156 research outputs found

    Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    Get PDF
    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, while the cerebral metabolic rate for oxygen (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, ten male cyclists cycled in the heat for ~2 h with (control) and without fluid replacement (dehydration) while internal (ICA) and external (ECA) carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate the CMRO2. In study 2 (8 males), middle cerebral artery blood velocity (MCA Vmean) was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, ICA flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced oxygen and glucose extraction (P < 0.05). ECA flow increased for one hour but declined prior to exhaustion. Fluid ingestion maintained cerebral and extra-cranial perfusion throughout non-fatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extra-cranial perfusion. Thus fatigue is related to reduction in CBF and extra-cranial perfusion rather than in CMRO2.The study was supported by a grant from the Gatorade Sports Science Institute, PepsiCo Inc, USA

    The endogenous preproglucagon system is not essential for gut growth homeostasis in mice

    Get PDF
    Objective: The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. Methods: We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). Results: Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r−/− mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. Conclusion: The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent

    Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model

    Get PDF
    BACKGROUND: Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS: Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS: In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS: Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12014-022-09343-3

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) to 72 (52-89) compared with 84 (70-95) to 90 (74-94) mmHg in the controls. MCA V mean increased from 55 (38-77) to 63 (45-80) and from 56 (46-77) to 64 (46-80) cm/s respectively (P &lt; 0.05), with a larger rise in O 2 Hb [1.12 (0.52-3.27)] in the patients compared with the controls [0.83 (− 0.11 to 2.04) μmol/l]. In the control subjects, CO increased 11 % (P &lt; 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P &lt; 0.05), but also TPR increased by 13 % (P &lt; 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR

    The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations

    Get PDF
    This paper reviews current knowledge on the role of the long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, 20:4n-6), in maternal and term infant nutrition as well as infant development. Consensus recommendations and practice guidelines for health-care providers supported by the World Association of Perinatal Medicine, the Early Nutrition Academy, and the Child Health Foundation are provided. The fetus and neonate should receive LC-PUFA in amounts sufficient to support optimal visual and cognitive development. Moreover, the consumption of oils rich in n-3 LC-PUFA during pregnancy reduces the risk for early premature birth. Pregnant and lactating women should aim to achieve an average daily intake of at least 200mg DHA. For healthy term infants, we recommend and fully endorse breastfeeding, which supplies preformed LC-PUFA, as the preferred method of feeding. When breastfeeding is not possible, we recommend use of an infant formula providing DHA at levels between 0.2 and 0.5 weight percent of total fat, and with the minimum amount of AA equivalent to the contents of DHA. Dietary LC-PUFA supply should continue after the first six months of life, but currently there is not sufficient information for quantitative recommendation

    An Estimate of Plasma Volume Changes Following Moderate-High Intensity Running and Cycling Exercise and Adrenaline Infusion

    Get PDF
    Introduction: Plasma volume (PV) changes in response to physical activity, possibly as a consequence of adrenergic activation. We estimated changes in PV in response to common exercise modalities; cycling and running as well as adrenaline infusion and control at rest.Methods: On separate days, forty circulatory healthy subjects [aged 60 years (range: 42–75)] with knee osteoarthritis underwent moderate-high intensity cycling, running, and intravenous adrenaline infusion to mimic the circulatory response to exercise. Blood samples were obtained from peripheral veins taken at several pre-defined time points before, during, and after the interventions. PV changes were estimated using venous hemoglobin and the derived hematocrit. The temporal associations between PV and selected biomarkers were explored.Results: Changes in PV were observed during all four interventions, and the response to cycling and running was similar. Compared to rest, PV decreased by -14.3% (95% CI: -10.0 to -18.7) after cycling, -13.9% (95% CI: -10.9 to -17.0) after running, and -7.8% (95% CI: -4.2 to -11.5) after adrenaline infusion.Conclusion: PV decreased in response to moderate-high intensity running and cycling. Adrenaline infusion mimicked the PV change observed during exercise, suggesting a separate influence of autonomic control on blood volume homeostasis. In perspective, a temporal association between PV and biomarker dynamics suggests that consideration of PV changes could be relevant when reporting plasma/serum constituents measured during exercise, but more research is needed to confirm this
    • …
    corecore