841 research outputs found

    Effects of peripartum biotin supplementation of dairy cows on milk production and milk composition with emphasis on fatty acids profile

    Get PDF
    Forty Holstein dairy cows receiving a 38% concentrate diet based on maize silage were assigned to either a control group, either a biotin group, receiving 20 mg of biotin per day from 15 days before expected calving date and for 120 days after calving. Milk production was measured daily, milk fat content, protein content, urea and somatic cell counts were determined weekly from week 2 to week 17 of lactation. The profile of milk fatty acids was determined at weeks 3 and 10. Plasma glucose and blood betahydroxybutyrate were determined before calving and at weeks 1, 2, 3, 5, 7 and 10 of lactation. Biotin supplementation resulted in an increased milk production in multiparous cows during weeks 2 to 6, but the effect was no more significant between 7 and 17 weeks of lactation. Milk protein percent was decreased by 0.1% in multiparous cows. Milk fat content was not affected by biotin, and milk fat daily production tended to increase during early lactation. In milk fat, biotin supplementation tended to decrease the proportion of fatty acids with less than 16 carbons at week 3, but the daily amount was not affected. Biotin tended to decrease biohydrogenation intermediates, increased C16:1 at week 3, and tended to increase cis-9 C18:1 at weeks 3 and 10. After 7 weeks of lactation, biotin tended to increase blood beta-hydroxybutyrate in multiparous cows with values remaining in a normal range, and decreased plasma glucose in primiparous cows. These modifications of plasma parameters, milk protein content and profile of milk fatty acids could be due to a higher lipid mobilisation from adipose tissue driven by the increased milk production

    Conclusions and perspectives: Perspectives for future research-and-development projects on biological

    Get PDF
    The review of published scientific literature on the biological control of selected pests and diseases has lead to the identification of clear knowledge gaps highlighted in previous chapters. Further bottlenecks were revealed by seeking the possible reasons for the striking discrepancy between the rich inventory of potential biocontrol agents described by scientists and a very small number of commercial products on the market. To complement these analyses, the participants of Research Activity 4.3 of the European Network ENDURE organized consultations of experts (scientists, extension specialists and representatives of the Biocontrol industry) at the occasion of scientific meetings of three Working Groups of IOBC-wpr

    Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    Get PDF
    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault

    Case studies of the application of the Certification Framework to two geologic carbon sequestration sites

    Get PDF
    We have developed a certification framework (CF) for certifying that the risks of geologic carbon sequestration (GCS) sites are below agreed-upon thresholds. The CF is based on effective trapping of CO2, the proposed concept that takes into account both the probability and impact of CO2 leakage. The CF uses probability estimates of the intersection of conductive faults and wells with the CO2 plume along with modeled fluxes or concentrations of CO2 as proxies for impacts to compartments (such as potable groundwater) to calculate CO2 leakage risk. In order to test and refine the approach, we applied the CF to (1) a hypothetical large-scale GCS project in the Texas Gulf Coast, and (2) WESTCARB's Phase III GCS pilot in the southern San Joaquin Valley, California

    Monitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas

    Full text link
    Concern that hydraulic fracturing and natural gas production contaminates groundwater requires techniques to attribute and estimate methane flux. Although dissolved alkane and noble gas chemistry may distinguish thermogenic and microbial methane, low solubility and concentration of methane in atmosphereâ equilibrated groundwater precludes the use of methane to differentiate locations affected by high and low flux of stray methane. We present a method to estimate stray gas infiltration into groundwater using dissolved nitrogen. Due to the high concentration of nitrogen in atmosphericâ recharged groundwater and low concentration in natural gas, dissolved nitrogen in groundwater is much less sensitive to change than dissolved methane and may differentiate groundwater affected high and low flux of stray natural gas. We report alkane and nitrogen chemistry from shallow groundwater wells and eight natural gas production wells in the Barnett Shale footprint to attribute methane and estimate mixing ratios of thermogenic natural gas to groundwater. Most groundwater wells have trace to nondetect concentrations of methane. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas from the Barnett Shale and/or shallower Strawn Group suggesting that localized migration of natural gas occurred. Twoâ component mixing models constructed with dissolved nitrogen concentrations and isotope values identify three wells that were likely affected by a large influx of natural gas with gas:water mixing ratios approaching 1:5. Most groundwater wells, even those with greater than 10â mg/L methane, have dissolved nitrogen chemistry typical of atmosphereâ equilibrated groundwater suggesting natural gas:water mixing ratios smaller than 1:20.Plain Language SummaryHydraulic fracturing, horizontal drilling, and associated natural gas production have dramatically changed the energy landscape across America over the past 10 years. Along with this renaissance in the energy sector has come public concern that hydraulic fracturing may contaminate groundwater. In this study we measure the chemistry of dissolved gas from shallow groundwater wells located above the Barnett Shale natural gas play, a tight gas reservoir located west of the Dallasâ Fort Worth Metroplex. We compare groundwater chemistry results to natural gas chemistry results from nearby production wells. Most groundwater wells have trace to nondetectible concentrations of methane, consistent with no measurable infiltration of natural gas into shallow groundwater. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas. Using dissolved nitrogen and alkane concentrations and their stable isotope ratios in combination with chemical mixing models, we conclude that natural gas transported from the shallower Strawn Group affected these groundwater wells rather than natural gas from the deeper Barnett Shale, which is the target of hydraulic fracturing in this area. These results suggest that hydraulic fracturing has not affected shallow groundwater drinking sources in this area.Key PointsDissolved nitrogen in groundwater provides a means to differentiate highâ and lowâ flux infiltration of stray gasNitrogen concentrations and isotope values may attribute natural gas sourcesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/1/wrcr23523.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/2/wrcr23523_am.pd
    • …
    corecore