34 research outputs found

    Design and use of a fixed-end low-load material testing machine

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaf 25).The purpose of this low-load material testing machine is to provide students an opportunity to perform basic material tests on their own instead of watching a lab technician, thus improving the student's lab experience. The machine proposed is small, low cost, and easy to manufacture, assemble, and operate. Its design is based on a compound flexure mechanism that provides rectilinear motion for uniaxial tension and compression tests. It is actuated by a voice coil and displacement is measured using strain gauges. This thesis outlines some of the basic theory involved in the design and use of this low-load machine. Then it details calibration routines and tension testing procedures. Next, it analyzes results from tension tests. Then it discusses a possible source of error found in the tension tests, a lack of rigidity in the apparatus. Finally, it provides a reasonable solution to the rigidity issue and suggests further testing of the new apparatus before it is available for student use.by Nicoli M. Ames.S.B

    An internal variable theory for isotropic visco-elastic-plastic solids : application to indentation of amorphous polymeric solids

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 91-92).A significant advance in modeling the plastic deformation of amorphous polymers has been made by Parks, Argon, Boyce, Arruda, and their co-workers (e.g. Parks, Argon, & Bagepalli, 1985; Boyce, Parks, & Argon, 1998; Arruda & Boyce, 1993), and by Wu and Van der Giessen (1993). Although these models phenomenologically capture the large deformation elastic-viscoplastic response of these materials in a reasonably accurate manner, they do not adequately account for the creep response of these materials at stress levels below those causing "macro-yield", as well as the Bauschinger-type reverse yielding phenomena at strain levels less than ~ 30% associated with the macro-yield transient. Anand (2003) has recently generalized the model of Anand and Gurtin (2003) to begin to capture these important aspects of these material's mechanical response. In this work, we summarize Anand's three-dimensional theory and then specialize the constitutive equations to an approximate one-dimensional form. Also, we describe our monotonic, cyclic and creep experiments on the amorphous polymeric solid poly(methyl methacrylate) (PMMA), at ambient temperature and stress states under which this material does not exhibit crazing, and we outline detailed procedures for material parameter determination from these experiments. We have implemented the three-dimensional constitutive equations in the finite-element computer program ABAQUS/Explicit (ABAQUS, Inc., 2002), and using this finite-element program, we show numerical results to some representative problems in microindentation, and compare them against corresponding results from physical experiments.by Nicoli Margret Ames.S.M

    A thermo-mechanical finite deformation theory of plasticity for amorphous polymers : application to micro-hot-embossing of poly(methyl methacrylate)

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references.Amorphous thermoplastic polymers are important engineering materials; however, their nonlinear, strongly temperature- and rate-dependent elastic-visco-plastic behavior has, until now, not been very well understood. The behavior has previously been modeled with mixed success by existing constitutive theories. As a result, there is currently no generally agreed upon theory to model the large-deformation, thermo-mechanically coupled, elasto-visco-plastic response of amorphous polymeric materials spanning their glass transition temperatures. What is needed is a unified constitutive framework that is capable of capturing the transition from a visco-elastic-plastic solidlike response below the glass transition temperature, to a rubbery-viscoelastic response above the glass transition temperature, to a fluid-like response at yet higher temperatures. We have developed a continuum-mechanical constitutive theory aimed to fill this need. The theory has been specialized to represent the salient features of the mechanical response of poly(methyl methacrylate) in a temperature range spanning room temperature to 60C above the glass transition temperature #g 110C of the material, in a strain-rate range of 10-4/s to 10-1/s, and under compressive stress states in which this material does not exhibit crazing. We have implemented our theory in the finite element program ABAQUS/Explicit. The numerical simulation capability of the theory is demonstrated with simulations of the micron-scale hot-embossing process for manufacture of microfluidic devices.by Nicoli Margaret Ames.Ph.D

