11 research outputs found
New Photodetection Method Using Unbalanced Sidebands for Squeezed Quantum Noise in Gravitational Wave Interferometer
Homodyne detection is one of the ways to circumvent the standard quantum
limit for a gravitational wave detector. In this paper it will be shown that
the same quantum-non-demolition effect using homodyne detection can be realized
by heterodyne detection with unbalanced RF sidebands. Furthermore, a broadband
quantum-non-demolition readout scheme can also be realized by the unbalanced
sideband detection.Comment: 9 pages, 5 figure
Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector
According to quantum measurement theory, "speed meters" -- devices that
measure the momentum, or speed, of free test masses -- are immune to the
standard quantum limit (SQL). It is shown that a Sagnac-interferometer
gravitational-wave detector is a speed meter and therefore in principle it can
beat the SQL by large amounts over a wide band of frequencies. It is shown,
further, that, when one ignores optical losses, a signal-recycled Sagnac
interferometer with Fabry-Perot arm cavities has precisely the same
performance, for the same circulating light power, as the Michelson speed-meter
interferometer recently invented and studied by P. Purdue and the author. The
influence of optical losses is not studied, but it is plausible that they be
fairly unimportant for the Sagnac, as for other speed meters. With squeezed
vacuum (squeeze factor ) injected into its dark port, the
recycled Sagnac can beat the SQL by a factor over the
frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same
circulating power kW as is used by the (quantum limited)
second-generation Advanced LIGO interferometers -- if other noise sources are
made sufficiently small. It is concluded that the Sagnac optical configuration,
with signal recycling and squeezed-vacuum injection, is an attractive candidate
for third-generation interferometric gravitational-wave detectors (LIGO-III and
EURO).Comment: 12 pages, 6 figure
Impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in older subjects
An inverse, dose-dependent relationship between retrograde shear rate and brachial artery endothelial function exists in young subjects. This relationship has not been investigated in older adults, who have been related to lower endothelial function, higher resting retrograde shear rate and higher risk of cardiovascular disease. Aim To investigate the impact of a step-wise increase in retrograde shear stress on flow-mediated dilation in older males in the upper and lower limbs. Methods Fifteen older (68±9 years) men reported to the laboratory 3 times. We examined brachial artery flow-mediated dilation before and after 30-minutes exposure to cuff inflation around the forearm at 0, 30 and 60 mmHg, to manipulate retrograde shear rate. Subsequently, the 30-minute intervention was repeated in the superficial femoral artery. Order of testing (vessel and intervention) was randomised. Results Increases in cuff pressure resulted in dose-dependent increases in retrograde shear in both the brachial and superficial femoral artery in older subjects. In both the brachial and the superficial femoral artery, no change in endothelial function in response to increased retrograde shear was observed in older males (âtimeâ P=0.274, âcuff*time P=0.791â, âcuff*artery*time P=0.774â). Conclusion In contrast with young subjects, we found that acute elevation in retrograde shear rate does not impair endothelial function in older humans. This may suggest that subjects with a priori endothelial dysfunction are less responsive or requires a larger shear rate stimulus to alter endothelial function
A summary of the formation and seasonal progression of the Northeast Water Polynya
A summary of the seasonal development of the Northeast Water Polynya ice cover characteristics is presented. This is based primarily on satellite remote sensing observations, with some in situ measurements, including both new and published data
Water masses in Kangerlussuaq, a large fjord in West Greenland: the processes of formation and the associated foraminiferal fauna
The water masses in Kangerlussuaq (SĂžndre StrĂžmfjord) in West Greenland were studied during both a summer and a winter field survey. In order to obtain an improved understanding of the relationship between the physical oceanography and modern foraminiferal assemblage distributions, conductivityâtemperatureâdensity measurements were carried out in connection with sediment surface sampling along a transect through the 180 km long fjord. The exchange between the inner part of Kangerlussuaq (275 m deep) and the ocean is restricted by an almost 100 km long outer, shallow part. Our study shows that the water mass in this inner part is almost decoupled from the open ocean, and that in winter the inner part of the fjord is ice covered and convection occurs as a result of brine release. These processes are reflected in the foraminiferal assemblage, which consists of a sparse agglutinated fauna, indicative of carbonate dissolution. A monospecific, calcareous assemblage (Elphidium excavatum forma clavata) occurs in the innermost, shallow part, which is strongly influenced by sediment-loaded meltwater during the summer. The outer, shallow part of the fjord is dominated by strong tidal mixing, and in summer the density of the incoming water does not exceed the bottom water density in the inner fjord. The foraminiferal assemblage here reflects high bottom water current velocity and an influence of water with relatively high salinity. Kangerlussuaq can be regarded as a modern analogue for ice-proximal environments in the Quaternary, with a strong seasonal forcing caused by freshwater run-off and sea-ice formation