exposure of the brains of young children reaches the order of magnitude of the limits for the general public. For a generic worst-case cooktop compliant with the measurement standards, the current density exceeds the 1998 ICNIRP basic restrictions by up to 24 dB or a factor of 16. The brain tissue of young children can be overexposed by 6 dB or a factor of 2. The exposure of the tissue of the central nervous system of the fetus can exceed the limits for the general public if the mother is exposed at occupational levels. This demonstrates that the methodology for testing induction cooktops according to IEC 62233 contradicts the basic restrictions. This evaluation will be extended considering the redefined basic restrictions proposed by the ICNIRP in 2010
    corecore