14 research outputs found

    Graphite foam for cooling of automotive power electronics

    Get PDF
    Abstract -Hybrid and fuel cell vehicles utilize the Si-based IGBT (Integrated Gate Bipolar Transistor) controller which must dissipate about 100 W/cm 2 heat and maintain a temperature below 125°C. The application of porous, high thermal conductivity carbon foam, a new class of advanced lightweight material, to the thermal management of this electronic system and the use of micro-and nano-scale thermal measurement methods for analyzing thermal transport in electronics are presented. Development of advanced carbon foam with different pore structure by variation of the foaming pressure is discussed. The use of carbon foam to remove the heat generated in power electronics has been studied in three approaches: 1) forced air convection, 2) water cooled heat exchanger, and 3) thermosyphoning

    Carbon foams for thermal management

    No full text

    Use of Carbon Fibre Composite Molecular Sieves for Air Separation

    No full text
    The adsorption of oxygen, nitrogen and carbon dioxide onto a carbon fibre composite was investigated using static and dynamic techniques. Molecular-sieving effects in the composite were highlighted by the adsorption of carbon dioxide, a more sensitive probe molecule for the presence of micro-porosity in adsorbents. The kinetic studies revealed that oxygen was more rapidly adsorbed on the composite than nitrogen and with a higher uptake under equilibrium conditions. Preliminary experiments indicated that the carbon fibre composite was capable of separating oxygen and nitrogen from air on the basis of the different diffusion rates of the two molecules in the micropore network of the composite. It is proposed that the relatively high electrical conductivity of the carbon fibre composite material could be exploited for air separation by facilitating the production of O 2 and N 2 through electrical swing adsorption rather than the depressurization of adsorber beds

    Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass

    No full text
    Biomass pyrolysis to produce biofuel and hydrogen yields large amounts of charred byproducts with low commercial value. A study was conducted to evaluate their potential for being converted into higher value activated carbons by a low-cost process. Six chars derived from various lignocellulosic precursors were activated in CO2 at 800 °C to 30–35% weight loss, and their surface area and porosity were characterized by nitrogen adsorption at 77 K. It was found that, in similar activation conditions, the surface area of the activated carbons correlates with the activation energy of the oxidation reaction by CO2, which in turn varies inversely with the carbon yield after thermolysis in nitrogen at 1000 °C. Since lignin is the most thermally-stable component of lignocellulosic biomass, these results demonstrate, indirectly, that robust, lignin-rich vegetal precursors are to be preferred to produce higher quality activated carbons. The chars derived from white pine (pinus strobus) and chestnut oak (quercus prinus) were converted to activated carbons with the highest surface area (900–1100 m2/g) and largest mesopores volume (0.85–1.06 cm3/g). These activated carbons have properties similar to those of commercially-available activated carbons used successfully for removal of pollutants from aqueous solutions

    Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    No full text
    We present a framework for rapidly predicting gas adsorption properties based on van der Waals density functional calculations and thermodynamic modeling. Utilizing this model and experimentally determined pore size distributions, we are able to accurately predict uptakes in five activated carbon materials without empirical potentials or lengthy simulations. Our results demonstrate that materials with smaller pores and higher heats of adsorption can still have poor adsorption characteristics due to relatively low densities of highly adsorbent pores

    Nitrogen adsorption data, FIB-SEM tomography and TEM micrographs of neutron-irradiated superfine grain graphite

    No full text
    This manuscript provides raw nitrogen gas adsorption data, images and videos obtained from a technique that combines Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) known as FIB-SEM tomography and Transmission Electron Microscopy (TEM) micrographs. This collection of data is useful for characterization of the effects of high fluence neutron irradiation in nuclear graphite as described in the associated manuscript, “Mesopores development in superfine grain graphite neutron-irradiated at high fluence” (Contescu et al., 2019). Nitrogen adsorption isotherms at 77 K are provided for graphite samples before and after neutron irradiation at 300, 450, and 750 °C at fluences before and after turnaround. FIB-SEM tomography reveals porosity of unirradiated and irradiated samples. Using this technique, four data sets were obtained, of which the first three are presented in video format, whereas the fourth one is a series of images provided in raw format unique to this manuscript. All microscopy data document the microstructure, surface area and porosity of superfine grain graphite G347A (Tokai Carbon, Japan) before irradiation and irradiated after turnaround at 400 °C. TEM micrographs provide unique information on irradiation damage at high neutron fluence (>27. 8 displacements per atom, dpa) in the microstructure and crystal lattice of graphite. Additional TEM micrographs are provided here, which do not duplicate the research paper published elsewhere (Contescu et al., 2019). These data sets are unique, as samples at high irradiation doses have never been measured or imaged before with the aforementioned techniques
    corecore