1,052 research outputs found

    The galileon as a local modification of gravity

    Get PDF
    In the DGP model, the ``self-accelerating'' solution is plagued by a ghost instability, which makes the solution untenable. This fact as well as all interesting departures from GR are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar \pi, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those that at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect--the decoupling of the scalar from matter in gravitationally bound systems--necessary to recover agreement with solar system tests. Our generalization involves an internal ``galilean'' invariance, under which \pi's gradient shifts by a constant. This symmetry constrains the structure of the \pi Lagrangian so much so that in 4D there exist only five terms that can yield sizable non-linearities without introducing ghosts. We show that for such theories in fact there are ``self-accelerating'' deSitter solutions with no ghost-like instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like non-linear perturbations that are also stable against small fluctuations. [Short version for arxiv]Comment: 35 pages; minor modifications, a typo corrected in eq. (114

    Fluctuations in Nonequilibrium Systems

    Full text link

    Radiation reaction and quantum damped harmonic oscillator

    Full text link
    By taking a Klein-Gordon field as the environment of an harmonic oscillator and using a new method for dealing with quantum dissipative systems (minimal coupling method), the quantum dynamics and radiation reaction for a quantum damped harmonic oscillator investigated. Applying perturbation method, some transition probabilities indicating the way energy flows between oscillator, reservoir and quantum vacuum, obtainedComment: 12 pages. Accepted for publication in Mod. Phys. Lett.

    Probabilistic and thermodynamic aspects of dynamical systems

    Full text link
    The probabilistic approach to dynamical systems giving rise to irreversible behavior at the macroscopic, mesoscopic, and microscopic levels of description is outlined. Signatures of the complexity of the underlying dynamics on the spectral properties of the Liouville, Frobenius-Perron, and Fokker-Planck operators are identified. Entropy and entropy production-like quantities are introduced and the connection between their properties in nonequilibrium steady states and the characteristics of the dynamics in phase space are explored.info:eu-repo/semantics/publishe

    Comparison of Entropy Production Rates in Two Different Types of Self-organized Flows: B\'{e}nard Convection and Zonal flow

    Full text link
    Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR principle" is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of "maximum EPR states." Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Phys. Plasmas {\bf 15}, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the determinant of the operating point, and may take either minimum or maximum values depending on how the system is driven

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    A note on the wellposedness of scalar brane world cosmological perturbations

    Full text link
    We discuss scalar brane world cosmological perturbations for a 3-brane world in a maximally symmetric 5D bulk. We show that Mukoyama's master equations leads, for adiabatic perturbations of a perfect fluid on the brane and for scalar field matter on the brane, to a well posed problem despite the "non local" aspect of the boundary condition on the brane. We discuss in relation to the wellposedness the way to specify initial data in the bulk.Comment: 14 pages, one figure, v2 minor change

    Synergetics in multiple exciton generation effect in quantum dots

    Full text link
    We present detailed analysis of the non-Poissonian population of excitons produced by MEG effect in quantum dots on the base of statistic theory of MEG and synergetic approach for chemical reactions. From the analysis we can conclude that a non-Poissonian distribution of exciton population is evidence of non-linear and non-equilibrium character of the process of multiple generation of excitons in quantum dots at a single photon absorptio

    Self-organized patterns of coexistence out of a predator-prey cellular automaton

    Full text link
    We present a stochastic approach to modeling the dynamics of coexistence of prey and predator populations. It is assumed that the space of coexistence is explicitly subdivided in a grid of cells. Each cell can be occupied by only one individual of each species or can be empty. The system evolves in time according to a probabilistic cellular automaton composed by a set of local rules which describe interactions between species individuals and mimic the process of birth, death and predation. By performing computational simulations, we found that, depending on the values of the parameters of the model, the following states can be reached: a prey absorbing state and active states of two types. In one of them both species coexist in a stationary regime with population densities constant in time. The other kind of active state is characterized by local coupled time oscillations of prey and predator populations. We focus on the self-organized structures arising from spatio-temporal dynamics of the coexistence. We identify distinct spatial patterns of prey and predators and verify that they are intimally connected to the time coexistence behavior of the species. The occurrence of a prey percolating cluster on the spatial patterns of the active states is also examined.Comment: 19 pages, 11 figure

    Stochastic resonance for nonequilibrium systems

    Get PDF
    Stochastic resonance (SR) is a prominent phenomenon in many natural and engineered noisy systems, whereby the response to a periodic forcing is greatly amplified when the intensity of the noise is tuned to within a specific range of values. We propose here a general mathematical framework based on large deviation theory and, specifically, on the theory of quasipotentials, for describing SR in noisy N -dimensional nonequilibrium systems possessing two metastable states and undergoing a periodically modulated forcing. The drift and the volatility fields of the equations of motion can be fairly general, and the competing attractors of the deterministic dynamics and the edge state living on the basin boundary can, in principle, feature chaotic dynamics. Similarly, the perturbation field of the forcing can be fairly general. Our approach is able to recover as special cases the classical results previously presented in the literature for systems obeying detailed balance and allows for expressing the parameters describing SR and the statistics of residence times in the two-state approximation in terms of the unperturbed drift field, the volatility field, and the perturbation field. We clarify which specific properties of the forcing are relevant for amplifying or suppressing SR in a system and classify forcings according to classes of equivalence. Our results indicate a route for a detailed understanding of SR in rather general systems
    • …
    corecore