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Abstract

Amorphous thermoplastic polymers are important engineering materials; however, their nonlinear, strongly
temperature- and rate-dependent elastic-viscoplastic behavior is still not very well understood, and is mod-
eled by existing constitutive theories with varying degrees of success. There is no generally agreed upon
theory to model the large-deformation, thermo-mechanically-coupled, elastic-viscoplastic response of these
materials in a temperature range which spans their glass transition temperature. Such a theory is crucial
for the development of a numerical capability for the simulation and design of important polymer processing
operations, and also for predicting the relationship between processing methods and the subsequent mechan-
ical properties of polymeric products. In this paper we extend our recently published theory (Anand et al.,
2009, IJP 25, 1474-1494; Ames et al., 2009, IJP 25, 1495-1539) to fill this need.

We have conducted large strain compression experiments on three representative amorphous polymeric
materials — a cyclo-olefin polymer (Zeonex-690R), polycarbonate (PC), and poly(methyl methacrylate)
(PMMA) — in a temperature range from room temperature to approximately 50C above the glass transition
temperature, ϑg, of each material, in a strain-rate range of ≈ 10−4 to 10−1 s−1, and compressive true strains
exceeding 100%. We have specialized our constitutive theory to capture the major features of the thermo-
mechanical response of the three materials studied experimentally.

We have numerically implemented our thermo-mechanically-coupled constitutive theory by writing a user-
material subroutine for a widely-used finite element program. In order to validate the predictive capabilities
of our theory and its numerical implementation, we have performed the following validation experiments: (i)
a plane-strain forging of PC at a temperature below ϑg, and another at a temperature above ϑg; (ii) blow-
forming of thin-walled semi-spherical shapes of PC above ϑg; and (iii) microscale hot-embossing of channels
in Zeonex and PMMA above ϑg. By comparing the results from this suite of validation experiments of
some key features, such as the experimentally-measured deformed shapes and the load-displacement curves,
against corresponding results from numerical simulations, we show that our theory is capable of reasonably
accurately reproducing the experimental results obtained in the validation experiments.

1 Introduction

Amorphous thermoplastic polymers are important engineering materials which are widely used in a variety of
applications. Over the past thirty years considerable effort has been devoted to develop constitutive models

∗Corresponding author. Tel.: +1-617-253-1635; E-mail address: anand@mit.edu. A plenary talk titled “Plasticity of
Amorphous Polymers: A Thermo-mechanically-Coupled Finite Deformation Theory,” which forms the theoretical basis of this
paper, was first given by Lallit Anand as his Khan International Medal lecture at the Plasticity 2007 conference in Alaska.
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to represent the large deformation elastic-viscoplastic behavior of these materials (e.g., Parks et al., 1985;
Boyce et al., 1988; Govaert et al, 2000; Anand and Gurtin, 2003; Anand and Ames, 2006). These models
have been primarily used to describe the isothermal deformation of polymers below their glass transition
temperatures. In a recent pair of papers we have developed a thermo-mechanically-coupled large-deformation
theory (Anand et al., 2009; Ames et al., 2009); however, this theory, like the others listed above, is also limited
to a temperature range below the glass transition temperatures of such materials. There exists a major need
to develop a thermo-mechanically-coupled theory which extends to a temperature range which includes
temperatures above the glass transition temperature of these materials — a range typically / 50C above
the ϑg of the material, where the material response still has some “solid”-like characteristics, and is not quite
yet a viscoelastic fluid. Such a theory would be useful, for example, for modeling certain important polymer
processing operations, such as micro-hot-embossing for the manufacture of microfluidic devices, hot-drawing
of fibers and films, and thermoforming and blow-molding for manufacture of various thin-walled containers
and bottles.

Constitutive theories aimed at this class of applications have been proposed by Buckley and co-workers
(e.g., Buckley and Jones, 1995; Dooling et al., 2002), as well as Boyce and co-workers (e.g., Boyce et al.,
2000; Dupaix and Boyce, 2007). Guided by the work of Buckley, Boyce, and their co-workers, and our own
recent papers on the mechanical behavior of polymers below ϑg (Anand et al., 2009; Ames et al., 2009), it
is the purpose of this paper to:

1. Outline a reasonably general thermo-mechanically-coupled, large-deformation, elastic-viscoplastic the-
ory to model the response of amorphous polymers in a temperature range which spans their glass
transition temperature.

2. Specialize the new theory and apply it to model the response of three representative amorphous
polymeric materials — a cyclo-olefin polymer (Zeonex-690R),1 polycarbonate (PC), and poly(methyl
methacrylate) (PMMA) — in a temperature range from room temperature to approximately 50C
above the glass transition temperature of each material, in a strain rate range of ≈ 10−4 to 10−1 s−1,
and compressive true strains exceeding 100%.

The experimental and modeling work on the response of Zeonex, PC, and PMMA reported in this
paper, represents an important extension of our recently reported work on the response of these materials
for temperatures below ϑg (Anand et al., 2009; Ames et al., 2009), to a temperature range which includes
temperatures up to ≈ 50C above the glass transition temperature. Apart from its intrinsic theoretical
importance from the viewpoint of mechanics and physics of materials, we shall show that our new theory
is practically useful for modeling important polymer processing operations, such as micro-hot-embossing for
the manufacture of microfluidic devices, and blow-molding of thin-walled semi-spherical shapes.

The plan of the paper is as follows. In §2 we briefly describe our simple compression experiments on
Zeonex, PC, and PMMA. In §3 we detail the major constitutive and field equations of our new theory, and
in §4 we specialize the theory so that it is capable of reproducing the salient features of the experimentally-
measured mechanical response of the amorphous polymers under study. In an Appendix, §8, we describe
in reasonable detail our method to calibrate the (numerous) material parameters/functions appearing in
our constitutive theory. The quality of the fit of the specialized model to the experimentally-measured
stress-strain curves is discussed in §5, where we show that the model reproduces the major features of the
macroscopic response of these materials in a reasonably acceptable fashion.

We have implemented our thermo-mechanically-coupled constitutive theory by writing a user material
subroutine for the finite element program ABAQUS/Standard (2009). In §6, we present results of a suite of
experiments that we have conducted in order to validate the predictive capabilities of our constitutive theory
and its numerical implementation. By comparing the results of some key macroscopic features from this
set of validation experiments, such as the experimentally-measured deformed shapes against corresponding
results from numerical simulations, we show that our theory is capable of reasonably accurately reproducing
the experimental results obtained in the validation experiments. We close in §7 with some final remarks.

1From Zeon Chemicals; henceforth, simply called Zeonex in this paper. Relative to PMMA and PC, Zeonex is biocompatible,
has lower moisture uptake, has better light transmittance characteristics, and it is also chemical resistant to a wider variety of
solvents. These characteristics make Zeonex an attractive material for manufacture of microfluidic devices.
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2 Simple compression experiments on three amorphous polymers

Even though the mechanical behavior of polymers has been studied for a long time, comprehensive, pedigreed
stress-strain data: (i) to large strains exceeding 100%, including loading and unloading; (ii) a variety of strain
rates in the range ≈ 10−4 to 10−1 s−1, achievable in modern servo-hydraulic testing machines; and (iii) a
temperature range from room temperature to ≈ 50C above the glass transition temperature for amorphous
polymers, are not readily available, and are scattered in the literature.

In this study we have generated such data by conducting compression experiments on three important
amorphous polymeric materials: Zeonex, PC, and PMMA. The nominal glass transition temperatures of
these three materials are:

Zeonex-690R: ϑg ≈ 136C, PC: ϑg ≈ 145C, and PMMA: ϑg ≈ 115C.

Our cylindrical compression test specimens were 12.7mm diameter and 12.7mm tall, and were annealed
before and after machining to final shape by heating in a furnace at a temperature about 10C above the
glass transition temperature of each material, and holding at that temperature for two hours, before cooling
to room temperature.2 The experiments were conducted using a servo-hydraulic Instron testing machine,
fitted with a high-temperature furnace. Amorphous polymers are poor thermal conductors; accordingly,
in order to heat the compression specimens uniformly, we also used heated steel compression platens in
addition to the furnace. The platens were heated with cartridge heaters, and thermocouples inserted into
each platen were used to control the temperature. The top compression platen also had an integrated
spherical seat to help minimize any effects of misalignment during compression testing. To reduce friction
at the platen/specimen interface, the platens were polished, and thin Teflon (PTFE) films were used as
lubricating layers between the specimen and the platens.3 Before a given experiment, each specimen was
allowed to anneal at the testing temperature for one hour prior to testing. The compression tests were carried
out at constant true strain-rates to compressive true strains exceeding ' 100%; all strain measurements were
made using an extensometer. The temperature and strain-rate ranges for each material were as follows:

(i) Zeonex: Temperature range: 25C to 180C. Strain-rates: 3 × 10−4, 3 × 10−3, 3 × 10−2, and 3 × 10−1

s−1.

(ii) PC: Temperature range: 25C to 175C. Strain-rates: 10−3, 10−2, and 10−1 s−1.

(iii) PMMA: Temperature range: 25C to 170C. Strain-rates: 3 × 10−4, 10−3, 10−2, and 10−1 s−1.

Fig. 1 shows representative true stress-strain curves4 for Zeonex at strain-rate of 3×10−4 s−1 at temper-
atures ranging from 25C through 160C, while Fig. 2 shows a more extensive set of stress-strain curves for
Zeonex at strain rates of 3 × 10−4, 3 × 10−3, 3 × 10−2, and 3 × 10−1 s−1 and temperatures of 25C through
180C.

Referring to Fig. 1a, that is for temperatures less than ϑg ≈ 136C, we see that in the glassy region:

(i) The stress-strain curves exhibit a well-defined yield-peak, followed by strain-softening, and eventual
strain-hardening at large strains due to the limited extensibility of the polymer chains.

(ii) As the temperature increases in the glassy region from 25C to 130C, the magnitude of the yield-peak
diminishes, the yield strength decreases with temperature from ≈ 65 MPa to ≈ 15 MPa, and the
amount of strain-hardening observed at large strains diminishes.

(iii) Upon unloading after compression to strains exceeding 125%, approximately 5% of the strain is recov-
ered, and there is permanent-set.

In contrast, referring to Fig. 1b, we see that above the glass transition temperature:

2After annealing, the PMMA and PC specimens were slowly cooled in the furnace to room temperature over a period of
several hours, while the Zeonex was quenched in water.

3For true strains up to 100% our compression specimens showed very little or no bulging; however, for larger strain levels,
in spite of our precautions to minimize friction, some bulging did occur.

4As is customary, in order to calculate the deformed cross-sectional area (and thence the true stress), we have assumed
plastic incompressibility to estimate the stretch in the lateral direction of the compression specimens.
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(i) The initial stiffness of the material has dropped dramatically.

(ii) The yield-peak has disappeared.

(iii) The stress-strain response during the loading-phase is highly non-linear and exhibits strain-hardening.
However, the stress levels at large strains are below 3 MPa at 140C, and no more than 0.5MPa at
160C.

(iv) Upon unloading after compression to strains exceeding 125%, the material exhibits a highly non-linear
unloading response and significant permanent-set. The amount of permanent-set increases dramatically
as the temperature increases from 140C to 160C.

Referring to Fig. 2 which shows stress-strain curves for Zeonex at various fixed temperatures and four
different strain rates, we see obvious strain-rate dependent features of the material response. In the low-
temperature glassy region, ϑ < 136C, the yield strength of the material increases by about 10% for a one-
decade increase in strain-rate at any given temperature. Another important strain-rate dependent feature is
the softening observed at large strains at the highest strain rate of 3×10−1 s −1 at temperatures of 25C, 70C
and 120C. This softening is attributable to (near) “adiabatic” heating at the high strain rates.5 Significant
strain rate sensitivity can also be observed at temperatures above the glass transition temperature, and
similar to the behavior below glass transition, the stress levels are higher for higher strain rates.

An important feature of the stress-strain behavior of amorphous polymers is their strain-rate sensitive
response in a temperature range slightly above their “nominal glass transition temperature.” Consider the
stress-strain curves for Zeonex at 140C in Fig. 2: at the lowest strain rate of 3×10−4 s−1 the material responds
as if it were “above” its glass transition temperature, as discussed in Fig. 1b. However, at the highest strain
rate of 3 × 10−1 s−1, the material exhibits a glassy-response with a significantly higher stress magnitude, a
yield-peak, strain-softening and subsequent strain-hardening due to chain-locking. Thus, in accordance with
well-known results from frequency-dependent dynamic-mechanical-tests on amorphous polymers, this result
clearly shows that the “glass transition temperature” is not a constant for a material, and increases as the
strain rate increases.

Stress-strain curves for PC and PMMA will be presented in §5, where we compare experimentally-
measured stress-strain curves against those resulting from our constitutive theory. In the next section §3 we
summarize our theory, and in §4 we specialize the theory for applications. In §5 we show results of the fit of
the specialized constitutive theory to the experimental stress-strain data from our experiments on Zeonex,
PC, and PMMA.

3 Theory

An essential kinematical ingredient of elastic-viscoplastic constitutive theories for amorphous polymers below

their glass transition temperatures, is the classical Kröner (1960) – Lee (1969) multiplicative decomposition6

F = FeFp, with detFe > 0 and detFp > 0, (3.1)

of the deformation gradient F into elastic and plastic parts Fe and Fp (e.g., Boyce et al., 1988; Govaert
et al, 2000; Anand and Gurtin, 2003; Anand et al., 2009). Since we wish to model the behavior of glassy
polymers in the technologically important temperature range which spans their glass transition temperatures,
and since the number of microscopic relaxation mechanisms in these polymers increases as the temperature
is increased, we base our theory on a “multimechanism” generalization of the decomposition (3.1),

F = Fe (α)Fp (α), with detFe (α) > 0 and detFp (α) > 0, α = 1, . . . ,M, (3.2)

5While we did not measure the actual temperature rise in our specimens, Arruda et al. (1995) have shown that the surface
temperature of a compression specimen of an amorphous polymer, for a test carried out at 20 C, could increase by as much
≈ 20 C after a 100% compressive strain at a strain rate of 10−1 s−1.

