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The endogenous preproglucagon system is not
essential for gut growth homeostasis in mice
Pernille Wismann 1,*, Pernille Barkholt 1, Thomas Secher 1, Niels Vrang 1, Henrik B. Hansen 1,
Palle Bekker Jeppesen 2, Laurie L. Baggio 3, Jacqueline A. Koehler 3, Daniel J. Drucker 3,
Darleen A. Sandoval 4, Jacob Jelsing 1
ABSTRACT

Objective: The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments
are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive
growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are
poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of
glucagon-like peptides and bariatric surgery in mice.
Methods: We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r),
GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-,
GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs
were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG).
Results: Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts
throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r�/�

mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly
increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology.
Conclusion: The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for
GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating
levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1
and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and
highly context-dependent.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Obesity and type-2 diabetes (T2D) represent increasing health and
socio-economic problems worldwide [1]. The currently most effective
pharmacological treatments for obesity include peptides stimulating
GLP-1 receptor (GLP-1R) function [2,3], while dual agonists for the
GLP-1R and other mechanisms targeting anorexigenic receptors are in
development [4]. Furthermore, bariatric surgery has become
increasingly attractive providing a significant, rapid, and sustainable
weight loss with several positive effects on related morbidities,
including resolution of T2D. Although Roux-en-Y gastric bypass (RYGB)
has historically been the standard bariatric surgery method, less
invasive procedures, e.g. vertical sleeve gastrectomy (VSG), have
comparable beneficial metabolic outcomes with reduced perioperative
complications, which explains why VSG is now the fastest-growing
weight loss surgery option for the treatment of obesity [5]. The
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underlying molecular mechanisms leading to these marked metabolic
effects are not fully elucidated, but several lines of evidence support an
important role for nutrient-stimulated gut hormones, such as GLP-1
and GLP-2 [6e8].
High circulating levels of GLP-1 and GLP-2 have been linked to devel-
opment of gut hypertrophy following RYGB [9e12]. The rise in GLP-1 and
GLP-2 could provide a positive feedforward mechanism rendering the
enlarged intestine more predisposed towards glucose disposal [13,14]
and the release of a plethora of gut hormones with additional meta-
bolic implications. GLP-1 and GLP-2 are co-secreted from enter-
oendocrine L cells in the gut and released into the circulation following
enzymatic cleavage of the common prohormone proglucagon [15] see
reviews [16,17]. While GLP-1 is mainly known for its metabolic effects;
i.e. the increase in pancreatic glucose-dependent insulin secretion (the
incretin effect), regulation of glucose flux, inhibition of gastric emptying,
and reduction of appetite [18,19], GLP-2 is primarily known for its direct
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Original Article
actions on the gut. Accordingly, peripheral administration of GLP-2 exerts
potent intestinotrophic effects by increasing mesenteric blood flow and
stimulating epithelial proliferation and may constitute the molecular link
between nutritional status and commensurate adaptation of mucosal
absorptive surface area [9,20e23]. Furthermore, GLP-2 reduces gastric
emptying and gastric secretion and exhibits anti-inflammatory properties
in the intestinal mucosa [24e28]. A growth-regulating role of GLP-1 has
also been reported [29], demonstrating that activity of GLP-1R controls
mucosal expansion in both the small and large intestine. However, even
though the actions of these peptides are well described, the anatomical
distribution and functional implications of the endogenous proglucagon
system for normal gut growth and development remains poorly
understood.
Traditionally, the ileum and colon have been identified as the primary
sites containing the majority of the proglucagon expressing L-cell
populations in rat, pig, dog, primate, and man [30e34]. This general
assumption focused greater attention on studies of proglucagon-
related biology in the distal gut, with limited analysis of the full
gastrointestinal tract. The GLP-1R is known to be expressed in several
tissues, including brain, gastrointestinal tract, pancreatic islets, kidney,
heart, and lung [35e38]. However, cellular localization of GLP-1R
expression is confounded by the lack of validated, specific anti-
bodies [39e41]. Similarly, GLP-2 receptor (GLP-2R) expression has
been reported previously in gastrointestinal tract, mesenteric lymph
nodes, fat, spleen, bladder, and hepatocytes, as well as in the central
nervous system [24,42e45]. However, the exact local distribution of
intestinal GLP-2Rs is disputed and thus remains unresolved [44e48].
Given the current limitations in our understanding of the localization of
GLP-1R and GLP-2R expression in the gut, we aimed to provide a
detailed map of Glp1r, Glp2r, and GcgmRNA expression throughout the
complete rostralecaudal axis of the mouse gastrointestinal tract. To
gain further insight into the functional relevance of the endogenous
GLP-1 and GLP-2 system on intestinal growth, we characterized in-
testinal volumes in Glp1r�/�, Glp2r�/�, and Gcg�/� mice in com-
parison to corresponding wild-type littermate controls. Furthermore,
since bariatric surgery represents a valuable tool for studying the role
of these peptide hormones in intestinal adaptation, we performed a
detailed study of intestinal volume in a mouse model of VSG surgery.

