556 research outputs found

    Deformed Schrodinger symmetry on noncommutative space

    Full text link
    We construct the deformed generators of Schroedinger symmetry consistent with noncommutative space. The examples of the free particle and the harmonic oscillator, both of which admit Schroedinger symmetry, are discussed in detail. We construct a generalised Galilean algebra where the second central extension exists in all dimensions. This algebra also follows from the Inonu--Wigner contraction of a generalised Poincare algebra in noncommuting space.Comment: 9 pages, LaTeX, abstract modified, new section include

    The Politics of Social Media Manipulation

    Get PDF

    Conclusions: Mainstream under fire

    Get PDF

    SO(2,1) conformal anomaly: Beyond contact interactions

    Get PDF
    The existence of anomalous symmetry-breaking solutions of the SO(2,1) commutator algebra is explicitly extended beyond the case of scale-invariant contact interactions. In particular, the failure of the conservation laws of the dilation and special conformal charges is displayed for the two-dimensional inverse square potential. As a consequence, this anomaly appears to be a generic feature of conformal quantum mechanics and not merely an artifact of contact interactions. Moreover, a renormalization procedure traces the emergence of this conformal anomaly to the ultraviolet sector of the theory, within which lies the apparent singularity.Comment: 11 pages. A few typos corrected in the final versio

    Efimov effect from functional renormalization

    Full text link
    We apply a field-theoretic functional renormalization group technique to the few-body (vacuum) physics of non-relativistic atoms near a Feshbach resonance. Three systems are considered: one-component bosons with U(1) symmetry, two-component fermions with U(1)\times SU(2) symmetry and three-component fermions with U(1) \times SU(3) symmetry. We focus on the scale invariant unitarity limit for infinite scattering length. The exact solution for the two-body sector is consistent with the unitary fixed point behavior for all considered systems. Nevertheless, the numerical three-body solution in the s-wave sector develops a limit cycle scaling in case of U(1) bosons and SU(3) fermions. The Efimov parameter for the one-component bosons and the three-component fermions is found to be approximately s=1.006, consistent with the result of Efimov.Comment: 21 pages, 6 figures, minor changes, published versio

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+ψγψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential

    Full text link
    We review some recent results on nonlinear Schrodinger equations with potential, with emphasis on the case where the potential is a second order polynomial, for which the interaction between the linear dynamics caused by the potential, and the nonlinear effects, can be described quite precisely. This includes semi-classical regimes, as well as finite time blow-up and scattering issues. We present the tools used for these problems, as well as their limitations, and outline the arguments of the proofs.Comment: 20 pages; survey of previous result

    On the new approach to variable separation in the time-dependent Schr\"odinger equation with two space dimensions

    Full text link
    We suggest an effective approach to separation of variables in the Schr\"odinger equation with two space variables. Using it we classify inequivalent potentials V(x1,x2)V(x_1,x_2) such that the corresponding Schr\" odinger equations admit separation of variables. Besides that, we carry out separation of variables in the Schr\" odinger equation with the anisotropic harmonic oscillator potential V=k1x12+k2x22V=k_1x_1^2+k_2x_2^2 and obtain a complete list of coordinate systems providing its separability. Most of these coordinate systems depend essentially on the form of the potential and do not provide separation of variables in the free Schr\" odinger equation (V=0V=0).Comment: 21 pages, latex, to appear in the "Journal of Mathematical Physics" (1995

    Representations of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice

    Full text link
    We propose the fundamental and two dimensional representation of the Lorentz groups on a (3+1)-dimensional hypercubic lattice, from which representations of higher dimensions can be constructed. For the unitary representation of the discrete translation group we use the kernel of the Fourier transform. From the Dirac representation of the Lorentz group (including reflections) we derive in a natural way the wave equation on the lattice for spin 1/2 particles. Finally the induced representation of the discrete inhomogeneous Lorentz group is constructed by standard methods and its connection with the continuous case is discussed.Comment: LaTeX, 20 pages, 1 eps figure, uses iopconf.sty (late submission
    corecore