12 research outputs found

    Pressure Calculation in Polar and Charged Systems using Ewald Summation: Results for the Extended Simple Point Charge Model of Water

    Get PDF
    Ewald summation and physically equivalent methods such as particle-mesh Ewald, kubic-harmonic expansions, or Lekner sums are commonly used to calculate long-range electrostatic interactions in computer simulations of polar and charged substances. The calculation of pressures in such systems is investigated. We find that the virial and thermodynamic pressures differ because of the explicit volume dependence of the effective, resummed Ewald potential. The thermodynamic pressure, obtained from the volume derivative of the Helmholtz free energy, can be expressed easily for both ionic and rigid molecular systems. For a system of rigid molecules, the electrostatic energy and the forces at the atom positions are required, both of which are readily available in molecular dynamics codes. We then calculate the virial and thermodynamic pressures for the extended simple point charge (SPC/E) water model at standard conditions. We find that the thermodynamic pressure exhibits considerably less system size dependence than the virial pressure. From an analysis of the cross correlation between the virial and thermodynamic pressure, we conclude that the thermodynamic pressure should be used to drive volume fluctuations in constant-pressure simulations.Comment: RevTeX, 19 pages, 2 EPS figures; in press: Journal of Chemical Physics, 15-August-199

    Dynamical Properties of Josephson Junctions Coupled by a Transmission Line

    Get PDF
    A system composed of two Josephson junctions connected by a transmission line has been studied by means of electronic analog simulation. Under external current bias, the resistive component of the coupling induces frequency locking between the two junctions at commensurate ratios. The resonant modes of the transmission line give rise to steps in the I-V characteristics of the system

    Effect of thermal noise on the phase locking of a Josephson fluxon oscillator

    Get PDF
    The influence of thermal noise on fluxon motion in a long Josephson junction is investigated when the motion is phase locked to an external microwave signal. It is demonstrated that the thermal noise can be treated theoretically within the context of a two-dimensional map that models the dynamics of a single fluxon
    corecore