2. MATERIALS AND METHODS

2.1. Animals
All animal experiments were approved by the Danish Committee for
Animal Research under the personal license of Jacob Jelsing (2015-
15-0201-00518) using internationally accepted principles for the use
of laboratory animals. All animals were housed in a light-, tempera-
ture-, and humidity-controlled room (12-hour light:12-hour dark cycle,
lights on/off at 4AM/4PM hour; 22 � 1 �C; 50� 10% relative hu-
midity) and offered domestic quality tap water. Mice bred in Toronto
were cared for in accordance with animal protocols approved by the
Animal Care Committee, Toronto Centre for Phenogenomics, Mt. Sinai
Hospital.

2.2. Compounds
The GLP-1 analog liraglutide was acquired commercially (Hørsholm
Pharmacy). Native GLP-1, native GLP-2, and the GLP-2 analog tedu-
glutide were prepared by automated solid-phase peptide synthesis
(SPPS) using the Fmoc/tBu strategy on pre-loaded PHB TentaGel resin
(Rapp polymere GmbH, Tuebingen, Germany). The couplings were
performed using Fmoc-Na-protected amino acids, N,N-diisopro-
pylcarbodiimide and ethyl cyanoglyoxylate-2-oxime (oxyma) in N,N-
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dimethylformamide (Iris Biotech GmbH, Marktredwitz, Germany) for
2 � 2 h. The N-deprotections were performed using 40% piperidine in
N-methyl-2-pyrrolidione (Iris Biotech GmbH, Marktredwitz, Germany)
for 3 min followed by 20% piperidine in N-methyl-2-pyrrolidione for
17 min. Finally, the peptide was simultaneously side-chain depro-
tected and released from the solid support by a TFA cocktail containing
trifluoro acetic acid (TFA) (Iris Biotech GmbH, Marktredwitz, Germany),
triethylsilane (SigmaeAldrich, Brøndby, Denmark), and H2O (95/2.5/
2.5) as scavengers for 2 h. The peptide was precipitated by the
addition of diethylether (SigmaeAldrich, Brøndby, Denmark). The
peptide was purified by RP-HPLC and identified by LC-MS. The final
products were obtained with >95% purity.

2.3. Sub-chronic treatment in C57BL/6J mice
C57BL/6J mice (Janvier Labs, Saint Berthevin, Cedex, France), 8
weeks of age, were fed a regular chow diet (Altromin 1324, Bro-
gaarden A/S, Denmark). Mice were randomized according to body
weight into four individual study groups (n ¼ 10 per group): Group 1:
Vehicle (SC, BID), Group 2: liraglutide (0.2 mg/kg, SC, BID), Group 3:
teduglutide (1 mg/kg, SC, BID), Group 4: liraglutide (0.2 mg/kg, SC,
BID) þ teduglutide (1 mg/kg, SC, BID). Compounds were dissolved in
PBS buffer containing 3% mannitol and 0.6% L-His (pH 9.0), and
dosing volume was 5 ml/kg. On day 8, animals were fasted for 4 h
before being sacrificed during the light phase. The intestines were
collected, and the length of the small and large intestine was
measured. Intestines were cleaned by flushing with saline and finally
the weight was measured. Intestines were placed in 10% natural
buffered formalin until further processing. For description of mice
treated with native GLP-1 and GLP-2, see supplementary information.

