20 research outputs found

    Regulation von zellulären Proteinnetzwerken nach Stresssignalen

    Get PDF
    Die Aufrechterhaltung des Stoffwechsels und der Funktion von lebenden Zellen erfordert das Zusammenspiel komplexer Proteinnetzwerke. Diese ermöglichen der Zelle, variierende Bedingungen und äußere Einflüsse wie ionisierende Strahlung, Chemikalien oder extreme Muskelbelastung bis zu einem gewissen Grad zu tolerieren. Die Untersuchung von Proteinnetzwerken in Ausnahmesituationen ist dabei besonders aufschlussreich, da viele Mechanismen erst durch diese aktiviert werden. Daher hatte die vorliegende Arbeit zum Ziel, die systematischen Zusammenhänge in Proteinnetzwerken nach strahleninduzierten DNA-Schäden, während der DNA-Replikation sowie während Muskelbelastung zu analysieren. Zellulärer Stress durch strahleninduzierte DNA-Schäden wurde in mehreren Teilprojekten untersucht, die sich mit der Reparaturantwort in unterschiedlichen Phasen des Zellzyklus befassen. Für die Analyse von DNA-Schäden nach Bestrahlung mit niedrigen Dosen konnte im Zuge dieser Arbeit ein Verfahren entwickelt werden, das Objekte in Zellbildern automatisch bewertet und eine Klassifizierung in Reparatur-Foci und in Hintergrundobjekte ermöglicht. Es wurde speziell für den Einsatz im Niedrigdosisbereich optimiert und ist somit in der Lage, tausende Zellen in kurzer Zeit zu analysieren. Der entwickelte Fokus-Evaluationsparameter korreliert sehr gut mit einer manuellen Objektbewertung und ermöglicht dadurch die Objektklassifizierung in Niedrigdosis-Experimenten, in denen das Verhältnis von Foci zu Hintergrundobjekten sehr klein ist. Mit Hilfe des entwickelten Verfahrens konnten wichtige Hinweise auf die Aktivierungsmechanismen der zugrundeliegenden Signalnetzwerke gewonnen werden. Die Auszählung von 24 Stunden nach Bestrahlung persistierenden Foci ergab, dass die Reparaturantwort bei niedrigen Dosen weniger effizient ist als bei hohen Dosen, was auf eine nichtlineare Dynamik der Aktivierungsmechanismen hindeutet. Durch Analyse der DNA-Reparatur nach Bestrahlung und vorheriger Behandlung mit H2O2 oder NAC (N-Acetylcystein) konnte darüber hinaus die Vermutung bestätigt werden, dass reaktive Sauerstoff\-spezies eine entscheidende Rolle in der Weiterleitung des strahleninduzierten Stresssignals spielen. Neben der Aktivierung der Reparaturmechanismen wurde auch ein spezieller Mechanismus betrachtet, der essentiell für die Auflösung von Rad51-Foci nach homologer Rekombination ist. Die Modellierung von FRAP-Experimenten (Fluorescence Recovery after Photobleaching) am Protein Rad54 konnte zeigen, dass die Phosphorylierung von Rad54 eine effizientere Entfernung des Rad51-Filaments von der DNA-Schadensstelle bewirkt. Molekulardynamik-Simulationen konnten darüber hinaus Hinweise darauf geben, welche Auswirkungen die Phosphorylierung auf molekularer Ebene auf das Rad54-Protein hat. Die Simulationen deuten darauf hin, dass die Phosphorylierung das Rad54-Protein leicht stabilisiert und insbesondere im Rad54-Hexamer die Aufgabe hat, ein Gleichgewicht zwischen DNA-Bindung und Mobilität herzustellen. Die Rad54-Phosphorylierung könnte dadurch auch auf Zellebene eine entscheidende Rolle spielen, indem sie reguliert, wann die Reparatur durch homologe Rekombination während des Zellzyklus möglich ist. Neben der DNA-Reparatur ist ein zweiter Schwerpunkt dieser Arbeit die Untersuchung der