6Notation: We use standard notation of modern continuum mechanics (e.g., Gurtin, Fried, and Anand, 2009). Specifically:
∇ and Div denote the gradient and divergence with respect to the material point X in the reference configuration; grad and
div denote these operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material
time-derivative. Throughout, we write Fe−1 = (Fe)−1, Fp−⊤ = (Fp)−⊤, etc. We write trA, symA, skwA, A0, and sym0A

respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product
of tensors A and B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.
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where each α denotes a local micromechanism of deformation.7 Such a multi-mechanism generalization forms
the basis of the work of Buckley, Boyce, and their co-workers (e.g., Buckley and Jones, 1995; Boyce et al.,
2000; Dooling et al., 2002; Dupaix and Boyce, 2007). For each micromechanism indexed by α, we refer to
Fp (α) and Fe (α) as the plastic and elastic parts of F.8

Restrict attention to a prescribed material point X, and let x denote its place in the deformed configu-
ration at a fixed time t. Then, bearing in mind that (for X fixed) the linear transformations Fe (α)(X) and
Fp (α)(X) at X are invertible, we let

MX
(α) def

= range of Fp (α)(X) = domain of Fe (α)(X), (3.3)

and refer to MX
(α) as the intermediate structural space at X for the α-th micromechanism. Even though

we use this terminology, there is no actual physical space that may be associated with an “intermediate
structural space” — such spaces are purely mathematical constructs.

Also, it is important to note from the outset, that each Fp (α) is to be regarded as an internal variable of
the theory which is defined as a solution of the differential equation (the flow rule to be discussed shortly)

Ḟp (α) = Dp (α)Fp (α) with detFp (α) = 1, and with initial condition Fp (α)(X, 0) = 1. (3.4)

The corresponding Fe (α) is then defined by Fe (α) def
= FFp (α)−1. Hence the decompositions (3.2) are not

purely kinematical in nature as they are not defined independently of constitutive equations; they are to be
viewed as kinematical constitutive equations.

For brevity we do not give a detailed development of our theory, but only summarize the major governing
constitutive and field equations. The details are easily worked out by using the kinematical decomposition
(3.2) instead of (3.1), and mimicking the development of the below-ϑg theory detailed in Anand et al. (2009).

Our theory relates the following basic fields:

x = χ(X, t), motion;

F = ∇χ, J = detF > 0, deformation gradient;

F = Fe (α)Fp (α), α = 1, . . . ,M , elastic-plastic decomposition of F;

Fe (α), Je (α) = detFe (α) = J > 0, elastic distortions;

Fp (α), Jp (α) = detFp (α) = 1, inelastic distortions;

Fe (α) = Re (α)Ue (α), polar decomposition of Fe (α);

Ce (α) = Fe (α)⊤Fe (α), elastic right Cauchy-Green tensors;

Bp (α) = Fp (α)Fp (α)⊤, plastic left Cauchy-Green tensors;

T =
∑

α T(α), T(α) = T(α)⊤, Cauchy stress;

TR = JTF−⊤, Piola stress;

ψR =
∑

α ψ̄(α), free energy density per unit reference volume;

ηR =
∑

α η̄(α), entropy density per unit reference volume;

ϑ > 0, absolute temperature;

∇ϑ, referential temperature gradient;

qR, referential heat flux vector;

qR, scalar heat supply.

In order to account for the major strain-hardening and softening characteristics of polymeric materials
observed during viscoplastic deformation, we introduce macroscopic internal variables to represent important
aspects of the microstructural resistance to plastic flow. Specifically, we introduce

7In what follows, when summing quantities over the M micro-mechanisms, we used the shorthand
P

α ≡
PM
α=1 .

8In a one-dimensional theory of linear viscoelasticity, which is based on a widely-used mechanical analog of M Maxwell-
elements assembled in parallel, the one-dimensioinal strain ǫ is decomposed as

ǫ = ǫe(α) + ǫp(α), α = 1, . . . ,M ;

the decomposition (3.2) is a three-dimensional, large-deformation, generalization of such a decomposition.
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• A list of m scalar internal state-variables

ξ(α) = (ξ
(α)
1 , ξ

(α)
2 , . . . , ξ(α)

m )

for each α.

• A list of symmetric and unimodular tensor fields

A(α)(X, t), A(α) = A(α)⊤, detA(α) = 1.

Each such tensor field represents a dimensionless squared stretch-like quantity, which as a linear trans-
formation, maps vectors in the intermediate structural space for each α, into vectors in the same
space.

Further,

• we limit our attention to situations under which the material may be idealized to be isotropic.

3.1 Constitutive equations

1. Free energy:

We assume that the free energy has the separable form

ψR =
∑

α

ψ̄e (α)(ICe (α) , ϑ) +
∑

α

ψ̄p (α)(IA(α) , ϑ), (3.5)

with ψ̄e (α) an elastic energy, and ψ̄p (α) a defect energy associated with plastic flow, for each α. Also,
ICe (α) and IA(α) represent lists of the principal invariants of Ce (α) and A(α), respectively.

The “defect energies” ψ̄p (α) associated with local microscopic plastic strain incompatibilities, and
introduced via the internal variables A(α), lead to the development of important back-stresses, and
allow one to phenomenologically account for Bauschinger-like phenomena on unloading and reverse
loading. In addition, they contribute in an important manner to the plastic source term in the balance
of energy.

2. Cauchy stress:

The Cauchy stress in the deformed body is the sum of the contributions from each micromechanism,

T =
∑

α

T(α), (3.6)

with
T(α) def

= J−1
(

Fe (α)Se (α)Fe (α)⊤
)

, T(α) = T(α)⊤, (3.7)

where

Se (α) = 2
∂ψ̄e (α)(ICe (α) , ϑ)

∂Ce (α)
. (3.8)

is a symmetric second Piola stress defined with respect to the local intermediate structural space for
each α.

3. Driving stresses for plastic flow:

With
Me (α) = Ce (α)Se (α) (3.9)

denoting the symmetric Mandel stress,

M
(α)
back = 2

(

∂ψ̄p (α)(IA(α) , ϑ)

∂A(α)
A(α)

)

0

(3.10)
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a symmetric deviatoric back stress, and

M
e (α)
eff

def
= Me (α) − M

(α)
back, (3.11)

an effective Mandel stress, the driving stress for plastic flow for each α is taken as

(M
e (α)
eff )0 = M

e (α)
0 − M

(α)
back, (3.12)

which is symmetric and deviatoric.

For each α, we define an equivalent shear stress by

τ̄ (α) def
=

1√
2
|(Me (α)

eff )0|. (3.13)

4. Flow rules:

The evolution equation for each Fp (α), with Wp (α) = 0,9 is

Ḟp (α) = Dp (α) Fp (α), (3.14)

with the plastic stretching given by

Dp (α) = νp (α)
( (M

e (α)
eff )0

2 τ̄ (α)

)

, (3.15)

where
νp (α) def

=
√

2 |Dp(α)| , (3.16)

is an equivalent plastic shear strain rate. With

Λ(α) = (Ce (α),Bp (α),A(α), ξ(α), ϑ) (3.17)

denoting a list of constitutive variables, the equivalent plastic shear strain rate νp (α) is obtained by
solving the scalar strength relation

τ̄ (α) = Y (α)(Λ(α), νp (α)), (3.18)

for given τ̄ (α) and Λ(α), with the strength function Y (α)(Λ(α), νp (α)) an isotropic function of its argu-
ments.

5. Evolution equations for internal variables:

The internal variables ξ(α) and A(α) are presumed to evolve according to the differential equations

ξ̇
(α)
i = h

(α)
i (Λ(α)) νp (α)

︸ ︷︷ ︸

dynamic evolution

− R(α)
i (Λ(α))

︸ ︷︷ ︸

static recovery

,

·

A(α) = Dp (α)A(α) + A(α)Dp (α) − G(α)(Λ(α))νp (α)

︸ ︷︷ ︸

dynamic evolution

−G
(α)
static(Λ

(α))
︸ ︷︷ ︸

static recovery

,







(3.19)

with the functions h
(α)
i , R(α)

i , G(α), and G
(α)
static isotropic functions of their arguments.

The evolution equations for Fp (α), ξ(α) and A(α) need to be accompanied by initial conditions. Typical
initial conditions presume that the body is initially (at time t = 0, say) in a virgin state in the sense
that

F(X, 0) = Fp (α)(X, 0) = A(α)(X, 0) = 1, ξ
(α)
i (X, 0) = ξ

(α)
i, 0 (= constant), (3.20)

9For a detailed discussion and justification of the Wp = 0 assumption in a single micro-mechanism isotropic theory see
Boyce et al. (1989) and Gurtin and Anand (2005); we adopt it here as well.
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so that by F = Fe (α)Fp (α) we also have Fe (α)(X, 0) = 1.

Remark 1: In the evolution equation (3.19) for the internal variables ξ
(α)
i and A(α), the terms

R(α)
i (Λ(α)) and G

(α)
static(Λ

(α)) represent static recovery (or time recovery, or thermal recovery), since

they do not depend on Dp (α). Also, in (3.19)2, the term G(α)(Λ(α))νp (α) represents a dynamic recovery

term. If both the dynamic and static recovery terms were to vanish, then we may associate each A(α)

with the corresponding left Cauchy-Green tensor Bp (α) = Fp (α)Fp (α)⊤, since then, for a constitutive
theory with Wp (α) = 0,

Ḃp(α) = Dp (α)Bp (α) + Bp (α)Dp (α). (3.21)

In the theory considered here, as in the classical small deformation theory of metal plasticity with
non-linear kinematic-hardening (e.g., Chaboche, 2008), we allow for recovery, that is we allow for

G(α)(Λ(α))νp (α) 6= 0 as well as G
(α)
static(Λ

(α)) 6= 0, and thus, in general, the internal variables A(α) are
not the same as Bp (α).

6. Entropy relation. Fourier’s Law:

Finally, we have the entropy relation

ηR =
∑

α

η(α), η(α) = −
[
∂ψ̄e (α)(ICe (α) , ϑ)

∂ϑ
+
∂ψ̄p (α)(IA(α) , ϑ)

∂ϑ

]

, (3.22)

together with Fourier’s law
qR = −κ∇ϑ, (3.23)

with κ(ϑ) > 0 the thermal conductivity.

3.2 Partial differential equations for the deformation and temperature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR + b0R = ρR χ̈, (3.24)

where b0R is the non-inertial body force per unit volume of the reference body, ρR > 0 is the mass density,
and

TR = JTF−⊤ (3.25)

is the standard first Piola stress, with T given by (3.6) through (3.8).
The specific heat in the theory is given by

c
def
= −ϑ

[
∑

α

∂2ψ̄e (α)(ICe (α) , ϑ)

∂ϑ2
+
∑

α

∂2ψ̄p (α)(IA(α) , ϑ)

∂ϑ2

]

, (3.26)

and balance of energy gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR +
∑

α

(

τ̄ (α) +
∂ψ̄p (α)

∂A(α)
:G(α)

)

νp (α) +
∑

α

∂ψ̄p (α)

∂A(α)
:G

(α)
static

+ ϑ
∑

α

∂2ψ̄e(α)

∂ϑ ∂Ce (α)
: Ċe (α) + ϑ

∑

α

∂2ψ̄p(α)

∂ϑ ∂A(α)
: Ȧ(α)

︸ ︷︷ ︸

“thermoelastic” coupling terms

, (3.27)

with qR given by (3.23).10

10Classically, only the term ϑ
P

α
∂2ψ̄e(α)

∂ϑ ∂Ce (α) : Ċe (α) in (3.27) is called the “thermoelastic coupling” term. Here, for lack of

better terminology, we use this terminology to also include the term ϑ
P

α
∂2ψ̄p(α)

∂ϑ ∂A(α) : Ȧ(α).
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4 Specialization of the theory

The fewer the “number of micromechanisms,” M , which are needed to phenomenologically describe the
response of a material, then the fewer the number of “material parameters” that are needed to flesh-out
the constitutive theory delineated above. In our previous study on modeling the response of amorphous
polymers below ϑg, we found that a theory with M = 2 was quite adequate (Anand et al., 2009; Ames
et al., 2009). In order to model the response of these materials, which extends to temperatures which are
approximately 50C above ϑg, we find that we need to increase the number of micromechanisms to M = 3.
Although no real material is composed of springs and dashpots, as a visual aid, Fig. 3 shows a schematic
“spring-dashpot”- representation of these three micromechanisms:

(i) The first micromechanism (α = 1): (a) The nonlinear spring represents an “elastic” resistance
to intermolecular (and perhaps intramolecular) energetic bond-stretching. (b) The dashpot represents
thermally-activated plastic flow due to “inelastic mechanisms,” such as chain-segment rotation and
relative slippage of the polymer chains between neighboring mechanical cross-linkage points. (c) The
nonlinear spring in parallel with the dashpot represents an “energy storage” mechanism due to the
local elastic incompatibilities caused by the viscoplastic flow mechanisms. We introduce a defect energy
only for micromechanism α = 1, via an internal variable A; even for this micromechanism, the role of
such a stored energy decreases as the molecular mobility increases when the temperatures approach
and exceed ϑg.

(ii) The second and third micromechanisms (α = 2, 3): (a) The nonlinear springs represent resis-
tances due to changes in the free energy upon stretching of the molecular chains between the mechanical
cross-links. (b) The dashpots represent thermally-activated plastic flow due to slippage of the “mechan-
ical” cross-links, which are relatively strong below ϑg, but are progressively destroyed at temperatures
above ϑg. The fact that we employ two such mechanisms is necessitated by the experimentally-observed
increased complexity of the response of amorphous polymers as the temperature transitions across the
range of temperatures from below ϑg to sufficiently above ϑg. We neglect any defect energies associated
with mechanisms α = 2, 3.

Our strategy to phenomenologically model the response of the material as the temperature is increased to
ϑg and beyond, is as follows:

• For temperatures ϑ < ϑg, we do not allow any plastic flow in the dashpots associated with micromech-

anisms α = 2 and α = 3. Thus, since the springs in α = 2 and α = 3 are in parallel, for all practical
purposes the three-micromechanism model reduces to a simpler two-micromechanism model, which we
have recently successfully used to model the response of amorphous polymers for temperatures ϑ < ϑg

(Anand et al., 2009; Ames et al., 2009).

A schematic of the individual contributions from each micromechanism, to an overall stress-strain curve
in compression at a temperature ϑ < ϑg is shown in Fig. 4a.

• For temperatures ϑ > ϑg, we allow for plastic flow in the dashpots associated with micromechanisms
α = 2 and α = 3, but quickly drop the plastic flow resistance in mechanism α = 2 to a very small

value, so that for all practical purposes in this temperature range, only mechanisms α = 1 and α = 3
contribute to the macroscopic stress.

A schematic of the individual contributions from each micromechanism, to an overall stress-strain curve
in compression at a temperature ϑ > ϑg is shown in Fig. 4b.

Remark 2: At first blush it might appear possible to combine mechanisms α = 2 and α = 3 into a single
micromechanism, say α = 2, and simply make the modulus associated with the spring in this single branch
to be strongly temperature-dependent — taking on high values below ϑg and low values above ϑg. However,
this would lead to incorrect predictions concerning the amount of “elastic recovery” in circumstances where
the polymer is first heated to a temperature above ϑg, subjected to a large deformation which includes
large stretching of the spring, and then cooled to below ϑg under traction boundary conditions. Thus,
since by assumption the modulus associated with spring in the single additional branch α = 2 increases
with decreasing temperature, the amount of “elastic recovery” (spring-back) upon cooling under traction

9



boundary conditions would be unphysically too large. Conversely, cooling under displacement boundary
conditions, would result in large residual stresses.