2.4. Histology and stereology
The gut was dissected into small and large intestine, and the lengths
were measured. The intestine was sampled using systematic uniform
random sampling (SURS) principles, providing a minimum of 8 sys-
tematically placed biopsies from both small and large intestine. All
biopsies were embedded in blocks of paraffin enabling later identifi-
cation of individual biopsies. Paraffin blocks were sectioned into 5 mm
thick sections and stained with hematoxylin-eosin for subsequent
stereology-based volume estimations. Stereological volume estima-
tions were performed by point-counting on digitally scanned slides
using the newCAST system (Visiopharm, Denmark) [49e51]. For
studies involving double KO (Glp1r�/�:Glp2r�/�) mice or mice treated
with native GLP-1 and GLP-2 peptides, weights of saline-flushed in-
testines were used (see supplementary information).

2.5. In situ hybridization (ISH)
Single-cell ISH was performed on paraffin-embedded intestinal tissue
biopsies from two C57BL/6J mice using the RNAscope 2.5 HD e RED
Assay (Advanced Cell Diagnostics) to visualize cellular mRNA using
specific probes directed against selected genes. Slides with tissue
biopsies were treated according to RNAscope 2.5 HD e RED Assay
user manual. In brief, tissue sections were pretreated, including target
retrieval, hydrogen peroxide treatment, and protease treatment. Then,
the specific probe was hybridized to the mRNA target, and the signal
was amplified and visualized using Fast Red substrate. A probe against
bacterial dapB mRNA was used as negative control, whereas a mouse
probe against Ppib was used as positive control. Custom-made spe-
cific probes against Glp1r (REF418851), Glp2r (REF447061), and Gcg
(REF400601) mRNA were employed on sections covering the entire
gastro-intestinal tract (glandular and non-glandular stomach, duo-
denum with Brunner’s glands, caudal duodenum without Brunner’s
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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glands, jejunum, ileum, caecum, and colon, for overview see
supplementary information). Following ISH, the slides were counter-
stained in Gill’s hematoxylin and coverslipped. Finally, slides were
scanned under a 20� objective in a ScanScope AT slide scanner
(Aperio).

2.6. VSG surgery
C57BL/6Jmiceweremade obese by provision of a high-fat diet at least 6
weeks before surgery. In the peri-surgery period (day�3 to 4), the mice
in all groups were offered a liquid diet (Osmolite). Mice were randomized
based on bodyweight on day�1 into the following experimental groups:
VSG or sham. The VSG procedure was performed as previously
described [52]. In brief, mice hadw80% of the stomach resected along
the major curvature and the incision was closed with staples. In sham-
operated mice the stomach was taken out of the abdominal cavity and
then repositioned without being cut. Pain relief was provided by sub-
cutaneous injections of Metacam (0.25 mg/100 g body weight) from day
0 until day 4 post-surgery. On day 10 post-surgery animals were
terminated, and intestines were placed in formalin. For a description of
RYGB procedures, see supplementary information.

2.7. Knockout (KO) mice
Glp1r�/� and Glp2r�/� mice and age-matched wild-type (WT) litter-
mates were from the Lunenfeld-Tanenbaum Research Institute, Mount
Sinai Hospital (Toronto, Ontario, Canada). Gcg�/� mice and age-
matched WT littermates were from the University of Michigan (Ann
Arbor, Michigan, US). Single KO mice were generated as described
previously [53e55]. In addition, double KO (Glp1r�/�:Glp2r�/�) mice
were generated in Toronto as described in supplementary information.

2.8. Statistics
All data were analyzed using Graph Pad Prism 5.0 software, applying
either student’s t-test (gut volumes in KO mice vs. WT littermates, and
VSG vs. sham controls, respectively) or one-way analysis of variance
(ANOVA) with Tukey’s post-hoc test (treatment with GLP-1/GLP-2
analogs). Results are presented as mean � SEM (standard error of
the mean). A p-value less than 0.05 was considered statistically
significant.