    A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition

    Get PDF
    Amorphous thermoplastic polymers are important engineering materials; however, their non-linear, strongly temperature- and rate-dependent elastic-viscoplastic behavior is still not very well understood, and is modeled by existing constitutive theories with varying degrees of success. There is no generally agreed upon theory to model the large-deformation, thermo-mechanically-coupled, elastic-viscoplastic response of these materials in a temperature range which spans their glass transition temperature. Such a theory is crucial for the development of a numerical capability for the simulation and design of important polymer processing operations, and also for predicting the relationship between processing methods and the subsequent mechanical properties of polymeric products. In this paper we extend our recently published theory [Anand, L., Ames, N. M., Srivastava, V., Chester, S. A., 2009. A thermo-mechanically-coupled theory for large deformations of amorphous polymers. Part I: formulation. International Journal Plasticity 25, 1474–1494; Ames, N. M., Srivastava, V., Chester, S. A., Anand, L., 2009. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. International Journal of Plasticity 25, 1495–1539] to fill this need. We have conducted large strain compression experiments on three representative amorphous polymeric materials – a cyclo-olefin polymer (Zeonex-690R), polycarbonate (PC), and poly(methyl methacrylate) (PMMA) – in a temperature range from room temperature to approximately 50 °C above the glass transition temperature, ϑg [theta subscript g], of each material, in a strain-rate range of ≈10-4 [10 superscript -4]to 10-1 s-1 [10 superscript -1 s superscript -1], and compressive true strains exceeding 100%. We have specialized our constitutive theory to capture the major features of the thermo-mechanical response of the three materials studied experimentally. We have numerically implemented our thermo-mechanically-coupled constitutive theory by writing a user material subroutine for a widely used finite element program. In order to validate the predictive capabilities of our theory and its numerical implementation, we have performed the following validation experiments: (i) a plane-strain forging of PC at a temperature below ϑg [theta subscript g], and another at a temperature above ϑg [theta subscript g]; (ii) blow-forming of thin-walled semi-spherical shapes of PC above ϑg [theta subscript g]; and (iii) microscale hot-embossing of channels in Zeonex and PMMA above ϑg [theta subscript g]. By comparing the results from this suite of validation experiments of some key features, such as the experimentally-measured deformed shapes and the load-displacement curves, against corresponding results from numerical simulations, we show that our theory is capable of reasonably accurately reproducing the experimental results obtained in the validation experiments.National Science Foundation (U. S.) (Grant no. DMI-0517966)Singapore MIT Alliance Programme in Manufacturing Systems and Technolog

    Handbook on dynamics of jointed structures.

    Get PDF
    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided

    A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications

    No full text
    We have conducted large-strain compression experiments on three representative amorphous polymeric materials: poly(methyl methacrylate) (PMMA), polycarbonate (PC), and a cyclo-olefin polymer (Zeonex-690R), in a temperature range spanning room temperature to slightly below the glass transition temperature of each material, in a strain rate range of View the MathML source to View the MathML source, and compressive true strains exceeding 100%. The constitutive theory developed in Part I [Anand, L., Ames, N.M., Srivastava, V., Chester, S., 2009. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part 1: Formulation. International Journal of Plasticity] is specialized to capture the salient features of the thermo-mechanically coupled strain rate and temperature dependent large deformation mechanical response of amorphous polymers. For the three amorphous polymers studied experimentally, the specialized constitutive model is shown to perform well in reproducing the following major intrinsic features of the macroscopic stress–strain response of these materials: (a) the strain rate and temperature dependent yield strength; (b) the transient yield-peak and strain-softening which occurs due to deformation-induced disordering; (c) the subsequent rapid strain-hardening due to alignment of the polymer chains at large strains; (d) the unloading response at large strains; and (e) the temperature rise due to plastic-dissipation and the limited time for heat-conduction for the compression experiments performed at strain rates [View the MathML source]. We have implemented our thermo-mechanically coupled constitutive model by writing a user material subroutine for the finite element program [Abaqus/Explicit, 2007. SIMULIA, Providence, RI]. In order to validate the predictive capabilities of our constitutive theory and its numerical implementation, we have performed the following validation experiments: (i) isothermal fixed-end large-strain reversed-torsion tests on PC; (ii) macro-scale isothermal plane-strain cold- and hot-forming operations on PC; (iii) macro-scale isothermal, axi-symmetric hot-forming operations on Zeonex; (iv) micro-scale hot-embossing of Zeonex; and (v) high-speed normal-impact of a circular plate of PC with a spherical-tipped cylindrical projectile. By comparing the results from this suite of validation experiments of some key macroscopic features, such as the experimentally-measured deformed shapes and the load-displacement curves, against corresponding results from numerical simulations, we show that our theory is capable of reasonably accurately reproducing the experimental results obtained in the validation experiments.National Science Foundation (U.S.) (grant number DMI-0517966)Singapore-MIT Allianc
    corecore