974 research outputs found

    Molecular Recognition: How Photosynthesis Anchors the Mobile Antenna.

    Get PDF
    True to its name, light-harvesting complex II (LHC II) harvests light energy for photosystem II (PS II). However, LHC II can stray, harvesting light energy for photosystem I (PS I) instead. Cryo-electron microscopy (cryo-EM) now shows how this mobile antenna becomes so attached to its new partner

    Localization of the 23-kDa subunit of the oxygen-evolving complex of photosystem II by electron microscopy

    Get PDF
    A dimeric photosystem II light-harvesting II super complex (PSII-LHCII SC), isolated by sucrose density gradient centrifugation, was previously structurally characterized. This PSII-LHCII SC bound the 33-kDa subunit of the oxygen-evolving complex (OEC), but lacked the 23-kDa and 17-kDa subunits of the OEC. Here the isolation procedure was modified by adding 1 M glycine betaine (1-carboxy-N,N,N-trimethylmethanaminium hydroxide inner salt) to the sucrose gradient mixture. This procedure yielded PSII-LHCII SC that contained both the 33-kDa and the 23-kDa subunits and had twice the oxygen-evolving capacity of the super complexes lacking the 23-kDa polypeptide. Addition of CaCl2 to PSII-LHCII SC with the 23-kDa subunit attached did not increase the oxygen-evolution rate. This suggests that the 23-kDa subunit is bound in a functional manner and is present in significant amounts. Over 5000 particle projections extracted from electron microscope images of negatively stained PSII-LHCII SC, isolated in the presence and absence of glycine betaine, were analyzed using single-particle image-averaging techniques. Both the 23-kDa and 33-kDa subunits could be visualized in top-view and side-view projections. In the side view the 23-kDa subunit is seen to protrude 0.5-1 nm further than the 33-kDa subunit, giving the PSII particle a maximal height of 9.5 nm. Measured from the centres of the masses, the two 33-kDa subunits associated with the dimeric PSII-LHCII SC are separated by 6.3 nm. The corresponding distance between the two 23-kDa subunits is 8.8 nm.

    Anomalous Scaling and Solitary Waves in Systems with Non-Linear Diffusion

    Full text link
    We study a non-linear convective-diffusive equation, local in space and time, which has its background in the dynamics of the thickness of a wetting film. The presence of a non-linear diffusion predicts the existence of fronts as well as shock fronts. Despite the absence of memory effects, solutions in the case of pure non-linear diffusion exhibit an anomalous sub-diffusive scaling. Due to a balance between non-linear diffusion and convection we, in particular, show that solitary waves appear. For large times they merge into a single solitary wave exhibiting a topological stability. Even though our results concern a specific equation, numerical simulations supports the view that anomalous diffusion and the solitary waves disclosed will be general features in such non-linear convective-diffusive dynamics.Comment: Corrected typos, added 3 references and 2 figure

    Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2

    Get PDF
    Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 with precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain
    corecore