3. RESULTS

3.1. Glp1r mRNA expression in the mouse GI tract
Glp1r expression was virtually absent in the non-glandular stomach
(Figure 1A) but highly expressed on gastric parietal cells in the stomach
glands (Figure 1B). In the proximal duodenum, Glp1r mRNA transcripts
were abundant in the Brunner’s glands (Figure 1C) in addition to a low
level of expression detected in few scattered cells of the mucosa. In the
caudal duodenum, Glp1r expression became more apparent in the
mucosa (Figure 1D) with Glp1r-positive cells increasing in density
throughout the jejunum (Figure 1E) and in the ileum (Figure 1F). Glp1r
expression was also observed in the nerve plexus throughout the
glandular stomach, small intestine, and colon (Supplementary
Figs. 1AeD). In the caecum, Glp1r expression (Figure 1G) was
restricted to the muscular nerve plexus in addition to sporadic
expression in the mucosa, whereas in the colon (Figure 1H), Glp1r
expression was found predominantly in the nerve plexus with only
some expression in the mucosa.

3.2. Glp2r mRNA expression in the mouse GI tract
Glp2r mRNA transcripts were abundant in both the circular and longi-
tudinal muscle layer of the non-glandular (Figure 2A) and less abundantly
MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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but still detectable in the glandular part of the stomach (Figure 2B). In
contrast to Glp1r, Glp2r was not expressed in the nerve plexuses of the
glandular stomach (Supplementary Fig. 1E), nor in the Brunner’s glands
of duodenum (Figure 2C). Within duodenum, Glp2r was abundantly
expressed in the lamina propria of the mucosa layer (Figure 2C), as well
as in the circular and longitudinal muscle layers (Supplementary Fig. 1F).
A similar cellular expression pattern was observed in the caudal duo-
denum (Figure 2D) where Glp2r mRNA transcripts were localized to the
nerve plexuses (Supplementary Fig. 1G). In the jejunum (Figure 2E) and
ileum (Figure 2F), Glp2r was found to be highly expressed in scattered
cells within the mucosa and the nerve plexus, with sporadic expression
in themuscle cells of themuscularis layer. In the caecum (Figure 2G) and
colon (Figure 2H), Glp2r mRNA was expressed in both the mucosa and
nerve plexus. In addition to the expression observed in the myenteric
plexuses, Glp2r was also detected in submucosal plexuses of the colon
(Supplementary Fig. 1H).

3.3. Gcg mRNA expression in the mouse GI tract
Gcg expression was virtually absent in both the non-glandular stomach
(Figure 3A) and the glandular stomach (Figure 3B) as well as in the
most proximal part of the small intestine (Figure 3C). A few scattered
Gcg-positive cells were detected in the mucosal epithelium in the
caudal duodenum (Figure 3D). In the jejunum (Figure 3E), Gcg
expression was confined to single cells of the epithelium with an
increased density caudally towards the ileum (Figure 3F) and
throughout the colon (Figure 3H). Likewise, Gcg expression was found
in the cecal mucosa (Figure 3G).