DNA-Replikation, während der die Zelle besonders sensibel gegenüber exogenen Stressfaktoren ist. Aufgrund der Komplexität des Replikationsprozesses und der enormen Menge an Basen, die repliziert werden müssen, kann es aber auch allein durch endogene Einflüsse wie aktive Transkriptionsprozesse, oxidativen Stress oder Chromatin-Verdichtungen zu Problemen im Replikationsprozess kommen, die wiederum zu DNA-Schäden führen können. Um die experimentellen Beobachtungen während der S-Phase in Bezug auf die drei grundlegenden Chromatintypen (Euchromatin, fakultatives Heterochromatin und konstitutives Heterochromatin) zu erklären, wurde ein bereits bestehendes Replikationsmodell erweitert. Dieses mit einem minimalen Satz von Parametern auskommende Modell ist in der Lage, zu erklären, wie die charakteristische Verteilung von aktivierten Origins aus wenigen zugrundeliegenden Mechanismen entsteht, wie etwa der induzierten Aktivierung von Replikations-Origins. Die Projektion auf ein dreidimensionales Random-Loop-Modell konnte darüber hinaus auch die Bildung von dreidimensionalen Clustern von Replikationsgabeln reproduzieren. Der Frage, ob während der S-Phase entstandene DNA-Schäden unabhängig voneinander repariert werden oder in einem synchronen Prozess nach Abschluss der DNA-Replikation, wurde in einem weiteren Projekt nachgegangen. Mit Hilfe verschiedener Modellvariationen zur Beschreibung der DNA-Reparatur während der S-Phase konnte gezeigt werden, dass ein Modell mit synchroner Reparatur nach Ablauf der S-Phase die experimentell ermittelte Foci-Reparaturkinetik deutlich besser beschreiben kann als ein Modell mit asynchroner Reparatur individueller Foci. Als dritte zelluläre Situation, die Stress verursachen kann, wurde in dieser Arbeit die Belastung von Muskelzellen während und nach sportlicher Anstrengung untersucht. Analog zu den Signalnetzwerken der DNA-Reparatur müssen auch die Proteinnetzwerke, die an der Energiebereitstellung während der Muskelbelastung beteiligt sind, über effiziente nichtlineare Aktivierungsmechanismen verfügen, um in Sekundenbruchteilen genug Energie für schnelle Bewegungen bereitstellen zu können. Es wurde ein Modell zur Simulation aller wichtigen Metaboliten während der Muskelbelastung entwickelt, das neben einer detaillierten Beschreibung der Übersäuerung auch die Degradation von Purinnukleotiden während Belastung und die De-novo-Synthese während des Erholungsintervalls mit einbezieht. Dies ermöglicht es, Vorhersagen über die Erholungsdauer nach Belastung zu machen und zu testen, welchen Einfluss eine reduzierte mitochondriale Leistungsfähigkeit, wie sie z.B. bei ME/CFS-Patienten (Myalgische Enzephalomyelitis/Chronisches Erschöpfungssyndrom) gemessen wurde, auf diese hat. Das Modell kann somit erklären, wie die verminderte mitochondriale Leistungskapazität über die zugrundeliegenden Protein-Interaktionen zu Erholungsdauern von mehreren Tagen nach moderater Anstrengung führen kann. Darüber hinaus zeigt es, dass in diesem Fall die ATP-Konzentration (Adenosintriphosphat) während der Belastung auf kritische Werte sinken kann, wohingegen die Muskelübersäuerung deutlich zunimmt. Die im Zuge dieser Arbeit entwickelten Modelle und Auswertungsmethoden konnten somit wichtige Hinweise dazu liefern, wie Proteinnetzwerke als Reaktion auf unterschiedliche Stresssituationen zu einer Stabilisierung der Zellfunktion und zum Erhalt der Erbinformation beitragen