In our discussion above, we have implicitly assumed that the glass transition temperature ϑg is a constant

for each material. However, the “glass transition” actually occurs over a narrow range of temperatures,
and whatever the means that are used to define a glass transition temperature,11 such a glass transition
temperature is not a constant, but depends strongly on the strain rate to which the material is subjected.
With D0 = sym0(ḞF−1) denoting the total deviatoric stretching tensor, let

ν
def
=

√
2|D0| (4.1)

denote an equivalent shear strain rate.12 As a simple model for the variation of the glass transition temper-
ature with strain rate, we assume that

ϑg =







ϑr if ν ≤ νr,

ϑr + n log
( ν

νr

)

if ν > νr,
(4.2)

where ϑr a reference glass transition temperature at a reference strain rate νr, and n is a material parameter.
The change in glass transition temperature with strain rate modeled by (4.2) is qualitatively shown in Fig. 5.

In the following subsections we present special constitutive equations for the three micromechanisms.
We only present the major results of our specialization; the reader is referred to Ames et al. (2009) for the
intermediate steps of continuum-mechanical arguments and derivations.

4.1 Constitutive equations for micromechanism α = 1

1. Free energy

The free energy is given by
ψ(1) = ψ̄e (1)(ICe(1) , ϑ)

︸ ︷︷ ︸

elastic energy

+ ψ̃p (1)(IA , ϑ)
︸ ︷︷ ︸

defect energy

. (4.3)

The elastic energy ψ̄e (1):

Let

Ce(1) =

3∑

i=1

ωe
i re

i ⊗ re
i , with ωe

i = λe
i

2, (4.4)

denote the spectral representation of Ce(1), where (λe
1, λ

e
2, λ

e
3) are the positive eigenvalues of Ue(1), and

(re
1, r

e
2, r

e
3) are the orthonormal eigenvectors of Ce(1) and Ue(1). Instead of using the invariants ICe(1) ,

the free energy ψ̄e (1) for isotropic materials may be alternatively expressed in terms of the principal
stretches, or functions thereof. With

Ee(1) =

3∑

i=1

Ee
i re

i ⊗ re
i , Ee

i = lnλe
i , (4.5)

denoting an elastic logarithmic strain measure, we adopt the following special form for the free energy
ψ̄e(1):13

ψ̄e (1) = G|Ee (1)
0 |

2
+ 1

2K(trEe(1))2 − 3K (trEe(1))αth(ϑ− ϑ0) + f̃(ϑ), (4.6)

11Such as the peak in the tan-δ curve in a DMA experiment.
12We emphasize that throughout our paper ν, νp etc., do not denote Poisson’s ratios, but denote equivalent shear strain

rates. The Poisson’s ratio is explicitly denoted by νpoi.
13This is a useful free energy function for moderately large elastic stretches, Anand (1979, 1986).
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where f̃(ϑ) is an entropic contribution to the free energy related to the temperature-dependent specific
heat of the material. The temperature-dependent parameters

G(ϑ) > 0, K(ϑ) > 0, αth(ϑ) > 0, (4.7)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and ϑ0 is a
reference temperature.

For polymeric materials the magnitude of the elastic shear modulus G decreases drastically as the
temperature increases through the glass transition temperature ϑg of the material. Following Dupaix
and Boyce (2007), we assume that the temperature dependence of the shear modulus may be adequately
approximated by the following function:

G(ϑ) = 1
2 (Ggl +Gr) − 1

2 (Ggl −Gr) tanh
( 1

∆
(ϑ− ϑg)

)

−M(ϑ− ϑg), (4.8)

where ϑg is the glass transition temperature, Ggl and Gr (< Ggl) are values of the shear modulus in
the glassy and rubbery regions, and ∆ is a parameter related to the temperature range across which
the glass transition occurs. The parameter M represents the slope of the temperature variation of G
beyond the transition region, with

M =

{

Mgl ϑ ≤ ϑg,

Mr ϑ > ϑg.
(4.9)

Next, the temperature dependence of Poisson’s ratio νpoi of the material is assumed to be

νpoi(ϑ) =
1

2
(νpoi

gl + νpoi
r ) − 1

2
(νpoi

gl − νpoi
r ) tanh

( 1

∆
(ϑ− ϑg)

)

, (4.10)

with νpoi
gl and νpoi

r representing values below and above ϑg, respectively. The temperature dependence
of the bulk modulus K is then obtained by using the standard relation for isotropic materials

K(ϑ) = G(ϑ) × 2(1 + νpoi(ϑ))

3(1 − 2 νpoi(ϑ))
. (4.11)

The temperature dependence of the shear modulus G, the Poisson’s ratio νpoi, and the bulk modulus
K are schematically shown in Fig. 6.

The coefficient of thermal expansion is taken to have a bilinear temperature dependence, with the
following contribution to the thermal expansion term αth(ϑ− ϑ0) in the free energy relation (4.6):

αth(ϑ− ϑ0) =

{

αgl(ϑ− ϑ0) if ϑ ≤ ϑg,

αgl(ϑ− ϑ0) + (αr − αgl)(ϑ− ϑg) if ϑ > ϑg.
(4.12)

The defect energy ψ̄p (1):

With

A =
3∑

i=1

ai li ⊗ li, (4.13)

denoting the spectral representation of A, and with

lnA =

3∑

i=1

ln ai li ⊗ li, (4.14)

denoting a defect logarithmic strain measure, we assume a free energy ψ̄p (1) of the form

ψ̄p (1) =
1

4
B
[
(ln a1)

2 + (ln a2)
2 + (ln a3)

2
]
, (4.15)
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where the positive-valued temperature-dependent parameter

B(ϑ) ≥ 0, (4.16)

is a back-stress modulus. The back-stress modulus B is assumed to be a linearly decreasing function
of temperature, with B vanishing above ϑg:

B(ϑ) =

{

−X(ϑ− ϑg) if ϑ ≤ ϑg,

0 if ϑ > ϑg,
(4.17)

where X > 0 is a constant.

2. Cauchy stress. Mandel stress. Back-stress. Effective stress

Corresponding to the special free energy functions considered above, the contribution T(1) to the
Cauchy stress is given by

T(1) def
= J−1 Re (1) Me(1) Re (1)⊤, (4.18)

where

Me(1) =
∂ψ̃e (1)(Ee(1), ϑ)

∂Ee(1)
= 2GE

e (1)
0 +K (trEe(1))1− 3Kαth(ϑ− ϑ0)1, (4.19)

is the corresponding symmetric Mandel stress.

The symmetric and deviatoric back-stress is

Mback = 2
(∂ψ̃p (1)

∂A
A
)

0
= B lnA. (4.20)

Further, the driving stress for plastic flow is the effective stress given by

(M
e (1)
eff )0 = M

e (1)
0 − Mback. (4.21)

The corresponding equivalent shear stress and mean normal pressure are given by

τ̄ (1) def
=

1√
2
|(Me (1)

eff )0|, and p̄
def
= −1

3
trMe(1), (4.22)

respectively.

3. Flow rule

The evolution equation for Fp(1) is
Ḟp (1) = Dp(1) Fp(1), (4.23)

with Dp(1) given by

Dp(1) = νp(1)

(

(M
e (1)
eff )0

2τ̄ (1)

)

, where νp(1) def
=

√
2|Dp(1)|. (4.24)

The equivalent plastic shear strain rate νp(1) is obtained by solving the scalar strength relation

τ̄ (1) = Y (1)(Λ(1), νp(1)), (4.25)

where
Λ(1) def

=
(

Ce(1),Bp(1),A, ξ(1), ϑ
)

(4.26)

denotes a list of constitutive variables. With the mean normal pressure defined by (4.22)2 and a (total)
effective stretch defined by

λ̄
def
=
√

trC/3 ≡
√

Ce(1) :Bp (1)/3, (4.27)
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as a simplification of the theory, we assume henceforth that the strength function Y (1) is independent
of A, and depends on Ce(1) and Bp(1) only through p̄ and λ̄, so that

τ̄ (1) = Y (1)(p̄, λ̄, ξ(1), ϑ, νp(1)). (4.28)

We assume further that at a fixed state (p̄,λ̄, ξ(1), ϑ) the strength relation (4.28) is invertible, with
inverse

νp(1) = f(ϑ, τ̄ (1), p̄, λ̄, ξ(1)) ≥ 0. (4.29)

Next, we restrict the list of the internal variables ξ(1) to three positive-valued scalars,

ξ(1) =
(

ϕ, Sa, Sb

)

,

where

• ϕ ≥ 0 is an “order-parameter” representing the local change in molecular-packing due to deformation-
induced disordering.

• Sa ≥ 0 represents a transient resistance to plastic flow coupled to the disordering of material. The
internal variables ϕ and Sa are introduced to model the “yield-peak” which is widely-observed in
the intrinsic stress-strain response of glassy polymers.

• Sb ≥ 0 represents a dissipative resistance to plastic flow introduced to model “isotropic hardening”
at large strains as the chains are pulled taut between entanglements at large strains, and there
is increasing frictional interaction between the pendant side-groups; this is in addition to any
entropic or energetic contribution from network chain-stretching.

Thus, the constitutive equation for the equivalent plastic strain rate (4.29) becomes

νp(1) = f(ϑ, τ̄ (1), p̄, λ̄, ϕ, Sa, Sb) ≥ 0. (4.30)

Finally, guided by the literature (e.g., Eyring, 1936; Fotheringham and Cherry, 1976, 1978; Povolo and
Hermida, 1995, 1996; Richeton et al., 2005, 2006, 2007) and our own recent paper Ames et al. (2009),
for the flow function f in (4.30) we choose a thermally-activated relation in the specific form

νp(1) =







0 if τ
(1)
e ≤ 0,

ν
(1)
0 exp

(

− Q

kB ϑ

)
[

sinh
(τ

(1)
e V

2kBϑ

)
]1/m(1)

if τ
(1)
e > 0,

(4.31)

where
τ (1)
e

def
= τ̄ (1) − (Sa + Sb + αp p̄), (4.32)

denotes a net shear stress for thermally-activated flow ; here αp ≥ 0 is a parameter introduced to

account for the pressure sensitivity of plastic flow. The parameter ν
(1)
0 is a pre-exponential factor with

units of 1/time, Q is an activation energy, kB is Boltzmann’s constant, V is an activation volume, and
m(1) is a strain rate sensitivity parameter. In order to model the plastic flow response of polymers
over a wide range of temperatures spanning the glass transition, we take the activation energy Q to be

temperature-dependent. We assume that it varies as

Q(ϑ) = 1
2 (Qgl +Qr) − 1

2 (Qgl −Qr) tanh
( 1

∆
(ϑ− ϑg)

)

, (4.33)

where, Q = Qgl in the glassy regime, and Q = Qr < Qgl in the rubbery regime, and as in (4.8), ∆ is a
parameter related to the temperature range across which the glass transition occurs. The variation of
activation energy Q with temperature is schematically shown in Fig. 7.

Remark 3: There are many models for the rate and temperature-dependent yield strength of poly-
mers in the literature which consider plastic flow as a thermally-activated process (e.g., Eyring, 1936;
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Robertson, 1966; Argon, 1973). Most of these models give a reasonably acceptable representation of the
variation of the yield strength with temperature and strain rate, but over limited ranges of these vari-
ables. The equation for the plastic shear strain rate (4.31) used here is motivated by the recent work of
(Richeton et al., 2005, 2006, 2007), who in turn base their model on the so-called “cooperative”-model
of Fotheringham and Cherry (1976, 1978), and Povolo and Hermida (1995, 1996). Richeton et al. have
shown that a flow function of the form (4.31) may be used to satisfactorily represent the variation of
the yield strength of amorphous polymers over a wide range of strain rates and temperatures. The
major difference between the flow function proposed by Richeton et al. and the one considered here,
is that instead of a tensorial back-stress Mback (cf., (4.20)) to define an effective stress which drives
plastic flow (cf. (4.21)), they consider a temperature-dependent scalar internal stress in their theory.
This results in a profound difference between their model and the one considered here, specially in the
ability of the two models to capture unloading and cyclic loading phenomena, as well as in a proper
accounting of the energy dissipated during plastic flow (below ϑg). Also, the three-dimensional theory
that they present in § 3 of their 2007 paper is substantially different in its mathematical structure from
that considered here.

4. Evolution equations for internal variables

We consider next the evolution equations for the internal variables ξ(1) = (ϕ, Sa, Sb) and A. In (3.19),

the functions R(α)
i and G

(α)
static represent static recovery (or time recovery, or thermal recovery), since

they do not depend on the plastic strain rate. The static recovery terms are important in long time

situations such as creep experiments over a period of hours and days at high temperatures. Here,
we focus our attention on thermal forming processes that occur in relatively shorter periods of time
(typically less than 5 to 20 minutes), in which case the slow static recovery effects may be neglected.
Accordingly, in what follows, as a simplification, we neglect the effects of any static recovery in the
evolution of the internal variables.

Evolution of ϕ and Sa:

The order-parameter ϕ and resistance Sa are introduced to model the “yield-peak” observed in amor-
phous polymers below the glass transition. We assume that the material disorders, and is accompanied
by a microscale dilatation as plastic deformation occurs, resulting in an increase of the order-parameter
ϕ,14 and this increase in disorder leads to a change in the resistance Sa, causing a transient change
in the flow stress of the material as plastic deformation proceeds. Accordingly, the evolution of the
resistance Sa is coupled to the evolution of the order-parameter ϕ. Specifically, we take the evolution
of Sa to be governed by15

Ṡa = Ha ν
p(1), with initial value Sa(X, 0) = 0,

Ha = ha (S∗
a − Sa) , and S∗

a = Ŝ
∗

a(νp(1), ϑ, ϕ),

}

(4.34)

and assume that
ϕ̇ = βνp(1), with initial value ϕ(X, 0) = 0,

β = g (ϕ∗ − ϕ) , with ϕ∗ = ϕ̂∗(νp(1), ϑ) ≥ 0;

}

(4.35)

here β is a shear-induced disordering function.