3.4. Analysis of intestinal volume in Glp1r�/�, Glp2r�/� and
Gcg�/� mice
Stereological estimates of compartmental gut volumes in Glp1r�/�,
Glp2r�/�, and Gcg�/� mice, as compared to WT littermate control
mice, are indicated Figure 4. Glp1r�/� mice had similar small intes-
tine, colon, and total intestine volumes, compared to wild-type controls
(small intestine, 555 � 41 mm3 vs. 564 � 28 mm3, p ¼ 0.86; colon,
133 � 7 mm3 vs 136 � 7 mm3, p ¼ 0.95; total intestine,
688 � 37 mm3 vs 700 � 31 mm3, p ¼ 0.81), see Figure 4AeC.
In contrast, Glp2r�/� mice exhibited a slight, statistically significant,
reduced volume of the mucosal layer of the small intestine
(13 � 3.7%, 547 � 10 mm3 vs 475 � 20 mm3, p ¼ 0.01) and total
intestine (12 � 3.6%, 640 � 12 mm3 vs 564 � 22 mm3, p ¼ 0.01),
(Figure 4D). Total volumes of the small intestine (668 � 14 mm3 vs
603 � 26 mm3, p ¼ 0.06) and whole intestine (814 � 15 mm3 vs.
746 � 30 mm3, p ¼ 0.09) in Glp2r�/� mice trended lower, while the
colon volume was unaltered (139 � 15 mm3 vs. 143 � 6 mm3,
p ¼ 0.79, see Figure 4E). Glp2r�/� mice exhibited a non-significant
increase in volume of immune cells of the small intestine
(4.3 � 0.8 mm3 vs. 9.2 � 2.1 mm3, p ¼ 0.06), see Supplementary
Figs. 2AeC).
Similar to Glp1r�/� mice, Gcg-deficient mice also showed normal gut
development, as compared to wild-type controls (Figure 4GeI) (small
intestine, 662 � 23 mm3 vs. 671 � 26 mm3, p ¼ 0.79; colon,
282 � 32 mm3 vs. 267 � 24 mm3, p ¼ 0.71; total intestine,
944 � 43 mm3 vs. 938 � 44 mm3, p ¼ 0.92).
As single disruption of either the Glp1r or Glp2r alone might result in
compensatory gut growth arising from enhanced activation of the
remaining functional receptor, we generated double knock out (DKO)
Glp1r�/�:Glp2r�/� mice. A very modest reduction of small intestine
weight (14 � 2.1%, 1215 � 44 mg vs. 1047 � 25 mg, p ¼ 0.002),
thus also being reflected in total intestine weight (1466 � 44 mg vs.
1301� 28 mg, p¼ 0.003; see Supplementary Fig. 3A), was observed
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 683
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Figure 1: Expression of Glp1r mRNA in the mouse gastrointestinal tract. Localization of Glp1r mRNA in mouse non-glandular (A), glandular stomach (B), Brunner’s glands (C),
duodenum (D), jejunum (E), ileum (F), caecum (G) and colon (H) using RNA scope 2.5 in situ hybridization. Inserts magnified below overview.

Original Article
in Glp1r�/�:Glp2r�/� mice. Colon weight (251 � 10 mg vs
254� 9 mg, p ¼ 0.80) and body weight (41 � 1.5 g vs 38 � 1.2 g,
p ¼ 0.18) were not different in Glp1r�/�:Glp2r�/� mice
(Supplementary Figs. 3AeB).

3.5. GLP-1 and GLP-2 analogs increase gut volumes in C57BL/6J
mice
The lack of major changes in gut volumes in mice with disruption of the
endogenous proglucagon system prompted us to reassess the phar-
macological consequences of GLP-1R and GLP-2R agonism in the
intestine. The long-acting GLP-1 analog (liraglutide) and GLP-2 analog
(teduglutide) were administered individually or in combination to male
C57BL/6J mice for 7 days (Figure 5AeC). Liraglutide monotherapy
induced a non-significant 20 � 4.3% increase in total small intestinal
volume (p > 0.05, one-way ANOVA). When analyzed by individual t-
test, however, small intestine volume was increased significantly by
liraglutide compared to vehicle treatment (p ¼ 0.003, students t-test).
In contrast, teduglutide treatment led to a significant and robust
684 MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. Thi
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57 � 7.1% increase in small intestine volume (p ¼ 0.001, one-way
ANOVA) while combined treatment with liraglutide and teduglutide
led to a further increase (70 � 6.5%, p ¼ 0.001, one-way ANOVA),
indicating a nearly additive effect of the drug combination treatment.
Similar changes in intestinal volumes were detected in the colon
(Figure 5B) but were most apparent in the small intestine, specifically
in the mucosa layer (Figure 5A). The increase in small intestine, colon,
and total intestine volume was also observed following 7-days treat-
ment with the native GLP-1 and GLP-2 peptides (Supplementary
Fig. 4); however, the effect was less pronounced compared to treat-
ment with stable analogs.

