14 research outputs found

    Charakterisierung EpCAM- und ERas- defizienter Stammzellen

    Get PDF

    Charakterisierung EpCAM- und ERas- defizienter Stammzellen

    Get PDF

    Design Guidelines for Additive Manufactured Particle Dampers: A Review

    Get PDF
    Recently, additive manufacturing has been used to integrate particle dampers into structural components, particularly by means of laser powder bed fusion (LPBF), in order to significantly reduce component vibrations. The advantage over previous damping mechanisms is that these can be functionally integrated directly into the component during the additive manufacturing process by leaving unmelted powder in the component. This allows local damping effects to be adjusted and low-vibration lightweight structures to be developed and manufactured. In addition, the damping properties act over a wide frequency range and are insensitive to temperature. Despite the positive damping properties, the use of laser beam melted particle dampers is limited at the present time, since there are not yet sufficient design tools available due to the numerous non-linear influences. This is where the current contribution comes in, by developing design guidelines for laser beam melted particle dampers. The results were finally summarised in a design catalogue and support a suitable design of laser beam melted particle dampers

    Surfactant function in lung transplantation after 24 hours of ischemia: Advantage of retrograde flush perfusion for preservation

    Get PDF
    AbstractObjective: Surfactant function was shown to be impaired in clinical and experimental lung transplantation. This study was designed to define the impact of retrograde flush perfusion on graft and surfactant function after an extended period of ischemia. Methods: Left lung transplantation was performed after 24 hours of graft ischemia in 12 pigs. In half of the grafts antegrade cold flush perfusion (Perfadex) was used for preservation. In the second group grafts were flushed in a retrograde fashion via the left atrium. Graft function was monitored for 7 hours after transplantation. Before transplantation (basal) and after 2 hours of reperfusion, bronchoalveolar lavage fluid was obtained. Minimal surface tension of bronchoalveolar lavage fluid was determined and the ratio of small and large surfactant aggregates was calculated. Lung water content was analyzed online in the reperfusion period. Results: Right-sided heart failure developed in 2 animals of group 1 (antegrade perfusion) within 2 and 4.5 hours of reperfusion, respectively. All other pigs survived the observation period. PO2/FIO2 (P =.001) and dynamic lung compliance (P =.001) were superior in retrogradely flushed grafts. A comparable increase of minimal surface tension was found after reperfusion in both groups. Small/large surfactant aggregate ratio after reperfusion (P =.03), as well as extravascular lung water content, was higher in the antegrade perfusion group. Conclusion: Retrograde flush perfusion for 24-hour lung preservation with low-potassium dextran (Perfadex) solution led to better initial graft function than the standard antegrade perfusion technique. A moderate impairment of surfactant function was found in both groups, which was more pronounced in the antegrade perfusion group

    Relation between Structure, Mechanical and Piezoelectric Properties in Cellular Ceramic Auxetic and Honeycomb Structures

    Get PDF
    Optimizing renewable energy harvesting is of major importance in the following decades. In order to increase performance and efficiency, an ideal balance of mechanical and piezoelectric properties must be targeted. For this purpose, the approach of ceramic auxetic and honeycomb structures made of (Ba,Ca)(Zr,Ti)O3 (BCZT) which is produced via injection molding is considered. The main design parameter is the structural angle θ which is varied between −35° and 35°. Its effect on compressive strength, Young's modulus, and Poisson's ratio are determined via uniaxial compression tests and digital image correlation (DIC). Maximum compressive strength of 95 MPa at 0° (porosity of 59%) is found, which is superior to conventional porous ceramics of the same porosity. The piezoelectric constants d33 (max. 296 pC N−1) and g33 (max. 0.068 Vm N−1) are measured via the Berlincourt method and also exceed expectations, regardless of the structure. The theoretical models of Gibson and Ashby (mechanical) and Okazaki (piezoelectrical), as well as finite element method simulations, strengthen and explain the experimental results

    South American Hydrological Balance and Paleoceanography during the Late Pleistocene and Holocene (SAMBA) – Cruise No. M125, March 21 – April 15, 2016 - Rio de Janeiro (Brazil) – Fortaleza (Brazil)

    Get PDF
    R/V METEOR expedition M125 (“SAMBA”) focused on the influence of paleoceanographic changes off NE Brazil on the continental hydrological cycle. For this purpose, we obtained 202 m of gravity (24 stations) and piston cores (9) at seven sections on the shelf and continental slope close to river mouths from Cabo Frio in the south to the Rio Sao Francisco in the north. Coring stations were determined after intensive echosounder surveys (total: 1221 NM). On-board foraminiferal biostratigraphy, as well as color and XRF-scanning already provided first stratigraphic constraints, indicating the preservation of different regional paleoclimatic signals at the respective sections. Based on the preliminary stratigraphy, we retrieved high-resolution archives, covering Holocene sediments on the shelf and late Pleistocene sediments on the slope. These high-resolution archives are complemented by long-term records covering up to 900 ka of continuous sedimentation at deeper sites at smaller rivers. For proxy-calibration and the study of present-day sedimentation dynamics and biogeochemical processes, surface sediments were sampled via multicorer (47), Van Veen Grab (6) and box corer (3). Water samples for determination of the water chemistry (trace elements, stable and radiogenic isotopes) and nutrient composition were retrieved by 55 CTD/Rosette casts. In addition, we run multinet-hauls at seven stations to investigate the planktonic foraminiferal communities in the water column down to 700 m water depth, complemented by filtering water from the ship’s pump twice a day

    Intramedullary spinal cord cavernous malformations-association between intraoperative neurophysiological monitoring changes and neurological outcome

    Get PDF
    Background Microsurgical resection of spinal cord cavernous malformations can be assisted by intraoperative neurophysiological monitoring (IONM). While the clinical outcome after surgical resection has been discussed in several case series, the association of intraoperative IONM changes and detailed neurological outcome, however, has not been analyzed so far. Methods Seventeen patients with spinal cavernomas underwent surgery between 02/2004 and 06/2020. Detailed neurological and clinical outcome as well as IONM data including motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring were retrospectively analyzed. Intraoperative IONM changes were compared to outcome at 3-month and 1-year follow-up in order to identify surrogate parameters for an impending neurological deficit. Results Compared to the preoperative state, McCormick score at 1-year follow-up remained unchanged in 12 and improved in five patients, none worsened, while detailed neurological examination revealed a new or worsened sensorimotor deficit in 4 patients. The permanent 80% amplitude reduction of MEP and 50% amplitude reduction of SSEP showed the best diagnostic accuracy with a sensitivity of 100% and 67% respectively and a specificity of 73% and 93% respectively. The relative risk for a new neurological deficit at 1-year follow-up, when reversible IONM-deterioration was registered compared to irreversible IONM deterioration, was 0.56 (0.23-1.37) for MEP deterioration and 0.4 (0.18-0.89) for SSEP deterioration. Conclusions Reversible IONM changes were associated with a better neurological outcome at follow-up compared to irreversible IONM deterioration during SCCM surgery. Our study favors the permanent 80% amplitude reduction criterion for MEP and 50% amplitude reduction criterion for SSEP for further prospective evaluation of IONM significance and the effectiveness of corrective maneuvers during SCCM surgeries

    Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation

    Get PDF
    Abstract Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM−/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation
    corecore