In the coupled evolution equations for Sa and ϕ, the parameters ha, g, Sa0 and ϕ0 are constants
(possibly temperature-dependent). The function Ha represents the strain-hardening/softening function
for the resistance Sa during plastic flow: the material hardens if Sa < S∗

a, and softens if Sa > S∗
a. The

critical value S∗
a of Sa controlling such hardening/softening transitions is assumed to depend on the

14The microscale dilatation is extremely small, and at the macroscopic level we presume the plastic flow to be incompressible.
15Coupled differential evolution equations of this type have previously been used to model yield peaks in granular materials

(Anand and Gu, 2000), as well as amorphous polymeric materials (Anand and Gurtin, 2003; Anand et al., 2009), and amorphous
metallic glasses (Henann and Anand, 2008).
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current values of the plastic strain rate, temperature, and the order-parameter ϕ. The function S∗
a,

which controls the magnitude of the stress-overshoot, is taken as

S∗
a = b (ϕ∗ − ϕ) . (4.36)

In the disordering function β, the parameter ϕ∗ represents a strain-rate and temperature dependent
critical value for the order-parameter: the material disorders when ϕ < ϕ∗, and becomes less disordered
when ϕ > ϕ∗. Considering the temperature and strain-rate dependence of ϕ∗, it is expected to decrease
with increasing temperature at a fixed strain-rate, and increase with strain-rate at a fixed temperature.
We model this temperature and strain rate dependence of ϕ∗ using the following phenomenological
equation

ϕ∗(νp(1), ϑ) =







z

(

1 − ϑ

ϑg

)r
(

νp(1)

νr

)s

if (ϑ ≤ ϑg) and (νp(1) > 0),

0 if (ϑ > ϑg) or (νp(1) = 0),

(4.37)

with constants (z, r, s).

Thus, gathering the number of material parameters introduced to phenomenologically model the yield-
peak, we have the following list

(
ha, b, g, z, r, s

)
.

The evolution of the order parameter ϕ with strain, and corresponding evolution of internal resistance
Sa is schematically shown in Fig. 8a. By suitable choice of material constants, the coupled evolution
equations for the internal variables ϕ and Sa may be used to model the “yield-peak” in the stress-strain
response of glassy polymers.

Remark 4: Modeling the temperature and rate-sensitivity of the yield-peak over a wide-range of tem-
peratures and strain rates is known to be complex. If a simpler theory with fewer material parameters
is desired, and if it is deemed that modeling the yield-peak is not of interest, then there is no need to
introduce the internal variables ϕ and Sa, and thereby also the attendant constants in their evolution
equations.

Evolution of Sb:

In most of the literature on amorphous polymers, the rapid increase in stress levels at large deformations
below ϑg has been attributed to entropic-elasticity and the limited-extensibility of the polymer chains.
However, our experience with experiments that involve both loading to large strains and subsequent

unloading, indicate that if in a corresponding theoretical model the rapid increase in stress levels during
loading is attributed entirely to the limited chain-extensibility and entropic-elasticity effects, then the
unloading response is incorrectly predicted — there is too much “elastic recovery” upon unloading. It
is for this reason that we have introduced the internal variable Sb to model a dissipative resistance
to plastic flow which arises at large strains as the chains are pulled taut between entanglements, and
there is increasing frictional interaction between the pendant side-groups; this resistance is in addition

to any entropic contribution from network chain-stretching.

The evolution of the internal variable Sb is taken to be governed by the differential equation

Ṡb = hb (λ̄ − 1) (S∗
b − Sb) ν

p(1), with initial value Sb(X, 0) = 0. (4.38)

In (4.38) the material parameters are hb and S∗
b . We take hb to be a temperature independent constant,

while the saturation value S∗
b is taken to have the following temperature dependence

S∗
b(ϑ) =

1

2
(Sgl + Sr) −

1

2
(Sgl − Sr) tanh

( 1

∆
(ϑ− ϑg)

)

, (4.39)

where Sgl and Sr (< Sgl) are values of S∗
b in the glassy and rubbery regions respectively. A schematic

of the evolution of Sb with an equivalent strain in a monotonic isothermal experiment is shown in
Fig. 8b.
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Evolution of A:

Finally, the evolution equation for A is taken as

Ȧ = Dp(1)A + ADp(1) − γA lnA νp(1), A(X, 0) = 1, (4.40)

where γ ≥ 0 is a constitutive parameter which governs the dynamic recovery of A; we take it to be
independent of temperature. This evolution equation is a generalization of the non-linear kinematic-
hardening rule of the small deformation theory of classical metal viscoplasticity (e.g., Chaboche, 2008),
but here, as in Ames et al. (2009), applied to large deformation polymer-viscoplasticity. Note that on
account of the assumed temperature dependence of the back stress modulus B in (4.17), the back-stress
Mback decreases as ϑ approaches ϑg, and vanishes for all ϑ > ϑg.

4.2 Constitutive equations for micromechanism α = 2

1. Free energy

Let
F

e (2)
dis

def
= J −1/3 Fe(2), detF

e (2)
dis = 1, (4.41)

denote the distortional part of Fe(2). Correspondingly, let

C
e (2)
dis

def
= (F

e (2)
dis )⊤F

e (2)
dis = J−2/3Ce(2), (4.42)

denote the distortional right Cauchy-Green tensor and consider a free energy function in the special
form 16

ψ(2) = ψ̄e (2)(C
e (2)
dis , ϑ). (4.43)

As discussed by Ames et al. (2009), there is a conceptual difficulty with using statistical-mechanical
ideas of the theory of entropic rubber elasticity to describe the strain hardening due to chain-stretching
at temperatures below the glass transition temperature, because at these temperatures the chains do
not have sufficient mobility to sample all possible molecular conformations. For this reason, we employ
a simple phenomenological form for the free energy function ψ(2) proposed by Gent (1996):

ψ(2) = − 1
2µ

(2) I
(2)
m ln

(

1 − I
(2)
1 − 3

I
(2)
m

)

, with I
(2)
1

def
= trC

e (2)
dis , (4.44)

where
µ(2)(ϑ) > 0 and I(2)

m (ϑ) > 3 (4.45)

are two temperature-dependent material constants, with µ(2) representing the ground state rubbery

shear modulus of the material, and I
(2)
m representing maximum value of (I

(2)
1 − 3), associated with the

limited extensibility of the polymer chains.

The Gent free energy function has been shown by Boyce (1996) to yield predictions for the stress-strain
response similar to the entropic-network model of Arruda and Boyce (1993). However, since the Gent
free-energy function is phenomenological, we are free to specify a temperature variation of the moduli

µ(2)(ϑ) > 0 and I
(2)
m (ϑ) to fit experimentally-observed trends, rather than those dictated by statistical

mechanics theories of entropic elasticity. The material parameter µ(2) in (4.44) is strongly temperature
dependent — experimental results indicate that µ(2) decreases with increasing temperature. The
empirical function chosen to fit the experimentally-observed temperature dependence of µ(2) is

µ(2)(ϑ) = µ(2)
g exp

(

−N(ϑ− ϑg)
)

, (4.46)

16Since Je (α) = J , and we have already accounted for a volumetric elastic energy for ψ(1), we do not allow for a volumetric
elastic energy for ψ(2) or ψ(3).
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where µ
(2)
g is the value of µ(2) at the glass transition temperature (ϑg), and N is a parameter that

represents the slope of temperature variation on a logarithmic scale. The parameter I
(2)
m is taken to

be temperature-independent constant

I(2)
m (ϑ) ≈ constant. (4.47)

2. Cauchy stress. Mandel stress

Using (3.8), the free energy (4.44) yields the corresponding second-Piola stress as

Se(2) = J−2/3µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)−1
[

1 − 1

3

(

trC
e (2)
dis

)

C
e(2)−1
dis

]

, (4.48)

and use of (3.7) gives the contribution T(2) to Cauchy stress as

T(2) = J−1

[

µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)−1

(B
e (2)
dis )0

]

. (4.49)

Also, from (3.9) and (4.48) the corresponding Mandel stress is

Me(2) = µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)−1

(C
e (2)
dis )0, (4.50)

which gives the equivalent shear stress for plastic flow as

τ̄ (2) def
=

1√
2
|Me(2)|. (4.51)

3. Flow rule. Internal variables

The evolution equation for Fp(2) is
Ḟp (2) = Dp(2) Fp(2), (4.52)

with the plastic stretching Dp(2) given by

Dp(2) = νp(2)

(
Me(2)

2τ̄ (2)

)

, where νp(2) def
=

√
2|Dp(2)| (4.53)

is the corresponding equivalent plastic shear strain rate. For ϑ ≥ ϑg, with S(2) a positive-valued stress-
dimensioned (constant) shear resistance, we take the corresponding strength relation as a simple power
law

τ̄ (2) = S(2)

(

νp(2)

ν
(2)
0

)m(2)

for ϑ ≥ ϑg, (4.54)

where ν
(2)
0 is a reference plastic shear strain rate with units of 1/time, and m(2) is a positive-valued

strain-rate sensitivity parameter. We assume the parameter ν
(2)
0 = νr, the same as the reference rate

used in (4.2). This gives

νp(2) = νr

(

τ̄ (2)

S(2)

)1/m(2)

for ϑ ≥ ϑg. (4.55)

In order to model no network slippage below ϑg, we require

νp(2) = 0 for ϑ < ϑg. (4.56)
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We may combine (4.55) and (4.56) as the following single flow rule

νp(2) =
1

2
νr

(

τ̄ (2)

S(2)

)1/m(2)

[

1 + tanh
( 1

∆x
(ϑ− ϑg)

)]

. (4.57)

Equation (4.57) allows for no slippage of physical entanglements below ϑg, and as the temperature

increases through the glass transition, the value of νp(2) smoothly transitions to a positive value. ∆x

is a parameter related to the temperature range across which the transition occurs. To ensure a very
rapid transition of νp(2) near ϑg, we take

∆x =
∆

10
.

Thus, under a macroscopically-imposed deformation history at temperatures greater than a few degrees
higher than ϑg, micromechanism α = 2 freely deforms inelastically by relative chain-slippage, and there
is no further increase in the corresponding elastic stretch Ue (2), and thereby the corresponding stress;
cf. Fig. 4b for α = 2.

4.3 Constitutive equations for micromechanism α = 3

1. Free energy

Similar to our assumption for micromechanism α = 2, we take the free energy in a Gent form:

ψ(3) = − 1
2µ

(3) I
(3)
m ln

(

1 − I
(3)
1 − 3

I
(3)
m

)

, with I
(3)
1

def
= trC

e (3)
dis , (4.58)

where
µ(3) > 0, and I(3)

m > 3 (4.59)

are two material constants, with µ(3) representing the ground-state rubbery shear modulus of the

material, and I
(3)
m representing maximum value of (I

(3)
1 −3). For simplicity, these two material constants

are assumed to be temperature-independent.

2. Mandel stress. Cauchy stress

Using (3.8), the free energy (4.58) yields the corresponding second Piola stress as

Se(3) = J−2/3µ(3)
(

1 − I
(3)
1 − 3

I
(3)
m

)−1
[

1 − 1

3

(

trC
e (3)
dis

)

C
e(3)−1
dis

]

, (4.60)

and use of (3.7) gives the contribution T(3) to Cauchy stress as

T(3) = J−1

[

µ(3)
(

1 − I
(3)
1 − 3

I
(3)
m

)−1

(B
e (3)
dis )0

]

. (4.61)

Also, from (3.9) and (4.60) the corresponding Mandel stress is

Me(3) = µ(3)
(

1 − I
(3)
1 − 3

I
(3)
m

)−1

(C
e (3)
dis )0, (4.62)

which gives the equivalent shear stress for plastic flow for micromechanism α = 3 as

τ̄ (3) def
=

1√
2
|Me(3)|. (4.63)

18



3. Flow rule. Internal variables

The evolution equation for Fp(3) is
Ḟp (3) = Dp(3) Fp(3), (4.64)

with the plastic stretching Dp(3) given by

Dp(3) = νp(3)

(
Me(3)

2τ̄ (3)

)

, where νp(3) def
=

√
2|Dp(3)| (4.65)

is the corresponding equivalent plastic shear strain rate. We assume that νp(3) = 0 when ϑ < ϑg, and

for ϑ ≥ ϑg, with S(3) a positive-valued stress-dimensioned shear resistance, we take the corresponding
strength relation as a simple power law

τ̄ (3) = S(3)

(

νp(3)

ν
(3)
0

)m(3)

, (4.66)

where ν
(3)
0 is a reference plastic shear strain rate with units of 1/time, and m(3) is a positive-valued

strain-rate sensitivity parameter. We assume the parameter ν
(3)
0 = νr, the same as the reference rate

used in (4.2). Thus, as in (4.57), the scalar flow rate may be written as

νp(3) =
1

2
νr

(

τ̄ (3)

S(3)

)1/m(3)

[

1 + tanh
( 1

∆x
(ϑ− ϑg)

)]

. (4.67)

4. Evolution equations for internal variable S(3)

The internal variable S(3) models the dissipative resistance caused by the sliding polymer chains dur-
ing the tortuous process of molecular disengagement that has come to be know as “reptation” at
temperatures above ϑg. The evolution of S(3) is taken to be governed by

Ṡ
(3)

= h3 (λ̄dis − 1) νp(3), with initial value S(3)(X, 0) = S
(3)
0 ≥ 0. (4.68)

Here h3(ϑ) and S
(3)
0 (ϑ) are temperature dependent material parameters, and

λ̄dis
def
=
√

trCdis/3 =

√

Bp (3) : C
e (3)
dis /3 (4.69)

is an effective distortional stretch. The temperature dependence of S
(3)
0 and h3 is taken to obey the

following simple forms

S
(3)
0 = S(3)

g exp
(

− Y (ϑ− ϑg)
)

, (4.70)

h3 = h3g exp
(

− Z(ϑ− ϑg)
)

. (4.71)

4.4 Fourier’s Law

The heat flux is taken to be given by Fourier’s law

qR = −κ∇ϑ, (4.72)

with κ(ϑ) > 0 the thermal conductivity. The temperature dependence of the thermal conductivity for the
three polymers is shown in Fig. 9a.17

17For Zeonex, the data was obtained from Zeon chemicals. For PC and PMMA, the data was obtained from the material
database of the commercial software program Moldflow.
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4.5 Partial differential equations for the deformation and temperature fields

The partial differential equation for the deformation is obtained from the local force balance (3.24) and
(3.25), with T given by the sum of (4.18), (4.49) and (4.61).