3.6. Intestinal growth after vertical sleeve gastrectomy
VSG led to a significant reduction (14 � 2.8%, p ¼ 0.002) in body
weight as compared to sham-operated control mice (Supplementary
Fig. 5A). Similarly, a significant weight loss (7.3 � 0.9%,
p ¼ 0.002) was observed after RYGB surgery in rats (Supplementary
Fig. 5B). At the time of termination (10 days post-surgery),
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Expression of Glp2r mRNA in the mouse gastrointestinal tract. Localization of Glp2r mRNA in mouse non-glandular (A), glandular stomach (B), Brunner’s glands (C),
duodenum (D), jejunum (E), ileum (F), caecum (G) and colon (H) using RNA scope 2.5 in situ hybridization. Inserts magnified below overview.
stereological assessment of the duodenum (first 5 cm of the small
intestine), the total small intestine, colon, and total intestine did not
reveal any volume alterations in any segments or layers investigated
(duodenum: 290 � 31 mm3 vs. 308 � 27 mm3, p ¼ 0.67, total small
intestine: 885 � 82 mm3 vs. 879 � 44 mm3, p ¼ 0.95, colon:
213 � 28 mm3 vs. 235 � 8 mm3, p ¼ 0.46; Figure 6AeD). In
contrast, RYGB surgery led to a marked increase in alimentary limb
area in the rat (Supplementary Figs. 6AeD).

4. DISCUSSION

By use of highly sensitive in situ hybridization techniques, we here
report a widespread and distinct expression pattern of Glp1r, Glp2r,
and Gcg mRNAs throughout the mouse gastrointestinal tract. As pre-
viously demonstrated in rodents, monkey, and man [39,56], we
confirm that Glp1r mRNA is expressed in gastric parietal cells in mice,
with a weak staining in smooth muscle cells and stomach mucosal
structures. This distinct receptor expression corresponds well with
MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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GLP-1’s inhibitory effects on gastric acid production and gastric
emptying [18,19]. In addition, we confirm Glp1r to be highly expressed
in Brunner’s glands of the proximal duodenum [36,57], consistent with
a role for GLP-1 in the regulation of intestinal mucin production [38].
Glp1r was also localized to nerve plexuses of the submucosa and
muscularis along the full rostro-caudal extension of the intestinal tract
[17,39,58]. As a novel finding, we demonstrate with a high cellular
resolution Glp1r expression in scattered cells throughout the small
intestinal mucosa. The specific phenotype of these cells is currently
unknown but consistent with intraepithelial lymphocytes [59]; how-
ever, further studies are needed to confirm this assertion. Similar to
Glp1rmRNA, Glp2r expression was observed in smooth muscle cells of
the gastric muscular layer, supporting a role for the GLP-2R in inhi-
bition of gastric emptying [24,60]. In contrast, Glp2r mRNA expression
was not detected in Brunner’s glands within the duodenum. Glp2r
mRNA was, however, markedly expressed in the mucosal lamina
propria throughout the intestinal tract, consistent with the distribution
of subepithelial myofibroblasts [45,48]. No Glp2r expression was
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Figure 3: Expression of Gcg mRNA in the mouse gastrointestinal tract. Localization of Gcg mRNA in mouse non-glandular (A), glandular stomach (B), Brunner’s glands (C),
duodenum (D), jejunum (E), ileum (F), caecum (G) and colon (H) using RNA scope 2.5 in situ hybridization. Inserts magnified below overview.
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detected in the intestinal epithelium or in proliferating crypt cells. This
is in line with several other reports [45,61] but contrasts with reports of
GLP-2R immunoreactivity in the epithelium from rodents, pigs, and
humans [44,46]. Similar to the distribution of Glp1r, Glp2r mRNA
expression was abundantly expressed in nerve plexuses of the sub-
mucosa and muscularis, suggesting a potential role of these receptors
in the enteric nervous system. In agreement with numerous reports
[31,62,63], we also demonstrated conspicuous Gcg expression in the
epithelium from the caudal duodenum and throughout the gut, with an
increasing caudal density gradient reaching highest density in the
colon [31,62]. The Gcg mRNA-positive cells were organized in a clear
enteroendocrine pattern with minimal luminal contact intercalated
between the epithelial cells of both villi and crypts. In contrast, no Gcg
expression was observed in the muscularis or enteric nervous system.
To investigate the relevance of basal GLP-1R and GLP-2R signaling in
intestinal growth, we used unbiased stereological techniques to esti-
mate intestinal volumes in Glp1r�/�, Glp2r�/�, and Gcg�/� mice.
Mice with GLP-1R or GCG deletion had similar intestinal volumes as
compared to corresponding wild-type controls. This is in line with
686 MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. Thi
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previous findings of normal weight and length of the small intestine in
Glp1r�/� mice [29]. It should be noted, however, that loss of GLP-1R
expression is associated with reduced intestinal polyp growth in ge-
netic models of small bowel hyperplasia [29], possibly suggesting that
intrinsic trophic effects of GLP-1R receptors may be more marked
under conditions of pathological gut growth. In contrast, GLP-2R
deletion resulted in a slight reduction in small intestine mucosa vol-
ume, in agreement with previous reports of gut weights in Glp2r�/�

mice [54]. The DKO Glp1r�/�:Glp2r�/� mice also displayed only a
slight reduction in small intestine weight, indicating no functionally
overlapping compensation between the two receptors.
In comparison to the very limited effects of GLP-2R deletion on gut
growth in mice, we demonstrate that exogenous administration of a
long-acting GLP-2 analog (teduglutide) alone or in combination with a
long-acting GLP-1 analog (liraglutide) leads to markedly increased gut
mucosal volumes in mice. Although liraglutide monotherapy did not
lead to a significant increase in gut volume in the present experiment
(when analyzed by one-way ANOVA), others have reported GLP-1R
dependent intestinotrophic effects of the GLP-1R agonist exendin-4
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com
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Figure 4: Glp1r�/� and Gcg�/� mice show normal gut development while Glp2r�/�mice displays a slightly reduced mucosal volume. Intestinal volume in Glp1r�/� (A, B and C),
Glp2r�/� (D, E and F) and Gcg�/� (G, H and I) mice as estimated by stereology in WT C57BL/6J or KO mice. Small intestine volume in panel A, D and G, colon volume in panel B, E
and H and total intestine volume in panel C, F and I. Volume of muscularis þ submucosa (Musc. þ Subm.) and mucosa layers was measured separately.
[29]. Similarly, the authors demonstrated that exogenous native GLP-1
and GLP-2 promoted additive hypertrophic effects in the gastrointes-
tinal tract of WT mice. In line with this report, we also observed a
significant increase in colon weight following 7 days of treatment with
high doses of native GLP-1 (3 mg/kg) (Supplementary Fig. 4). The
discrepancies in reported efficacies between experiments may be
related to specific compound doses and quantification methods.
Hence, while Koehler and coworkers [29] reported changes in gut
mass as a function of body weight, we used stereology-based histo-
logical methods for quantification of total volumes.
In contrast to the less well described intestinal growth-promoting ef-
fects of GLP-1, the intestinotrophic effects of GLP-2 are well-
established and thought to be mediated via different signaling
mechanisms, which involve induction of growth factor signaling
pathways, including those associated with IGF-1, FGF7, and ErbB
[48,64,65], mediating crypt proliferation and decreased apoptosis
[20,66]. Collectively, our data support a model for GLP-2 action via
paracrine, or endocrine mechanisms to stimulate mucosal expansion,
as we found no Glp2r expression on epithelial cells or crypt stem cells,
putative targets for GLP-2 action. In contrast, strong Glp2r expression
MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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was detected in other cells types within mucosa and the enteric
nervous system. This localization is consistent with the hypothesis that
local release of growth factors together with enteric neuronal stimu-
lation, is a more probable explanation for the intestinotrophic action of
GLP-2 [67]. As our data indicate a very limited effect of Gcg, Glp1r, or
Glp2r deletion in normal gut development, but pharmacological doses
of GLP-1/GLP-2 induced intestinal mucosal expansion, these findings
suggest that supraphysiological stimulation of GLP-1R/GLP-2R activity
is required for evoking intestinal growth.
It has been demonstrated previously that RYGB surgery causes
massive hypertrophy of the alimentary limb in both mice, rats, and pigs
[68,69], and also leads to markedly increased circulating levels of GLP-
1 and GLP-2 [9e12,70]. Similarly, VSG also increases plasma levels of
proglucagon-derived peptides, although to levels not as high as those
observed after RYGB [71e73]. Here, we demonstrate that RYGB in-
duces intestinal hypertrophy already at 10-days post-surgery, i.e.
before the animals have returned to consumption of a normal diet
(Supplementary Figs. 5 and 6). Whether gut hypertrophy, associated
with concomitant improved glucose homeostasis and increased gut
hormone secretion, contributes to one or more metabolic effects of
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 687
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RYGB surgery remains unclear [10,14,70]. VSG also increases post-
prandial proglucagon-derived peptide levels [10], prompting us to
examine the sub-acute effects of VSG surgery in mice with the use of
stereological methods. Our histological data indicate similar gut tissue
volumes in VSG and sham-operated mice, which is in agreement with
similar observations in a rat model of VSG [74]. Although RYGB and
VSG have common beneficial metabolic effects, the absence of gut
688 MOLECULAR METABOLISM 6 (2017) 681e692 � 2017 The Authors. Published by Elsevier GmbH. Thi
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hypertrophy in VSG-treated mice suggests that gut growth and
adaptation is not a prerequisite for improved metabolism after bariatric
surgery. In addition, our data in single receptor knockout and Gcg�/�

mice suggest that basal signaling through the GLP-1R/GLP-2R re-
ceptors is dispensable for normal gut growth.
Although we predominantly studied VSG-treated mice, post-prandial
plasma GLP-1 (and by inference GLP-2) levels are higher after RYGB
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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as compared to VSG [75]. This effect may potentially be explained by
gut hypertrophy-dependent increases in GCG-expressing cells after
RYGB [68], which could contribute to increased GLP-1 secretion. There
is evidence from human studies that GLP-1 secretion is strongly
associated with the rate of glucose appearance in the intestine [76,77].
Although it remains to be established, VSG-mediated increased gastric
emptying or RYGB-induced redirection of intestinal nutrient flow could
therefore possibly lead to enhanced L-cell responsiveness to glucose,
as well as amino acids and bile acids. Indeed, VSG surgery procedures
promote increased gastric emptying rates in rodents [78,79] as well as
in humans [80e82]. Nevertheless, the VSG procedure maintains de-
livery of macronutrients within the proximal duodenum which exhibits
very few, if any, GCG-expressing cells. In contrast, RYGB surgery will
promote delivery of dietary nutrients to more distal parts of the gut
which have a relatively higher density of GCG expressing cells. Thus, it
cannot be ruled out that the delivery of macronutrients to the more
distal parts of the gut following RYGB may induce higher local release
of GLP-1/GLP-2, which could further enhance GLP-1R/GLP-2R trophic
signaling to promote hypertrophy of the alimentary and common limb.
This notion is also supported by the finding of marked gut hypertrophy
following ileal interposition surgery, i.e. in a condition where the ileal
segment is transposed to more proximal parts of the gut [83].

5. CONCLUSION

Collectively, our data suggest that endogenous GLP-1R signaling does
not play an essential role in intestinal growth homeostasis, whereas
loss of the GLP-2R produces modest reductions in gut mucosal vol-
ume. In addition, RYGB, but not VSG, surgery induced marked gut
hypertrophy, suggesting that surgically-induced modification of
macronutrient entry to more distal intestinal regions exhibiting rela-
tively high L-cell density may underlie enhanced release and intesti-
notrophic effects of GLP-1/GLP-2. Our findings clearly dissociate
pharmacological from physiological actions of GLP-1R/GLP-2R
signaling on gut tissue expansion, with potential implications for
different therapeutic strategies augmenting L cell activity for the
treatment of metabolic disorders.
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