    Regulation von zellulären Proteinnetzwerken nach Stresssignalen

    No full text
    Die Aufrechterhaltung des Stoffwechsels und der Funktion von lebenden Zellen erfordert das Zusammenspiel komplexer Proteinnetzwerke. Diese ermöglichen der Zelle, variierende Bedingungen und äußere Einflüsse wie ionisierende Strahlung, Chemikalien oder extreme Muskelbelastung bis zu einem gewissen Grad zu tolerieren. Die Untersuchung von Proteinnetzwerken in Ausnahmesituationen ist dabei besonders aufschlussreich, da viele Mechanismen erst durch diese aktiviert werden. Daher hatte die vorliegende Arbeit zum Ziel, die systematischen Zusammenhänge in Proteinnetzwerken nach strahleninduzierten DNA-Schäden, während der DNA-Replikation sowie während Muskelbelastung zu analysieren. Zellulärer Stress durch strahleninduzierte DNA-Schäden wurde in mehreren Teilprojekten untersucht, die sich mit der Reparaturantwort in unterschiedlichen Phasen des Zellzyklus befassen. Für die Analyse von DNA-Schäden nach Bestrahlung mit niedrigen Dosen konnte im Zuge dieser Arbeit ein Verfahren entwickelt werden, das Objekte in Zellbildern automatisch bewertet und eine Klassifizierung in Reparatur-Foci und in Hintergrundobjekte ermöglicht. Es wurde speziell für den Einsatz im Niedrigdosisbereich optimiert und ist somit in der Lage, tausende Zellen in kurzer Zeit zu analysieren. Der entwickelte Fokus-Evaluationsparameter korreliert sehr gut mit einer manuellen Objektbewertung und ermöglicht dadurch die Objektklassifizierung in Niedrigdosis-Experimenten, in denen das Verhältnis von Foci zu Hintergrundobjekten sehr klein ist. Mit Hilfe des entwickelten Verfahrens konnten wichtige Hinweise auf die Aktivierungsmechanismen der zugrundeliegenden Signalnetzwerke gewonnen werden. Die Auszählung von 24 Stunden nach Bestrahlung persistierenden Foci ergab, dass die Reparaturantwort bei niedrigen Dosen weniger effizient ist als bei hohen Dosen, was auf eine nichtlineare Dynamik der Aktivierungsmechanismen hindeutet. Durch Analyse der DNA-Reparatur nach Bestrahlung und vorheriger Behandlung mit H2O2 oder NAC (N-Acetylcystein) konnte darüber hinaus die Vermutung bestätigt werden, dass reaktive Sauerstoff\-spezies eine entscheidende Rolle in der Weiterleitung des strahleninduzierten Stresssignals spielen. Neben der Aktivierung der Reparaturmechanismen wurde auch ein spezieller Mechanismus betrachtet, der essentiell für die Auflösung von Rad51-Foci nach homologer Rekombination ist. Die Modellierung von FRAP-Experimenten (Fluorescence Recovery after Photobleaching) am Protein Rad54 konnte zeigen, dass die Phosphorylierung von Rad54 eine effizientere Entfernung des Rad51-Filaments von der DNA-Schadensstelle bewirkt. Molekulardynamik-Simulationen konnten darüber hinaus Hinweise darauf geben, welche Auswirkungen die Phosphorylierung auf molekularer Ebene auf das Rad54-Protein hat. Die Simulationen deuten darauf hin, dass die Phosphorylierung das Rad54-Protein leicht stabilisiert und insbesondere im Rad54-Hexamer die Aufgabe hat, ein Gleichgewicht zwischen DNA-Bindung und Mobilität herzustellen. Die Rad54-Phosphorylierung könnte dadurch auch auf Zellebene eine entscheidende Rolle spielen, indem sie reguliert, wann die Reparatur durch homologe Rekombination während des Zellzyklus möglich ist. Neben der DNA-Reparatur ist ein zweiter Schwerpunkt dieser Arbeit die Untersuchung der DNA-Replikation, während