At this stage of the development of the theory and the concomitant experimental database, the “ther-
moelastic coupling” terms in (3.27) which give rise to a temperature change due to variations of Ce (α) and A
are not well-characterized, nor is the dependence of the specific heat c, defined in (3.26), on these quantities.
Much work needs to be done to characterize these dependencies. Here, as approximations, (i) we assume that
c ≈ ĉ(ϑ) (independent of Ce (α) and A), and may be obtained from experimental measurements; and (ii)
we neglect the thermoelastic coupling terms, and assume instead that only a fraction 0 / ω / 1 of the rate
of plastic dissipation contributes to the temperature changes. Under these approximative assumptions, and
since we have neglected static recovery of A, (3.27) reduces to

cϑ̇ = −DivqR + qR + ω
(

τ̄ (1) νp (1) + 1
2 B γ | lnA|2 νp (1) + τ̄ (2) νp (2) + τ̄ (3) νp (3)

)

. (4.73)

We take ω ≈ 0.7. The temperature dependence of specific heat for the three polymers is shown in Fig. 9b.18

5 Material parameters for Zeonex, PC, and PMMA

The material parameters appearing in our model were calibrated by fitting the experimental stress-strain
data for Zeonex, PC, and PMMA with the help of a MATLAB implementation of a one-dimensional version
of our model which is detailed in the Appendix §8, as well as three-dimensional finite element simula-
tions using a single element. Under certain circumstances, when it became necessary to account for heat
generation due to plastic dissipation and thermal conduction in the simple compression experiments, fully
thermo-mechanically-coupled multi-element simulations were required.19 Our material parameter calibration
procedure is described in the Appendix. The material parameters for Zeonex, PC, and PMMA determined
by using this procedure are listed in Table 1.

The fit of the constitutive model to the experimental stress-strain curves for Zeonex, at various tempera-
tures ranging from 25C to 180C and strain rates ranging from 3× 10−4 to 3× 10−1 s−1, is shown in Fig. 10.
The fit of the constitutive model to our experimental stress-strain curves for PC, at various temperatures
ranging from 25C to 175C and strain rates ranging from 10−3 to 10−1 s−1, is shown in Fig. 11. Finally,
Fig. 12 shows the fit of the constitutive model to the experimental stress-strain curves for PMMA at various
temperatures ranging from 25C to 170C and strain rates ranging from 3 × 10−4 to 10−1 s−1.

For all three amorphous polymers (Zeonex, PC, and PMMA) studied in this paper, our specialized
constitutive model performs acceptably (but not perfectly!) in reproducing the following major features of
the macroscopic stress-strain response of these materials:

• For temperatures ϑ < ϑg: (a) the strain rate and temperature dependent yield strength; (b) the
transient yield-peak and strain-softening which occurs due to deformation-induced disordering; (c) the
subsequent rapid strain-hardening due to alignment of the polymer chains at large strains; (d) the
unloading response at large strains; and (e) the temperature rise due to plastic-dissipation and the
limited time for heat-conduction for the compression experiments performed at strain rates ' 0.01 s−1.

• For temperatures ϑ > ϑg: (a) the extreme drop in initial stiffness at these temperatures, relative
to those below ϑg; (b) the lack of a yield-peak; (c) the significant drop in maximum stress levels to
/ 5 MPa, relative to ≈ 250MPa at temperatures below ϑg; (d) the highly non-linear, strain-hardening
stress-strain response during the loading-phase; (e) the non-linear unloading response and permanent-
set — for Zeonex and PC the amount of permanent-set increases dramatically as the temperature
increases, while for PMMA the amount of permanent-set is substantially smaller.

Overall, our model better reproduces the experimentally-observed stress-strain response for the three ma-
terials at temperatures below ϑg, than it does for those for temperatures above ϑg. However, with “only

18For Zeonex, data was obtained from Zeon chemicals. For PC and PMMA see Bicerano, J. (1993) and Van Krevelen, D.W.
(1990).

19Typically to fit the experimental data at strain rates of 0.01 s−1 and 0.03 s−1.
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three micromechanisms” (but, numerous material parameters!) we feel that the model, as it stands, should
be useful for modeling, simulation, and design of various polymer-processing operations, which we turn to
next.

6 Validation experiments and simulations

In this section we show the results of some validation experiments (which were not used to determine
the material parameters of our theory), and compare the results of some key macroscopic features of the
experimental results against those from corresponding numerical simulations. The validation experiments
include: (a) a plane-strain forging of PC at a temperature below ϑg, and another forging at a temperature
above ϑg; (b) blow-forming of thin-walled semi-spherical shapes of PC above ϑg; and (c) micron-scale,
hot-embossing of channels in Zeonex and PMMA above ϑg.

6.1 Plane-strain forging of PC

Plane-strain forging experiments at 25C and 160C, under isothermal conditions, were performed on PC
specimens (ϑg ≈ 145C). The forging operation, cf. Fig. 13, converts a cylindrical specimen with a circular
cross-section into a specimen with a cross-section which is in the shape of a “cruciform.” The PC forging
specimens had an original diameter of 12.7mm, and were 12.7mm deep in the plane-strain direction, which
is into the plane of the paper. The split-dies which impart the cruciform shape to the workpiece, were made
from hardened tool steel. For the experiment conducted at 25C the interfaces between the workpiece and
the dies were lubricated to minimize frictional effects; however, no lubrication was used for the experiment
conducted at 160C due to degradation of the lubricant at high temperatures. The forging experiments were
carried out under displacement control to a relative die-displacement of 4.6mm at a constant die-closing
velocity of 0.02mm/s, and then the die motion was reversed at the same absolute velocity to unload the
specimen. After unloading, the specimen which was forged at 160C was immediately air-cooled to room
temperature.

For the finite element simulation of the forging process we made use of the symmetry of the geometry,
and only meshed one-quarter of the geometry, as shown in Fig. 14. The quarter-circle of the workpiece
cross-section was meshed using 277 ABAQUS-CPE4HT thermo-mechanically coupled elements, and the
cruciform-die was modeled as a rigid surface. For the experiment at 25C the workpiece was well-lubricated,
and therefore the contact between the die and the workpiece was modeled as frictionless. However, since
no lubrication was applied in the experiment at 160C, the contact between the die and the workpiece was
modeled as frictional, with a high Coulomb friction coefficient of 0.75.

Fig. 15a and Fig. 15b compare the numerically-predicted and experimentally-measured, load-unload
force versus displacement curves for the forging processes at 25C and 160C, respectively. The numerical
simulations are able to reasonably accurately predict load-displacement behaviors at both 25C, which is well
below ϑg, as well as at 160C, which is 15C higher than ϑg of PC. Note that the maximum force for forging
at 25C is 25 kN, while the maximum force for forging at 160C is only 0.8 kN.

At the end of the loading process, with the dies still closed, the polycarbonate specimens conform with the
shape of the cruciform forging dies. Upon die retraction and unloading, the polycarbonate specimens undergo
some shape-recovery. For the forging experiment conducted at 25C there is only a little shape-recovery after
unloading, while for the forging experiment conducted at 160C there is significant shape-recovery after
unloading. After unloading, and cooling down to room temperature, each forged specimen was sectioned,
polished, and photographed. Fig. 16a and Fig. 16b compare the experimentally-measured and numerically-
predicted deformed shapes after unloading, die removal, and cooling for the forgings conducted at 25C and
160C, respectively. For both cases the numerically-predicted final geometry is in reasonably good agreement
with that which is experimentally-measured.

6.2 Blow-forming of semi-spherical shapes of PC

Next, we consider blow-forming of flat PC sheets into thin-walled semi-spherical shapes above ϑg. The
starting circular blanks, 102mm in diameter, were machined from 3 mm thick PC sheets. The blanks
were clamped in a blow-forming fixture; the bottom part of the fixture was essentially a 50mm diameter
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thick-walled cylinder which was attached to a high-pressure regulated air-supply, and the top clamping
plate contained a 50mm diameter hole for the polymer to freely expand under pressure. The experiments
were performed under two different processing conditions: (i) at 155C under a forming pressure of 20 psi
(0.14MPa), and (ii) at 160C under a pressure of 35 psi (0.24MPa). A schematic of the temperature-pressure
process cycle is shown in Fig. 17a. The forming process consists of three steps: (a) heating from room
temperature to the processing-temperature over a period of 10 minutes; (b) ramping the pressure to the
processing pressure in 2 minutes; (c) holding at the processing-pressure while simultaneously cooling back
to room temperature in 15 minutes; and (d) finally relieving the pressure.

For the finite element simulation of such a process, we make use of the axial-symmetry of the geometry, and
mesh only a slice of the geometry as shown in Fig. 17b. The polymer sheet is modeled using 252 ABAQUS-
CAX4HT axi-symmetric, thermo-mechanically-coupled elements with 5 elements through the sheet thickness.
The clamps are modeled as rigid surfaces, and surface-interaction between the workpiece and the clamps
is modeled as frictional, with a high Coulomb friction coefficient of 0.9. The pressure was applied at the
surface of the bottom elements, as indicated in Fig. 17b. Fig. 18a shows an image of a sectioned one-half
of the specimen for the blow-forming experiment conducted at 155C and 20psi, while Fig. 18b shows the
corresponding numerically-predicted result. Fig. 18c shows a comparison of the experimentally-measured
profiles of the specimen cross-sections (solid lines), against corresponding numerically-predicted profiles
(dashed lines): the figure at the top is for blow-forming at 160C and 35 psi, and that at the bottom is for
blow-forming at 155C and 20 psi. The predictions of the bulged-shapes from the simulations are in good
agreement with the experiments.

6.3 Micron-scale hot-embossing of Zeonex and PMMA

Of major importance for creating micron-scale surface features (such as capillary channels for microfluidic
chips) in polymeric substrates is the replication method of micro-hot-embossing. The basic process of
micro-hot-embossing is as follows: the polymeric substrate is heated to 10–30C above its glass transition
temperature and a rigid stamp containing micron-scale features is pressed into the heated polymer to allow
the polymer to flow and fill the cavities, transferring the features in the tool to the polymeric substrate.
Pressure is then held and the system is cooled to the demolding temperature (typically 20-60C below the
glass transition temperature), and the tool is removed from the polymer part. Although there are numerous
reports on successfully micro-hot-embossed microfluidic chips in the literature (cf., e.g., Billenberg et al,
2005), the field of polymer hot-embossing process modeling is still not well developed because of the complex
material modeling challenges, and there are only a few recent reports on numerical process-modeling studies
for micro-hot-embossing (cf., e.g., Juang et al., 2002). Here we consider two micro-hot-embossing experiments
and corresponding numerical simulations.

6.3.1 Embossing of a series of long micro-channels in a Zeonex substrate

As a simple example of a micro-hot-embossing experiment and simulation, we first consider embossing of
a series of long channels into a Zeonex substrate (ϑg ≈ 136C). The pattern consists of channels which are
55µm wide, 43.5µm deep, and are spaced 92µm apart. Fig. 19a shows a schematic of the tool-pattern, and
Fig. 19b shows a SEM micrograph of a portion of an actual embossing tool made from Zr-based metallic
glass. The hot-embossing experiment was carried out on a servo-hydraulic Instron testing machine equipped
with heated compression platens. A 25mm square, 1mm thick sheet of Zeonex, and a 11.7mm square
patterned metallic glass tool were aligned and placed between the heated compression platens. In the micro-
hot-embossing experiment, the polymer and the embossing tool were brought into contact and heated to
an embossing temperature 160C. Once at the embossing temperature, a compressive embossing force was
slowly ramped to 0.41 kN to produce a nominal pressure of 3 MPa in 60 seconds, and held for 60 seconds
before both the tool and the polymer were cooled down over 10 minutes to the demolding temperature of
85C, after which the pressure was removed and the tool was separated from the polymer substrate. The
temperature-force-cycle for the micro-hot-embossing process is schematically shown in Fig. 20a.

Since the channels are long relative to their width, and there are a large number of them aligned in parallel,
we employ a plane-strain idealization in our numerical simulation, and consider only a single half-segment
with suitable boundary conditions. Fig. 20b shows the finite element mesh. The Zeonex substrate is modeled
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using 742 ABAQUS-CPE4HT plane strain, thermo-mechanically-coupled elements, and the metallic glass
tool is modeled using an appropriately shaped rigid surface. Contact between the substrate and tool was
modeled as frictional, with a Coulomb friction coefficient of 0.75. The displacement boundary conditions on
the portions AD and BC of the mesh boundary are u1 = 0, while on the portion CD of the mesh, u1 = u2 = 0
are prescribed.

A scanning electron microscope (SEM) image of the embossed pattern is shown in Fig. 21a, and the
numerically-predicted pattern is shown in Fig. 21b.20 We further investigated the quality of the embossed
features using an optical profilometer; Fig. 22 compares representative cross-sections of the embossed features
in the Zeonex (circles), against the numerically-predicted channel profile (dashed line).21 The final geometry
of the embossed channels predicted by the numerical-simulation agrees well with the results from the micro-
hot-embossing experiment.

6.3.2 Embossing of a series of long micro-channels in a PMMA substrate at various pressures

In this example we consider embossing a series of long channels into a PMMA substrate (ϑg ≈ 115 C)
at an embossing temperature of 130C, at three different embossing pressures — 0.48MPa, 1.12MPa, and
1.6MPa. Three different embossing pressures of increasing magnitude were considered in order to compare
the numerically-predicted and experimentally-measured partially embossed geometries.

The pattern consists of channels which are 65µm wide, 27µm deep, and spaced 123µm apart. A 25mm
square, 1 mm thick sheet of PMMA, and a slightly larger patterned silicon tool were aligned and placed
between the heated compression platens. In the hot-embossing experiments the tool and polymer were
brought into contact and then heated to the embossing temperature of 130C. After reaching the embossing
temperature, the load was ramped to produce the desired nominal embossing pressure at a constant rate of
0.15MPa s−1. After which the polymer and tool were cooled over 10 minutes to the demolding temperature
of 90C and the pressure was removed.

For the corresponding numerical simulations, as in Section 6.3.1, we employ a plane-strain idealization
and consider only a single half-segment with suitable boundary conditions. The PMMA substrate is modeled
using 492 ABAQUS-CPE4HT plane-strain, thermo-mechanically-coupled elements, while the silicon tool is
modeled using an appropriately shaped rigid surface. Contact between the substrate and the tool was
modeled as frictional, with a Coulomb friction coefficient of 0.75. The displacement boundary conditions are
prescribed similar to 6.3.1 (cf. Fig. 20b).

SEM images of the embossed channels in the PMMA at the three different embossing pressures, along with
the corresponding numerical simulations are shown in Fig. 23. This result nicely shows that the numerical
simualtions are able to reproduce the process of die-filling as the embossing pressure is increased.

6.3.3 Embossing of a micro-mixer pattern for a microfluidic device in a Zeonex substrate

Next, we turn our attention to micro-hot-embossing of a pattern with relevance to microfluidic applications,
and consider a simple micro-mixer design shown in Fig. 24 (Hardt et al., 2008). The micro-mixer has two
inlets which converge into a single long serpentine mixing channel with a single outlet. In addition to
the serpentine micro-mixing channel, the device also has many micron-sized markers and other features for
alignment and diagnostics (e.g. rectangular and triangular wells of the order of 100µm). The mixing channel
itself is 50µm wide and 38.3 µm deep and the overall dimension of the device is 25mm by 35mm.

