11 research outputs found
Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide
Background: Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. Methods:With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. Results: Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. Conclusion: In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.</p
Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide
Background: Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. Methods:With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. Results: Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. Conclusion: In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.</p
Regular Dietary Intake of Palmitate Causes Vascular and Valvular Calcification in a Rabbit Model
Aims: Palmitic acid (PA) and oleic acid (OA) are two main dietary fatty acids. Dietary intake of PA has been associated with cardiovascular disease risk, and the effect of OA remains uncertain. Our study aimed to assess the effect of a short-term intake of lard, as source of PA and OA, on aorta and aortic valve.Methods and Results: Rabbits were fed with two lard-enriched diets, containing either elevated levels of PA or of both PA and OA as compared to chow diet. After 16 weeks of each diet, calcification was observed in the aortic intima and in the aortic valve. The extent of calcification did not differ between the two diets. In contrast, rabbits fed chow diet did not develop any calcification. In blood, PA enrichment resulted in decreased lymphocyte and monocyte counts and increased levels of hemoglobin and haematocrit. Levels of the calcification inhibitor fetuin-A were also diminished, whereas creatinine levels were raised. Of note, none of the diets changed cholesterol levels in LDL or HDL. Comprehensive quantitative lipidomics analysis identified diet-related changes in plasma lipids. Dietary PA enrichment led to a drop of polyunsaturated fatty acids (PUFA), in particular of linoleic acid in cholesteryl esters, triglycerides and diacylglycerols (DAG). Ratios of PA to 18-carbon PUFA in DAG were positively correlated with the extent of aortic valve calcification, and inversely with monocyte counts. PA content in blood correlated with aorta calcification.Conclusions: Regular dietary PA intake induces vascular and valvular calcification independently of traditional risk factors. Our findings raise awareness about PA-rich food consumption and its potential deleterious effect on cardiovascular health
A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice
IntroductionTotum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia.MethodsC57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks.ResultsThe Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota.DiscussionThe characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma
‘Omic-scale quantitative HILIC-MS/MS approach for circulatory lipid phenotyping in clinical research
Lipid analysis at the molecular species level represents a valuable opportunity for clinical applications due to the essential roles that lipids play in metabolic health. However, a comprehensive and high-throughput lipid profiling remains challenging given the lipid structural complexity and exceptional diversity. Herein, we present an ‘omic-scale targeted LC-MS/MS approach for the straightforward and high-throughput quantification of a broad panel of complex lipid species across 21 lipid (sub)classes. The workflow involves an automated single-step extraction with 2-propanol, followed by lipid analysis using Hydrophilic Interaction Liquid Chromatography (HILIC) in a dual-column setup coupled to tandem mass spectrometry with data acquisition in timed-selective reaction monitoring (t-SRM) mode (12 min total run time). The analysis pipeline consists of an initial screen of 1922 lipid species, followed by high-throughput quantification of robustly detected species. Lipid quantification is achieved by a single-point calibration with 75 isotopically labeled standards representative of different lipid classes, covering lipid species with diverse acyl/alkyl chain lengths and unsaturation degrees. When applied to human plasma, 807 lipid species were measured with median intra- and inter-day precision of 9.5 % and 13.6 %, respectively, evaluated within a single and across multiple batches. The concentration ranges measured in NIST plasma were in accordance with the consensus intervals determined in previous ring-trials. Finally, to benchmark our workflow, we characterized NIST plasma materials with different clinical and ethnic backgrounds and analyzed a sub-set of sera (n=81) from a clinically healthy elderly population. Our quantitative lipidomic platform allowed for a clear distinction between different NIST materials and revealed the sex-specificity of the serum lipidome, highlighting numerous statistically significant sex differences
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma
Omic-Scale High-Throughput Quantitative LC–MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research
Lipid analysis at the molecular species level represents
a valuable
opportunity for clinical applications due to the essential roles that
lipids play in metabolic health. However, a comprehensive and high-throughput
lipid profiling remains challenging given the lipid structural complexity
and exceptional diversity. Herein, we present an ‘omic-scale
targeted LC–MS/MS approach for the straightforward and high-throughput
quantification of a broad panel of complex lipid species across 26
lipid (sub)classes. The workflow involves an automated single-step
extraction with 2-propanol, followed by lipid analysis using hydrophilic
interaction liquid chromatography in a dual-column setup coupled to
tandem mass spectrometry with data acquisition in the timed-selective
reaction monitoring mode (12 min total run time). The analysis pipeline
consists of an initial screen of 1903 lipid species, followed by high-throughput
quantification of robustly detected species. Lipid quantification
is achieved by a single-point calibration with 75 isotopically labeled
standards representative of different lipid classes, covering lipid
species with diverse acyl/alkyl chain lengths and unsaturation degrees.
When applied to human plasma, 795 lipid species were measured with
median intra- and inter-day precisions of 8.5 and 10.9%, respectively,
evaluated within a single and across multiple batches. The concentration
ranges measured in NIST plasma were in accordance with the consensus
intervals determined in previous ring-trials. Finally, to benchmark
our workflow, we characterized NIST plasma materials with different
clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our
quantitative lipidomic platform allowed for a clear distinction between
different NIST materials and revealed the sex-specificity of the serum
lipidome, highlighting numerous statistically significant sex differences
Omic-Scale High-Throughput Quantitative LC–MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research
Lipid analysis at the molecular species level represents
a valuable
opportunity for clinical applications due to the essential roles that
lipids play in metabolic health. However, a comprehensive and high-throughput
lipid profiling remains challenging given the lipid structural complexity
and exceptional diversity. Herein, we present an ‘omic-scale
targeted LC–MS/MS approach for the straightforward and high-throughput
quantification of a broad panel of complex lipid species across 26
lipid (sub)classes. The workflow involves an automated single-step
extraction with 2-propanol, followed by lipid analysis using hydrophilic
interaction liquid chromatography in a dual-column setup coupled to
tandem mass spectrometry with data acquisition in the timed-selective
reaction monitoring mode (12 min total run time). The analysis pipeline
consists of an initial screen of 1903 lipid species, followed by high-throughput
quantification of robustly detected species. Lipid quantification
is achieved by a single-point calibration with 75 isotopically labeled
standards representative of different lipid classes, covering lipid
species with diverse acyl/alkyl chain lengths and unsaturation degrees.
When applied to human plasma, 795 lipid species were measured with
median intra- and inter-day precisions of 8.5 and 10.9%, respectively,
evaluated within a single and across multiple batches. The concentration
ranges measured in NIST plasma were in accordance with the consensus
intervals determined in previous ring-trials. Finally, to benchmark
our workflow, we characterized NIST plasma materials with different
clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our
quantitative lipidomic platform allowed for a clear distinction between
different NIST materials and revealed the sex-specificity of the serum
lipidome, highlighting numerous statistically significant sex differences
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma