65 research outputs found

    Analysis of light propagation in slotted resonator based systems via coupled-mode theory

    Get PDF

    Broadband parametric amplification for multiplexed SiMOS quantum dot signals

    Full text link
    Spins in semiconductor quantum dots hold great promise as building blocks of quantum processors. Trapping them in SiMOS transistor-like devices eases future industrial scale fabrication. Among the potentially scalable readout solutions, gate-based dispersive radiofrequency reflectometry only requires the already existing transistor gates to readout a quantum dot state, relieving the need for additional elements. In this effort towards scalability, traveling-wave superconducting parametric amplifiers significantly enhance the readout signal-to-noise ratio (SNR) by reducing the noise below typical cryogenic low-noise amplifiers, while offering a broad amplification band, essential to multiplex the readout of multiple resonators. In this work, we demonstrate a 3GHz gate-based reflectometry readout of electron charge states trapped in quantum dots formed in SiMOS multi-gate devices, with SNR enhanced thanks to a Josephson traveling-wave parametric amplifier (JTWPA). The broad, tunable 2GHz amplification bandwidth combined with more than 10dB ON/OFF SNR improvement of the JTWPA enables frequency and time division multiplexed readout of interdot transitions, and noise performance near the quantum limit. In addition, owing to a design without superconducting loops and with a metallic ground plane, the JTWPA is flux insensitive and shows stable performances up to a magnetic field of 1.2T at the quantum dot device, compatible with standard SiMOS spin qubit experiments

    General Didactics and Instructional Design: eyes like twins A transatlantic dialogue about similarities and differences, about the past and the future of two sciences of learning and teaching

    Get PDF
    corecore