In order to determine suitable temperature and pressure process conditions for hot-embossing this micro-
mixer geometry in the Zeonex substrate, we did not attempt to model the full geometry, but considered
only the long parallel portions of the serpentine channels, and modeled these channels using a plane-strain
idealization and periodic boundary conditions in our finite element simulations. The Zeonex substrate
was modeled using a mesh consisting of 443 ABAQUS-CPE4HT plane strain, thermo-mechanically-coupled
elements, and the metallic glass embossing-tool is modeled using an appropriately shaped rigid surface; the
finite element mesh is shown in Fig. 25. The displacement boundary conditions on the portions AD and
BC of the mesh boundary are u1 = 0, while on the portion CD of the mesh, u1 = u2 = 0 are prescribed.

20The numerical pattern has been mirrored and repeated during post-processing to ease comparison with the corresponding
experimental result.

21The optical profilometry method that we used to measure the channel profile is not capable of providing data for the sharp
vertical features.
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Contact between the substrate and tool was modeled as frictional, with Coulomb friction coefficient of 0.75.
We chose an embossing temperature of 160C, and sought to determine an appropriate embossing pressure,
holding time, and demolding temperature which would result in good replication.

After a few trial simulations, we found that at 160C, ramping the pressure to 2MPa in 30 seconds, and
holding the pressure at temperature for 60 seconds would result in a completely filled die. Fig. 26 shows
two snapshots of the die-filling process: Fig. 26a shows contours of the equivalent plastic strain22 after 10 s
when the nominal pressure is 0.67MPa and the die is only partially filled, and Fig. 26b shows the contours
of equivalent plastic strain at 90 s when the pressure has been held at 2MPa for 60 seconds and the die has
completely filled. Our numerical simulations also showed that further cooling down under pressure to 85C
over a period of 10 minutes, and then demolding, would lock-in the embossed geometry.

After estimating the process conditions from our numerical simulations, we conducted an actual embossing
experiment for the complete micro-mixer geometry (cf. Fig. 25) in our servo-hydraulic testing machine
equipped with heated compression platens. The temperature of polymer and metallic glass tool was increased
to the embossing temperature of 160C, and a compressive force of 1.75 kN was applied to produce a nominal

pressure of 2MPa in 30 seconds. The pressure was then held for another 60 seconds at temperature, followed
by cooling down under pressure to 85C over a period of 10 minutes, after which the pressure was removed
and the tool was quickly removed from the substrate.

SEM images of several different features in the metallic glass tool, along with the corresponding images
of the embossed features in the Zeonex, are shown in Fig. 27. As seen in this figure, the micro-hot-embossing
process determined from the numerical simulations, when actually executed, was able to successfully repro-
duce all the major micron-scale features of the metallic glass tool onto the polymeric substrate.

7 Concluding remarks

We have developed a thermo-mechanically-coupled large-deformation isotropic elastic-viscoplastic theory for
amorphous polymers in a temperature range which spans their glass transition temperature. The material
parameters appearing in the theory have been calibrated for Zeonex-690R, PC, and PMMA using a relatively
complete set of data obtained from constant true strain-rate simple compression experiments in a temperature
range from room temperature to ≈ 50C above the glass transition temperature, for a variety of strain rates in
the range ≈ 10−4 to 10−1 s−1, achievable in modern servo-hydraulic testing machines. The new constitutive
theory has been implemented in the finite element program ABAQUS/Standard (2009) by writing a user
material subroutine. The predictive capabilities of the constitutive theory and its numerical implementation
have been validated by comparing the results from a suite of validation experiments against corresponding
results from numerical simulations. As demonstrated in this paper, our theory should be useful for modeling
important polymer processing operations, such as thermoforming and blow-molding for manufacture of
various thin-walled containers, and micro-hot-embossing for the manufacture of microfluidic devices.
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8 Appendix: Calibration of material parameters in the constitu-

tive model

In this appendix we briefly outline our procedure for estimating values of the material parameters in the
constitutive model. For an isotropic theory such as the one presented in this paper, it is most convenient
to use an implementation of a one-dimensional version of our model in the computer program MATLAB to
conduct appropriate simulations to estimate the material parameters. We illustrate our heuristic material
parameter calibration procedure for Zeonex; the procedure for PC and PMMA is essentially identical.

From the outset we acknowledge that for any given material, the list of material parameters is rather
long, and that the parameter values that we determine are not unique. However, having apologized for
these features of our list of material parameters in advance, we know of no other theory which is able to
phenomenologically (or otherwise) reproduce the complicated response of these materials over the ranges of
strains, strain-rates, and temperatures considered in this paper.

8.1 One-dimensional version of the constitutive theory

In this section we present an approximate one-dimensional version of the model, which substantially aids in
the calibration of material properties from experimental data. The approximation is primarily in that we
cannot account for Poisson’s-type lateral contractions, and attendant volume changes, in a one-dimensional
setting. The underlying constitutive equations relate the following basic fields:

U > 0, stretch,

U = Ue (α)Up (α), α = 1, 2, 3 elastic-plastic decomposition of U ,

Ue (α) elastic part of the stretch for each α,

Up (α), plastic part of the stretch for each α,

ϑ > 0, absolute temperature,
ψ =

∑

α ψ (α) free energy density,

σ =
∑

α σ(α), Cauchy stress.

8.1.1 Variation of the glass transition temperature ϑg with strain rate

Let
ǫ̇

def
= |U̇U−1| (8.1)

denote an equivalent tensile strain rate. We assume that

ϑg =







ϑr if ǫ̇ ≤ ǫ̇r,

ϑr + n log
ǫ̇

ǫ̇r
if ǫ̇ > ǫ̇r,

(8.2)

where ϑr a reference glass transition temperature at a reference strain rate ǫ̇r, and n is a material parameter.

8.1.2 Constitutive equations for α = 1

1. Free energy. Cauchy stress. Back-stress. Effective stress

With
ǫe (1) = lnUe (1) (8.3)

denoting a logarithmic elastic strain, we assume that

ψ(1) = ψe (1)(ǫe (1), ϑ) + ψp (1)(A, ϑ), (8.4)

where A > 0, is a squared stretch-like internal variable. For ψe (1) we use a simple linear elastic form
for the free energy

ψe (1) =
1

2
E (ǫe (1))2 − E αth (ϑ− ϑ0)ǫ

e (1) + f̃(ϑ), (8.5)
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where E(ϑ) > 0 is a Young’s modulus, αth(ϑ) is a coefficient of thermal expansion, ϑ0 is a reference
temperature, and f̃(ϑ) is an entropic contribution to the free energy related to the specific heat of the
material. The temperature dependence of the modulus E is taken in the same form as that for G in
(4.8), while the temperature dependence of the coefficient of thermal expansion is as in (4.12). This
free energy contributes a component

σ(1) = E ǫe (1) − Eαth(ϑ− ϑ0), (8.6)

to the total Cauchy stress σ.

Next, for ψp (1), first consider a symmetric positive definite squared-stretch-like tensor A which satisfies
detA = 1. Let (a1, a2, a3) denote the set of principal values of A, with a1a2a3 = 1. Then as in (4.15),
the defect energy is

ψp (1) = 1
4 B

[
(ln a1)

2 + (ln a2)
2 + (ln a3)

2
]
, (8.7)

where B(ϑ) ≥ 0 is a back-stress modulus, with temperature dependence given in (4.17). With σ(back)

denoting a stress from this free energy, standard relations of finite deformation incompressible elasticity
give the corresponding principal values of the back-stress as

σ
(back)
i = 2ai

∂ψp (1)

∂ai
− P, (8.8)

with P an arbitrary “pressure.” In simple tension/compression, σ
(back)
1 ≡ σback and σ

(back)
2 = σ

(back)
3 =

0, and hence

σback = 2a1
∂ψp (1)

∂a1
− 2a2

∂ψp (1)

∂a2
= B (ln a1 − ln a2) , (8.9)

or equivalently, with a1 = A, and a2 = a3 = A−1/2,

σback =
3

2
B lnA. (8.10)

In a one-dimensional setting, the driving stress for plastic flow is the effective stress given by

σ
(1)
eff = σ(1) − σback, (8.11)

and the equivalent tensile stress and the mean normal pressure are

σ̄(1) def
= |σ(1)

eff | and p̄ = −1

3
σ(1), (8.12)

respectively.

2. Flow rule

The one-dimensional version of the flow rule (4.24) is that

U̇p (1) = Dp (1)Up (1), Dp (1) = ǫ̇p(1)sign(σ(1)), with ǫ̇p(1) ≥ 0. (8.13)

With (Sa, Sb) two positive-valued stress-dimensioned internal variables, and αp a pressure-sensitivity
parameter, let

σe
def
= σ̄(1) − (Sa + Sb + αpp̄) (8.14)

define a net equivalent tensile stress, then equivalent tensile plastic strain rate ǫ̇p(1) is taken to be given
by

ǫ̇p(1) =







0 if σe ≤ 0,

ǫ̇
(1)
0 exp

(

− Q

kBϑ

)[

sinh

(
σeV

2 kBϑ

)]1/m(1)

if σe > 0.
(8.15)
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In the scalar flow rule (8.15), (ǫ̇
(1)
0 , V,m(1), αp) are taken to be constants, while Q is assumed to be

temperature- dependent, with the dependency given in (4.33). When ǫ̇p(1) > 0, the scalar flow rule
(8.15), using (8.11) and (8.12), may be inverted to give the strength relation

|σ(1) − σback| +
1

3
αp σ

(1) = Sa + Sb +
2kbϑ

V
sinh−1

[( ǫ̇p(1)

ǫ̇∗(ϑ)

)m(1)]

, (8.16)

where

ǫ̇∗(ϑ)
def
= ǫ̇

(1)
0 exp

(

− Q

kBϑ

)

. (8.17)

3. Evolution equations for the internal variables ϕ, Sa, Sb, and A

Together with (Sa, Sb, A), we introduce another internal variable ϕ. The internal variables Sa and ϕ
are taken to obey the coupled evolution equations:

Ṡa = ha (S∗
a − Sa) ǫ̇p(1), with S∗

a = b (ϕ∗ − ϕ) , and Sa(0) = 0; (8.18)

where
ϕ̇ = g (ϕ∗ − ϕ) ǫ̇p(1), with ϕ(0) = 0, where

ϕ∗(ǫ̇p(1), ϑ) =







z

(

1 − ϑ

ϑg

)r (
ǫ̇p(1)

ǫ̇r

)s

for (ϑ ≤ ϑg) and (ǫ̇p(1) > 0),

0 for (ϑ > ϑg) or (ǫ̇p(1) = 0).







(8.19)

Here (ha, b, g, z, r, s) are taken to be constants.

The evolution of Sb is taken to be governed by

Ṡb = hb (λ̄− 1) (S∗
b − Sb) ǫ̇

p(1), with initial value Sb(0) = Sb0 ≥ 0, (8.20)

where
λ̄

def
=
√

(U + 2U)/3 (8.21)

is an effective stretch, hb a constant, and S∗
b temperature-dependent, cf. (4.38).

The one-dimensional form of (4.40) is the following evolution equation for A:

Ȧ = 2ADp (1) − γ(A lnA) ǫ̇p(1), A(0) = 1, (8.22)

where γ ≥ 0 is a constitutive parameter which governs the dynamic recovery of A.

8.1.3 Constitutive equations for α = 2

1. Free energy. Cauchy stress

For ease of notation, suppress for the time being the superscript α = 2. For ψ, consider first a symmetric
positive definite, unimodular stretch tensor Ue. Let (Ue

1 , U
e
2 , U

e
3 ) denote the set of principal stretches

of Ue, with Ue
1U

e
2U

e
3 = 1. The first invariant I1 of (Ue)2 is

I1
def
= Ue 2

1 + Ue 2
2 + Ue 2

3 . (8.23)

With σ denoting the contribution to the Cauchy stress from free energy ψ, which is presumed to be
a function of I1, standard relations of finite-deformation incompressible elasticity give the principal
values of σ as

σi = Ue
i

∂ψ

∂Ue
i

− P, (8.24)

with P an arbitrary “pressure.” In simple tension/compression, with σ1 ≡ σ and σ2 = σ3 = 0, we get

σ = Ue
1

∂ψ

∂Ue
1

− Ue
2

∂ψ

∂Ue
2

=
∂ψ

∂I1

(

Ue
1

∂I1
∂Ue

1

− Ue
2

∂I1
∂Ue

2

)

= 2
∂ψ

∂I1

(
Ue 2

1 − Ue 2
2

)
, (8.25)
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or equivalently, with Ue
1 ≡ Ue and Ue

2 = Ue
3 = Ue−1/2,

σ = 2
∂ψ

∂I1

(
Ue 2 − Ue−1

)
. (8.26)

Reinstating the superscript (2) for micromechanism α = 2, the Gent (1996) free energy in terms of

I
(2)
1

def
= (U

e(2)
1 )

2
+ (U

e(2)
2 )

2
+ (U

e(2)
3 )

2
is

ψ(2) = −1

2
µ(2) I(2)

m ln

(

1 − I
(2)
1 − 3

I
(2)
m

)

, (8.27)

which with (8.26) gives the contribution σ(2) to total one-dimensional Cauchy stress σ as

σ(2) = µ(2)

(

1 − I
(2)
1 − 3

I
(2)
m

)−1
(

(Ue(2))
2 − (Ue(2))

−1
)

, (8.28)

where µ(2)(ϑ) > 0 and I
(2)
m > 3 are two material parameters, with the temperature dependency of µ(2)

given in (4.46).

2. Flow rule

The evolution equation for Up (2) is

U̇p (2) = Dp (2)Up (2), Dp (2) = ǫ̇p(2)sign(σ(2)),

ǫ̇p(2) =
1

2
ǫ̇r

( |σ(2)|
S(2)

)1/m(2) [

1 + tanh
(10

∆
(ϑ− ϑg)

)]

,







(8.29)

with ǫ̇p(2) the equivalent tensile plastic strain-rate. The parameters (m(2), S(2)) are constants, ǫ̇r is
same as the reference rate used in (8.2).

8.1.4 Constitutive equations for α = 3

1. Free energy. Cauchy stress

For a free energy function of the form

ψ(3) = −1

2
µ(3) I(3)

m ln

(

1 − I
(3)
1 − 3

I
(3)
m

)

, (8.30)

where I
(3)
1

def
= (U

e(3)
1 )

2
+ (U

e(3)
2 )

2
+ (U

e(3)
3 )

2
, analogous to the case α = 2, we have the contribution

σ(3) = µ(3)

(

1 − I
(3)
1 − 3

I
(3)
m

)−1
(

(Ue(3))
2 − (Ue(3))

−1
)

(8.31)

to the total one-dimensional Cauchy stress σ. Here µ(3) > 0 and I
(3)
m > 3 are two temperature-

independent material parameters.

2. Flow rule

The evolution equation for Up (3) is

U̇p (3) = Dp (3)Up (3) Dp (3) = ǫ̇p(3)sign(σ(3)),

ǫ̇p(3) =
1

2
ǫ̇r

( |σ(3)|
S(3)

)1/m(3) [

1 + tanh
(10

∆
(ϑ− ϑg)

)]

,







(8.32)

where ǫ̇p(3) is the equivalent tensile plastic strain-rate, and the parameter m(3) is a constant, while
S(3) evolves, as discussed below.

30



3. Evolution equations for internal variable S(3):

The evolution of S(3) is taken to be governed by

Ṡ
(3)

= h3 (λ̄ − 1) ǫ̇p(3) with initial value S(3)(0) = S
(3)
0 ≥ 0, (8.33)

where
λ̄

def
=
√

(U + 2U)/3, (8.34)

is an effective stretch, and h3(ϑ) and S
(3)
0 (ϑ) are temperature-dependent material parameters, (4.71).

8.1.5 Evolution equation for temperature

For one-dimensional tests at the highest strain rates, which may be approximated as adiabatic, the tempera-
ture is taken to evolve according to

cϑ̇ = ω
(

σ̄(1) ǫ̇p(1) + 1
2 B γ | lnA|2 ǫ̇p(1) + |σ(2)| ǫ̇p(2) + |σ(3)| ǫ̇p(3)

)

(8.35)

with ω = 0.7.

8.2 Material parameter calibration

We have implemented the one-dimensional version of the constitutive theory in MATLAB using an explicit
integration scheme, and we use it to calibrate the material parameters from the experiments described in §2.
The one-dimensional calibration process consists of four sequential steps which are outlined in this section.
The four steps cover calibration of the following aspects of the stress-strain response: (1) elastic modulus and
rate dependence of ϑg; (2) initial yield stress; (3) large-strain behavior; and (4) yield-peak and back-stress.

8.2.1 Temperature dependence of E and strain rate dependence of ϑg

The temperature dependence of the modulus E is taken in the same form as that for G in (4.8):

E(ϑ) = 1
2 (Egl + Er) − 1

2 (Egl − Er) tanh

(
1

∆
(ϑ− ϑg)

)

−ME(ϑ− ϑg), (8.36)

where

ME =

{

MEgl ϑ ≤ ϑg,

MEr ϑ > ϑg,
(8.37)

and ϑg is the rate-dependent glass transition temperature, cf. (8.2). Experimental values of E were estimated
from the initial slopes of the experimentally-measured stress-strain curves at small strains, at the various
different temperatures and the four different strain ratees. The reference strain rate ǫ̇r in (8.2) was chosen
as the slowest rate 3× 10−4 s−1 in our experiments, and the elastic modulus data was fit to (8.36) and (8.2).
The resulting material parameters for the fit shown in Fig. 28 are

ǫ̇r = 3 × 10−4 s−1, ϑr = 404 K, n = 2.5 K, Egl = 1350 MPa,

Er = 10 MPa, ∆ = 2.0 K, MEgl = 0.45 MPa K−1, MEr = 0.1 MPa K−1.

8.2.2 Initial yield stress

1. Initial yield at temperatures below ϑg

First we consider the material parameters related to the flow stress at temperatures below ϑg. Since the
stress-peak is associated with the transient disordering of the material, and the actual level of a peak is
very dependent on the initial thermal history of the material, here we follow a different approach. We
identify a “yield stress” in a compression experiment as a back-extrapolated value of the intersection of
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the initial elastic slope with the tangent to the stress-strain curve at a strain of, say, 0.4, a strain level
by which all transients of the yield-peak have died out, and the chain-locking effects giving rise to the
stress-strain curve are minimal. Accordingly, at this point in the calibration procedure we ignore the
effects of the yield-peak and define the “yield stress” as the intersection of the pre-peak stress-strain
curve with the back-extrapolated tangent to the stress-strain curve at approximately 0.4 strain; this is
shown schematically in Fig. 29.

Since
|σ(1) − σback| = (σ(1) − σback) sign(σ(1) − σback)

and since in a monotonic compression test

sign(σ(1) − σback) = sign(σ(1)) = sign(σback),

we have
|σ(1) − σback| = |σ(1)| − |σback|,

and hence, from (8.16),

(

1 − αp

3

)

|σ(1)| = Sa + Sb + |σback| +
2kbϑ

V
sinh−1

[( ǫ̇p(1)

ǫ̇∗(ϑ)

)m(1)]

. (8.38)

Thus, neglecting the contribution from the internal variables Sa(which is associated with the transient
yield peak) and the contribution from Sb (since this only manifests itself at large stretches), for fully-
developed flows when ǫ̇p(1) ≈ ǫ̇ (taken to be positive in compression) and with |σ(1)| = σy , (8.38) gives
the following approximate expression for yield stress σy as a function of temperature ϑ and strain rate
ǫ̇:

(

1 − αp

3

)

σy ≈ σ∗
back(ϑ) +

2kBϑ

V
sinh−1

[(
ǫ̇

ǫ̇∗(ϑ)

)m(1)]

, (8.39)

where we have introduced the notation

σ∗
back(ϑ)

def
= |σback(ϑ)|. (8.40)

Here, σ∗
back(ϑ) represents a temperature-dependent saturation value of the back-stress in compression.23

Because of the assumed temperature dependence (4.17) of the back-stress modulus, σ∗
back decreases

linearly with temperature,
σ∗

back = R(ϑg − ϑ) for ϑ ≤ ϑg, (8.41)

where R is a material parameter.24

Finally, recalling (8.17) and (4.33),

ǫ̇∗(ϑ) = ǫ̇
(1)
0 exp

(

− Qgl

kBϑ

)

for ϑ ≤ ϑg. (8.42)

To summarize, from (8.39), (8.41), and (8.42), there is a list of six material parameters

{αp, ǫ̇
(1)
0 , m(1), V, Qgl, R }

23For the purpose of obtaining material parameters associated with the “yield stress,” we ignore the evolution of the back-
stress and use the temperature-dependent saturation value for the back-stress as an internal stress in the one-dimensional
theory. In order to make connection with the work of Richeton et al. (2005, 2006, 2007), one may identify σ∗back(ϑ) with their
internal stress σi(ϑ). Note, however, that in the work of Richeton et al., σi(ϑ) is always a positive valued scalar internal stress
which leads to isotropic hardening, whereas in our more general theory the back-stress may in general be positive or negative,
and is not only temperature dependent, but also evolves with strain to give rise to kinematic hardening.

24For the purpose of fitting the parameters associated with the yield points in the glassy regime, the rate dependence of the
glass transition temperature is neglected and for this step of material parameter calibration procedure, we assume the glass
transition temperature to be constant and assume ϑg = ϑr = 404 K for Zeonex.
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that must be calibrated from the experimental data for σy as a function of strain rate ǫ̇ and temperature
ϑ for temperatures below ϑg. The value of the pressure-sensitivity parameter αp is not determinable
from simple compression experiments alone. As reviewed by Crist (1997), for amorphous polymers the
pressure-sensitivity parameter αp in simple tension/compression for PMMA is ≈ 0.35, that for PC is
≈ 0.2, and for amorphous polymers is generally in the range 0.1 to 0.4. We are not aware of any data
for the pressure sensitivity of yield for Zeonex in the literature. Here, we assume that αp ≈ 0.2 for

Zeonex. The parameter ǫ̇
(1)
0 , represents an attempt frequency for the plastic flow, and we assume that

it has the classical value 1012 s−1 for the three polymers.

Following the back-extrapolation method of Fig. 29, values of the yield stress σy as a function of
temperature ϑ and strain rate ǫ̇ have been estimated from the compression stress-strain curves for
Zeonex in the temperature range 25 C to 130 C at four strain-rates. The ratio of these yield stresses
to test temperatures, σy/ϑ, as a function of the logarithm of strain-rate, log10 ǫ̇ are shown in the
Eyring-plot of Fig. 30a. Estimated isotherms have been drawn to visually connect the yield points for
a given test temperature. For a given temperature we have only four data points spanning a relatively
narrow strain-rate range, which makes fitting the flow function (8.39) difficult. However, by utilizing
the shifting and superposition ideas of Richeton et al. (2005, 2006), we can form a master curve of all
16 data points at a single reference temperature that covers a much wider range of strain rates. To
obtain the master curve, the experimental data is shifted along both axes by temperature-dependent
shift factors defined below:

Horizontal shift: ∆(log10 ǫ̇) = Hh

(
1

ϑ
− 1

ϑshift

)

,

Vertical shift: ∆
(σy

ϑ

)

= Hv

(
1

ϑ
− 1

ϑshift

)

,







(8.43)

where ϑ is the temperature of the experiment, ϑshift is the temperature that the data is shifted to, and
Hh and Hv are shift parameters. Richeton et al. (2005, 2006) have argued that these shift factors may
be equated with the material parameters appearing in the cooperative flow model such that

Hh =
Qgl

kB ln 10
,

Hv = −σ∗
back(ϑ = 0) = −Rθg.






(8.44)

The master curve constructed at ϑshift = ϑr = 404 K ≈ ϑg using the shift factors

Hh = 5.85 × 103 K, Hv = −70 MPa ,

is shown in Fig. 30b, and the values of Qgl and R, calculated using (8.44), are

Qgl = 1.86 × 10−19 J, and R = 0.173 MPa K−1.

For a master curve constructed at ϑshift = 404 K ≈ ϑg, the back-stress term from the flow function
(8.39) vanishes, and (8.39) simplifies to

σy

ϑg
=

2kB

V

(

1 − αp

3

)−1

sinh−1

[(
ǫ̇

ǫ̇∗(ϑg)

)m(1)]

, (8.45)

with the list of unknown parameters reduced to {V, m(1) }. A non-linear least-squares fitting method
was used in MATLAB to obtain these parameters from the shifted experimental data. This gives

V = 0.98 × 10−27 m3 and m(1) = 0.16,

and the resulting fit of (8.45) to the shifted data at 404 K is shown in Fig. 30b as a solid line.
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2. Initial yield at temperatures above ϑg

As the temperature is increased through the glass transition region, the yield stress drops off very
rapidly to negligibly small values. In our model, as the temperature increases through the glass
transition, the characteristic strain rate ǫ̇∗ rapidly increases, leading to a relatively fast drop in the
yield stress. At temperatures above ϑg, the values for the yield stress σy were estimated to be the
stress value at ≈ 0.04 strain. For the estimated values of the yield stress, corresponding values for
characteristic strain rate ǫ̇∗ were calculated using relation (8.39) for each experiment above ϑg. With
ǫ̇∗ defined as

ǫ̇∗(ϑ)
def
= ǫ̇

(1)
0 exp

(

− Q

kBϑ

)

, (8.46)

where the additional temperature dependence of Q governs the change in characteristic strain-rate
ǫ̇∗(ϑ) through the glass transition. With (4.33) representing the temperature dependence of Q, we
are left to determine Qr. To determine this parameter, values of ǫ̇∗ that were obtained from the
experiments were fit for temperatures near and above ϑg. The selected values of ǫ̇∗ along with a fit of
function (8.46) are shown in Fig. 31 for Qr = 1.0 × 10−20 J.

8.2.3 Stress-strain response at large strains

This part of the calibration procedure was divided into two steps: (i) material parameter calibration for
temperatures above ϑg; and (ii) material parameter calibration for temperatures below ϑg.

1. Large strain response above ϑg

For temperatures above ϑg, we allow for network slippage corresponding to micromechanism α = 2 and

select material parameters (S(2), m(2)), such that the flow stress associated with (8.29) is negligibly
small. We accomplish this by taking

S(2) = 0.02 MPa, m(2) = 0.18,

where the value of m(2) is a suitably large value at these high temperatures. Thus, in the calibration
procedure above ϑg, we may neglect the small contribution from σ(2) and set

σ ≈ σ(1) + σ(3).

Thus, for ϑ > ϑg the nonlinear increase in stress at large stretches depends primarily on (i) the evolution
of the internal variable Sb in micromechanism α = 1 according to (8.20); and (ii) the values of the

elastic parameters (µ(3), I
(3)
m ), the value of the flow parameter m(3), and the evolution of the internal

variable S(3) in micromechanism α = 3.

Using the one-dimensional MATLAB implementation of the model, together with the material param-
eters estimated up to this point, the stress-strain response at a given strain rate and temperature can

be fit by adjusting values of (hb, Sr) for α = 1, and the values (µ(3), I
(3)
m , m(3), h3, S

(3)
0 ) for α = 3. In

the lists above (hb, Sr), and (µ(3), I
(3)
m , m(3)) are presumed to be temperature-independent, while the

temperature-dependence of S
(3)
0 (ϑ) and h3(ϑ) is presumed to follow

S
(3)
0 (ϑ) = S(3)

g exp
(

− Y (ϑ− ϑg)
)

, (8.47)

and h3(ϑ) = h3g exp
(

− Z(ϑ− ϑg)
)

. (8.48)

Estimates of the values of the desired material parameter lists

(hb, Sr)

for α = 1, and
(µ(3), I(3)

m , m(3), S(3)
g , Y, h3g, Z)
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for α = 3 are obtained by trial-and-error curve-fitting both the loading and unloading response at large
strains for the stress-strain data at temperatures above ϑg. A few trials give the estimate as

hb = 1.0, Sr = 1.5 MPa, µ(3) = 0.75 MPa,

I(3)
m = 6.5, m(3) = 0.18, S(3)

g = 5.3 MPa,

Y = 0.19 K−1, h3g = 52.0 MPa, Z = 0.178 K−1.

2. Large strain response below ϑg

Here, we focus on estimating the material parameters: (i) µ(2) and I
(2)
m in the expression (8.28), together

with the temperature dependence of µ(2) given in (4.46); and (ii) Sgl — parameters which account for
the stress increase associated with chain-locking at large stretches.

To begin, we neglect the transient response associated with the yield-peak and correspondingly ignore
the evolution equations (8.18) and (8.19) for ϕ and Sa; we return to determining the material param-
eters appearing in these coupled evolution equations later. We ignore the evolution of the back-stress,
and set it constant, using the temperature-dependent saturation value, such that

σback(ϑ) = σ∗
back(ϑ) sign(σback) =

{

−R(ϑg − ϑ) if ϑ ≤ ϑg,

0 if ϑ > ϑg,
(8.49)

and determine material parameters associated with the evolution of the back-stress later. The param-

eter I
(2)
m is presumed to be temperature-independent while the temperature dependence of µ(2)(ϑ) is

presumed to follow

µ(2)(ϑ) = µ(2)
g exp

(

−N(ϑ− ϑg)
)

, (8.50)

(cf., (4.46). Using the one-dimensional MATLAB implementation of the model, together with the
material parameters estimated to this point, estimates for the desired parameter list

(µ(2)
g , N, I(2)

m , Sgl)

are relatively easily obtained by curve-fitting both the loading and unloading response at large strains
for the stress-strain data at the lowest strain rate. A few trials give the estimates as

µ(2)
g = 2.8 MPa, N = 12.4 × 10−3 K−1, I(2)

m = 6.2, Sgl = 120 MPa.