der die Zelle besonders sensibel gegenüber exogenen Stressfaktoren ist. Aufgrund der Komplexität des Replikationsprozesses und der enormen Menge an Basen, die repliziert werden müssen, kann es aber auch allein durch endogene Einflüsse wie aktive Transkriptionsprozesse, oxidativen Stress oder Chromatin-Verdichtungen zu Problemen im Replikationsprozess kommen, die wiederum zu DNA-Schäden führen können. Um die experimentellen Beobachtungen während der S-Phase in Bezug auf die drei grundlegenden Chromatintypen (Euchromatin, fakultatives Heterochromatin und konstitutives Heterochromatin) zu erklären, wurde ein bereits bestehendes Replikationsmodell erweitert. Dieses mit einem minimalen Satz von Parametern auskommende Modell ist in der Lage, zu erklären, wie die charakteristische Verteilung von aktivierten Origins aus wenigen zugrundeliegenden Mechanismen entsteht, wie etwa der induzierten Aktivierung von Replikations-Origins. Die Projektion auf ein dreidimensionales Random-Loop-Modell konnte darüber hinaus auch die Bildung von dreidimensionalen Clustern von Replikationsgabeln reproduzieren. Der Frage, ob während der S-Phase entstandene DNA-Schäden unabhängig voneinander repariert werden oder in einem synchronen Prozess nach Abschluss der DNA-Replikation, wurde in einem weiteren Projekt nachgegangen. Mit Hilfe verschiedener Modellvariationen zur Beschreibung der DNA-Reparatur während der S-Phase konnte gezeigt werden, dass ein Modell mit synchroner Reparatur nach Ablauf der S-Phase die experimentell ermittelte Foci-Reparaturkinetik deutlich besser beschreiben kann als ein Modell mit asynchroner Reparatur individueller Foci. Als dritte zelluläre Situation, die Stress verursachen kann, wurde in dieser Arbeit die Belastung von Muskelzellen während und nach sportlicher Anstrengung untersucht. Analog zu den Signalnetzwerken der DNA-Reparatur müssen auch die Proteinnetzwerke, die an der Energiebereitstellung während der Muskelbelastung beteiligt sind, über effiziente nichtlineare Aktivierungsmechanismen verfügen, um in Sekundenbruchteilen genug Energie für schnelle Bewegungen bereitstellen zu können. Es wurde ein Modell zur Simulation aller wichtigen Metaboliten während der Muskelbelastung entwickelt, das neben einer detaillierten Beschreibung der Übersäuerung auch die Degradation von Purinnukleotiden während Belastung und die De-novo-Synthese während des Erholungsintervalls mit einbezieht. Dies ermöglicht es, Vorhersagen über die Erholungsdauer nach Belastung zu machen und zu testen, welchen Einfluss eine reduzierte mitochondriale Leistungsfähigkeit, wie sie z.B. bei ME/CFS-Patienten (Myalgische Enzephalomyelitis/Chronisches Erschöpfungssyndrom) gemessen wurde, auf diese hat. Das Modell kann somit erklären, wie die verminderte mitochondriale Leistungskapazität über die zugrundeliegenden Protein-Interaktionen zu Erholungsdauern von mehreren Tagen nach moderater Anstrengung führen kann. Darüber hinaus zeigt es, dass in diesem Fall die ATP-Konzentration (Adenosintriphosphat) während der Belastung auf kritische Werte sinken kann, wohingegen die Muskelübersäuerung deutlich zunimmt. Die im Zuge dieser Arbeit entwickelten Modelle und Auswertungsmethoden konnten somit wichtige Hinweise dazu liefern, wie Proteinnetzwerke als Reaktion auf unterschiedliche Stresssituationen zu einer Stabilisierung der Zellfunktion und zum Erhalt der Erbinformation beitragen