8.2.4 Yield-peak and back-stress evolution

Finally, we calibrate material parameters associated with the yield-peak and the back-stress evolution for
temperatures below ϑg. Both the back-stress and yield-peak are observed to vanish above the glass transition
temperature of the material. This step in the calibration procedure is an iterative process, and requires
fitting the transient stress-overshoot in the simple compression stress-strain response together with the creep
response, iteratively, several times in order to get a good fit. The steps in the iterative procedure are listed
below.

Step 1:

The parameters related to the change of back-stress σback with strain and temperature are γ and X (cf.
(8.22), (4.17)). To begin, we note that for compression

Dp(1) = −ǫ̇p(1), (8.51)

and we may then rewrite the evolution equation for A (8.22) as

Ȧ = −(2 + γ lnA)A ǫ̇p(1). (8.52)
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It follows then that the saturation value of A in compression is

A∗ = exp

(

− 2

γ

)

. (8.53)

Combining this result with the equation for the back-stress (8.10) gives the saturation value of the back-stress
as a function of the material parameters B(ϑ) and γ

σ∗
back(ϑ) = 3

B(ϑ)

γ
. (8.54)

Equating the saturation value for the back-stress using (4.17) and (8.41) we obtain

3
X(ϑg − ϑ)

γ
= R(ϑg − ϑ) ⇒ X =

R

3
γ, (8.55)

and since R has already been determined, we obtain the fixed value for the ratio X/γ.

Step 2:

In this step we estimate a value for γ, and calculate the corresponding value for X from (8.55) to get an
estimate for the parameters involved in the evolution of the back-stress. We assume the material begins in a
well-annealed “ground-state,” so that we may take the initial value of the order parameter ϕ and stress-like
internal resistance Sa to be zero. This leaves one with a list of parameters {ha, b, g, ϕ

∗} in the evolution
equations (8.18) and (8.19) for ϕ and Sa to calibrate the yield-peak.

To find { ha, b, g, ϕ
∗ }, several simulations are performed using different values of parameters to approx-

imately match the shape of the yield-peak at the various strain rates and temperatures. The parameter ha

controls the initial slope of the yield peak, the parameters b and ϕ∗ control the height of the yield peak,
while the parameter g controls the width of the yield-peak.

Step 3:

With the parameters for yield-peak estimated, one returns to refining the values of the material parame-
ters in the back-stress evolution. To get refined estimates for the recovery parameter γ and the temperature
sensitivity parameter X for the back-stress modulus B, we first note that γ controls the rate of saturation
of the back-stress. As γ increases, the back-stress approaches its saturation value more rapidly.

The parameters γ and B significantly affect the creep response of the material.25 In order to get more
refined estimates for these parameters, we turn to a limited set of available data for room-temperature creep
of Zeonex shown in Fig. 32 as solid lines. The value of γ is chosen such that the creep response is adequately
represented, as shown by the dashed lines in Fig. 32.

Steps 2 and 3 are iteratively repeated until the yield-peaks in the total stress-strain response of the
material, as well as the creep response, are satisfactorily calibrated. Once { ha, b, g, ϕ

∗ } are determined for
each stress-strain curve, we have found that to a good approximation, the parameters ha, b and g may be
taken as constants and ϕ∗ as both temperature and strain-rate dependent. The temperature and strain rate
dependence of ϕ∗ was fit to the functional form (8.19).

The material parameters for Zeonex that give a reasonable fit for the yield-peak for the range of temper-
atures and strain rates under consideration, and also adequately reproduce the limited creep data, are

ha = 300, b = 10.13 × 103 MPa, g = 13.0, z = 0.0057,

r = 0.24, s = 0.042, γ = 12, X = 0.7 MPa K−1.

25Cyclic tension-compression stress-strain curves at different temperatures may also be used to fit the back-stress parameters,
but we have not conducted the necessary extensive set of such experiments.
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8.3 Parameters for the three-dimensional model

Except for the list of parameters

{ νr, ν
(1)
0 , αp, V, ha, b, g, γ, hb, Sgl, Sr, S

(2), S(3)
g , h3g }, (8.56)

the values of the one-dimensional material parameters are unchanged when used in the three-dimensional
equations. Noting that

τν = σǫ̇, σ =
√

3τ, ǫ̇ =
ν√
3

(8.57)

the parameters listed in (8.56) may be converted from the one-dimensional compression form to the three-
dimensional shear form using

νr =
√

3 ǫ̇r , ν
(1)
0 =

√
3 ǫ̇

(1)
0 , α(shear)

p = 1√
3
α(comp)

p ,

V (shear) =
√

3V (comp) , h(shear)
a = 1√

3
h(comp)

a , b(shear) = 1√
3
, b(comp) ,

g(shear) = 1√
3
g(comp) , γ(shear) = 1√

3
γ(comp) , h

(shear)
b = 1√

3
h

(comp)
b ,

S
(shear)
gl = 1√

3
S

(comp)
gl , S(shear)

r = 1√
3
S(comp)

r , S(2)(shear)
= 1√

3
S(2)(comp)

,

S(3)
g

(shear)
= 1√

3
S(3)

g

(comp)
, h

(shear)
3g = 1

3h
(comp)
3g .







(8.58)

Further, to convert the temperature dependence parameters for the elastic modulus E to those of the shear
modulus G, we use the following standard relations

Ggl =
Egl

2 (1 + νpoi
gl )

and Gr =
Er

2 (1 + νpoi
r )

. (8.59)

The material parameters for the three-dimensional theory that were determined by following the procedure
described in this Appendix are listed for Zeonex, PC, and PMMA in Table 1.
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Table 1: Material parameters for Zeonex, PC, and PMMA
Parameter Zeonex-690R PC PMMA

ρ (kg m−3) 1010 1200 1200
αgl (K−1) 7× 10−5 6.5× 10−5 7× 10−5

αr (K−1) 12× 10−5 12× 10−5 16× 10−5

νr (s−1) 5.2 × 10−4 5.2× 10−4 5.2× 10−4

ϑr (K) 404 415 386
n (K) 2.5 2.2 2.6
∆ (K) 2.0 1.6 1.7

Ggl (MPa) 482 640 300
Gr (MPa) 3.4 4.0 1.4
Mgl (MPa K−1) 0.16 0.73 10
Mr (MPa K−1) 0.034 0.017 .003

ν
poi
gl 0.40 0.37 0.35

νpoi
r 0.49 0.49 0.49

X (MPa K−1) 0.7 1.5 12.2
γ 6.93 26.0 34.6

αp 0.116 0.116 0.2

ν
(1)
0 (s−1) 1.73 × 1012 1.73 × 1012 1.73 × 1012

m(1) 0.16 0.14 0.22
V (m3) 1.7 × 10−27 1.62 × 10−27 0.52 × 10−27

Qgl (J) 1.86 × 10−19 2.0× 10−19 1.3× 10−19

Qr (J) 1× 10−20 3× 10−20 3× 10−20

ha 173 58 70
b (MPa) 5850 5850 5850
g 7.5 7.4 5.2
z 0.0057 0.0058 0.012
r 0.24 0.2 0.62
s 0.042 0.005 0.052
hb 0.577 0.577 0.577
Sgl (MPa) 69.3 52.0 23.0
Sr (MPa) 0.87 0.46 0.0

µ
(2)
g (MPa) 2.8 3.2 1.3

N (K−1) 12.4 × 10−3 13.5 × 10−3 31.3 × 10−3

I
(2)
m 6.2 6.6 5.0

m(2) 0.18 0.18 0.22

S(2) (MPa) 0.01 0.01 0.01

µ(3) (MPa) 0.75 1.0 0.75

I
(3)
m 6.5 12.0 9.0

m(3) 0.18 0.18 0.22

S
(3)
g (MPa) 3.0 2.77 3.1

Y (K−1) 0.19 0.2 0.04
h3g (MPa) 17.3 16.7 46.6
Z (K−1) 0.178 0.19 0.028
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Figure 1: Stress-strain curves in simple compression for Zeonex at various temperatures ranging from 25C
to 160C at a strain rate of 3×10−4 s−1: (a) for temperatures below ϑg ≈ 136C; (b) for temperatures above
ϑg. Note the change in scale for the stress axis between the two figures.
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Figure 2: Stress-strain curves in simple compression for Zeonex at strain rates of 3×10−1, 3×10−2, 3×10−3,
and 3×10−4 s−1, and at temperatures of 25C, 70C, 120C, 130C, 140C, 150C, 160C, and 180C. Note the
change in scale for the stress axis between various figures.
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Figure 3: A schematic “spring-dashpot”-representation of the constitutive model.
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Figure 4: Schematic plots of stress-strain contributions from individual micromechanisms to an overall simple
compression stress-strain response for: (a) a temperature below ϑg; and (b) a temperature above ϑg. Note
change in scale for the stress axis between the figures in (a) and (b).
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Figure 8: Schematic of the evolution of internal variables (ϕ, Sa, Sb) with strain: (a) evolution of ϕ and Sa;
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Figure 9: Temperature dependence of (a) thermal conductivity, and (b) specific heat.
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Figure 10: Fit of the model to experimental stress-strain curves for Zeonex at various temperatures ranging
from 25 C to 180 C at four strain rates (a) 3×10−4 s−1, (b) 3×10−3 s−1, (c) 3×10−2 s−1, and (d) 3×10−1

s−1. The experimental data is plotted as solid lines, while the fit is shown as dashed lines.
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Figure 11: Fit of the model to experimental stress-strain curves for PC at various temperatures ranging from
25 C to 175 C at three strain rates (a)10−3 s−1, (b) 10−2 s−1, and (c) 10−1 s−1. The experimental data is
plotted as solid lines, while the fit is shown as dashed lines.
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Figure 12: Fit of the model to experimental stress-strain curves for PMMA at various temperatures ranging
from 25 C to 170 C at four strain rates (a) 3×10−4 s−1, (b) 10−3 s−1, (c) 10−2 s−1, and (d) 10−1 s−1. The
experimental data is plotted as solid lines, while the fit is shown as dashed lines.
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Figure 13: Schematic of the plane-strain cruciform forging experiment.
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Figure 14: Quarter-symmetry finite element mesh for the workpiece and the rigid surface used in the plane-
strain cruciform forging simulations.
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Figure 15: Comparison of the numerically-predicted and experimentally-measured force-displacement curves
for forgings of PC at (a) 25C and (b) 160C. Note change in scale for the force axis between the two figures.
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Figure 16: Comparison of the numerically-predicted and experimentally-measured deformed shapes from
the cruciform forgings for (a) the forging at 25C, top row, and (b) the forging at 160C, bottom row:
(i) Experimental macrographs; (ii) deformed meshes after unloading, die removal, and cooling to room
temperature; and (iii) outlines of simulated shapes superimposed over the experimentally-measured shapes
— the solid lines are the edge-geometries from the numerical simulations, and the circles outline the geometry
of the specimens from the experiments.
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Figure 17: (a) Schematic of the temperature and pressure process history for the blow-forming operation.
(b) Half-symmetry finite element mesh used for the axi-symmetric blow-forming simulations.
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Figure 18: (a) One-half of final shape of the blow-formed PC plate at 155C and 20 psi. (b) A three-
dimensional representation of corresponding numerical prediction. (c) Comparison of the numerically-
predicted profiles (dashed lines), against corresponding experimentally-measured traced surface profiles of
the specimens (solid lines): the figure at the top is for blow-forming at 160C and 35 psi (0.24MPa), and
that at the bottom is for blow-forming at 155C and 20 psi (0.14MPa).
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(a) (b)

Figure 19: (a) Schematic of the plane-strain tool (not to scale), and (b) SEM micrograph of a portion of the
metallic glass tool.
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Figure 20: (a) Schematic of the processing conditions for the micro-hot-embossing, and (b) finite element
mesh for the plane-strain simulation. The displacement boundary conditions on portions AD and BC of the
mesh are u1=0, while on portion CD, u1 = u2 = 0 are prescribed.

52



(a) (b)

Figure 21: (a) SEM micrograph of the micro channels hot-embossed in Zeonex, and (b) the corresponding
numerical prediction. The plane-strain simulation has been extruded and mirrored to make the comparison
more clear.
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Figure 22: Comparison of the experimentally-measured (circles) and numerically-predicted channel profile
(dashed line).
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Figure 23: Comparisons of SEM micrographs from micro-hot-embossing experiments on PMMA against
corresponding simulations at 130C, under the following embossing pressures: (a) 0.48MPa, (b) 1.12MPa ,
and (c) 1.6MPa.
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Figure 24: Geometry of the microfluidic mixer.
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Figure 25: Finite element mesh for a plane-strain simulation showing the meshed substrate and the tool
modeled as a rigid surface. The displacement boundary conditions on portions AD and BC of the mesh are
u1 = 0, while on portion CD u1 = u2 = 0 are prescribed.
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Figure 26: Zeonex deformation history during hot-embossing. (a) Partially-filled die at 10 s, and (b) filled
die at 90 s.
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Figure 27: SEM micrographs of (a) features in bulk metallic glass tool, and (b) corresponding features in
micro-hot-embossed Zeonex part.
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Figure 28: Fit of Elastic modulus E to phenomenological function (8.36).
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Figure 29: Schematic showing the “yield stress” defined as the intersection of the pre-peak stress-strain curve
with the back-extrapolated tangent to the stress-stain curve at 0.4 strain.
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Figure 30: (a) Ratio of compressive yield stress to temperature as a function of logarithm of strain rate.
The data plotted as bullets (•) are the yield stress values estimated from the compression experiments, and
the dashed lines are estimated isotherms. (b) Master curve constructed at 404 K by shifting the yield stress
data. The shifted experimental data is plotted as triangles (△), and the solid line indicates a fit of flow
function to the master curve.

360 380 400 420 440 460

10
−5

10
0

10
5

10
10

10
15

Temperature (K)

ǫ̇∗
(s

−
1
)

 

 

0.0003 s−1

0.003 s−1

0.03 s−1

0.3 s−1

Figure 31: Fit of characteristic strain-rate ǫ̇∗ versus temperature above the glass transition temperature ϑg.
Symbols indicate selected value for fitting and lines indicate fit of function given in (8.46).

59



0 1000 2000 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

Creep Time (s)

T
ru

e
S
tr

ai
n

48 MPa

35 MPa

Figure 32: Creep test results under simple compression at two stress levels below the yield-peak (solid lines),
together with one-dimensional MATLAB simulations (dashed lines).
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