    Rad54 Phosphorylation Promotes Homologous Recombination by Balancing Rad54 Mobility and DNA Binding

    No full text
    The repair of DNA double-strand breaks by homologous recombination is of crucial importance for maintaining genomic stability. Two major players during this repair pathway are Rad51 and Rad54. Previously, it was shown that Rad54 exists as a monomer or oligomer when bound to DNA and drives the displacement of Rad51 by translocating along the DNA. Moreover, phosphorylation of Rad54 was reported to stimulate this clearance of Rad51 from DNA. However, it is currently unclear how phosphorylation of Rad54 modulates its molecular-structural function and how it affects the activity of monomeric or oligomeric Rad54 during the removal of Rad51. To examine the impact of Rad54 phosphorylation on a molecular-structural level, we applied molecular dynamics simulations of Rad54 monomers and hexamers in the absence or presence of DNA. Our results suggest that 1) phosphorylation of Rad54 stabilizes the monomeric form by reducing the interlobe movement of Rad54 monomers and might therefore facilitate multimer formation around DNA and 2) phosphorylation of Rad54 in a higher-order hexamer reduces its binding strength to DNA, which is a requirement for efficient mobility on DNA. To further address the relationship between the mobility of Rad54 and its phosphorylation state, we performed fluorescence recovery after photobleaching experiments in living cells, which expressed different versions of the Rad54 protein. Here, we could measure that the phosphomimetic version of Rad54 was highly mobile on DNA, whereas a nonphosphorylatable mutant displayed a mobility defect. Taken together, these data show that the phosphorylation of Rad54 is a critical event in balancing the DNA binding strength and mobility of Rad54 and might therefore provide optimal conditions for DNA translocation and subsequent removal of Rad51 during homologous recombination repair

    Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching

    Get PDF
    AbstractFluorescence recovery after photobleaching (FRAP) is an excellent tool to measure the chemical rate constants of fluorescently labeled proteins in living cells. Usually FRAP experiments are conducted with the protein concentrations being in a steady state, i.e., when the association and dissociation of the proteins are equilibrated. This is a strong limitation because situations in which rate constants change with time are of great scientific interest. In this study, we present an approach in which FRAP is used shortly after DNA damage introducing laser microirradiation, which results in the recruitment of the DNA clamp protein proliferating cell nuclear antigen (PCNA) to DNA lesions. We establish different kinetic models that are compatible with the observed PCNA recruitment data if FRAP is not used. By using FRAP at different time points during protein accumulation, we can not only exclude two out of three models, but we can also determine the rate constants with increased reliability. This study thus demonstrates the feasibility of using FRAP during protein recruitment and its application in the discrimination of possible kinetic models

    AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair

    Get PDF
    Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches

    Spatiotemporal Dynamics of Early DNA Damage Response Proteins on Complex DNA Lesions

    Get PDF
    The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps

    AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair.

    No full text
    Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches

    NBS1 binding at damaged DNA following CK2 inhibition.

    No full text
    <p>NBS1 binding at damaged DNA after CK2 inhibition preventing the interaction between NBS1 and MDC1. Cells were irradiated with Ar-ions. Error bars are standard deviation.</p

    Theoretical free diffusion constants D<sub>calc</sub> for GFP-tagged NBS1 and MDC1 proteins estimated from the diffusion constant for GFP and the mass difference between pure GFP and the tagged proteins as well as experimental effective diffusion constants D<sub>eff</sub> from experimental FRAP curves.* For free GFP D<sub>calc</sub>  =  D<sub>eff</sub>.

    No full text
    <p>Theoretical free diffusion constants D<sub>calc</sub> for GFP-tagged NBS1 and MDC1 proteins estimated from the diffusion constant for GFP and the mass difference between pure GFP and the tagged proteins as well as experimental effective diffusion constants D<sub>eff</sub> from experimental FRAP curves.* For free GFP D<sub>calc</sub>  =  D<sub>eff</sub>.</p
    corecore