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Abstract

Amorphous thermoplastic polymers are important engineering materials; however, their nonlinear,
strongly temperature- and rate-dependent elastic-visco-plastic behavior has, until now, not been
very well understood. The behavior has previously been modeled with mixed success by existing
constitutive theories. As a result, there is currently no generally agreed upon theory to model
the large-deformation, thermo-mechanically coupled, elasto-visco-plastic response of amorphous
polymeric materials spanning their glass transition temperatures. What is needed is a unified
constitutive framework that is capable of capturing the transition from a visco-elastic-plastic solid-
like response below the glass transition temperature, to a rubbery-viscoelastic response above the
glass transition temperature, to a fluid-like response at yet higher temperatures.

We have developed a continuum-mechanical constitutive theory aimed to fill this need. The the-
ory has been specialized to represent the salient features of the mechanical response of poly(methyl
methacrylate) in a temperature range spanning room temperature to ≈ 60◦C above the glass tran-
sition temperature ϑg ≈ 110◦C of the material, in a strain-rate range of ≈ 10−4/s to 10−1/s,
and under compressive stress states in which this material does not exhibit crazing. We have im-
plemented our theory in the finite element program ABAQUS/Explicit. The numerical simulation
capability of the theory is demonstrated with simulations of the micron-scale hot-embossing process
for manufacture of microfluidic devices.

Thesis Supervisor: Lallit Anand
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Transparent, amorphous thermoplastic polymers such as poly(methyl methacrylate) (PMMA),
polycarbonate (PC), cyclic olefin copolymers (COC), and cyclic olefin polymers (COP) are emerg-
ing as materials of choice for the manufacture of microfluidic devices for numerous applications [e.g.,
1, 2]. Of major importance for making the capillary channels in these types of polymeric substrates
is the replication method of hot-embossing [e.g., 3, 4]. The basic process of hot-embossing is as
follows: a polymer sheet is placed between a flat rigid platen and a patterned tool. The system is
then heated up to the embossing temperature at a nominally low pressure. Once at temperature,
higher pressure is applied in order to transfer the tool features to the polymer substrate. While
still under pressure, the system is cooled to the demolding temperature and the tool is removed
from the plastic part.

To optimize the hot-embossing process for a given polymer and to be able to predict the prop-
erties of a polymeric part at the end of the process cycle, it is essential to have (a) a thorough
understanding of the polymer’s thermo-mechanical behavior over the range of strains, strain-rates,
and temperatures of interest; (b) an accurate constitutive model which is able to reproduce that
behavior; and (c) a suitable numerical tool, such as a finite element package, which employs the
constitutive model for carrying out numerical simulations of the hot-embossing process. While
there are numerous successful reports of simulating solid-phase forming processes for metals, until
recently there have been few analogous studies for polymeric materials. The reason for this is that
almost all thermoplastic polymers are processed in their molten state where they have a low vis-
cosity and are easy to form using well-developed methods such as injection molding and extrusion;
accordingly, polymer processing models and simulations have predominantly focused on the these
operations. However, recently, it has become clear that when micrometer or sub-micrometer accura-
cies are desired, other polymer processing methods such as hot-embossing may also be suitable. In
contrast to injection molding, during the hot-embossing process the polymer experiences a smaller
thermal cycle and undergoes smaller bulk material flow, thus allowing for a more accurate and
dimensionally stable final part. Unfortunately, embossing typically takes place below a polymer’s
melt temperature where its mechanical behavior is far more complex. In a molten state, a polymer
is customarily modeled as a viscoelastic non-Newtonian fluid. Upon cooling, however, the polymer
transitions into a visco-elastic rubbery state, and with further cooling below its glass transition

17
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temperature, the polymer transforms into a compressible visco-elastic-plastic glassy solid with a
drastically higher stiffness and viscosity. It is within these rubbery and glassy regions that typical
embossing operations take place, yet there is still not a generally agreed upon constitutive theory
that is capable of capturing the large-deformation, thermo-mechanically coupled response of these
materials for temperatures spanning these regions. Because of this material modeling challenge, the
field of hot-embossing process modeling is still not well developed and there are many contributions
to the modeling of the hot-embossing process to be made.

In this thesis, it is our goal to model the complete embossing process cycle for PMMA. Be-
cause there is currently no comprehensive set of experimental data covering the entire strain rate
and temperature process window necessary for hot embossing, it is first necessary to completely
characterize the large strain thermo-mechanical behavior of PMMA from room temperature to well
above its glass transition. Once the experimental data has been gathered, a constitutive theory
can be developed. There are existing theories in the literature, but as with the experimental data,
they are limited in their scope. What we need is a single unified framework that can capture the
entire large deformation response of the polymer from a visco-elastic-plastic solid below the glass
transition to a viscoelastic rubbery fluid above it. With the theory in place and suitably calibrated
for our polymer, we can implement it in a finite element package so that we can then simulate
hot-embossing process.

The structure of this thesis is as follows. In Chapter 2 we first present the simple compres-
sion experiments which were conducted on poly(methyl methacrylate) (PMMA), the material that
is the focus of our study. Next we present our recently developed visco-elastic-plastic, themo-
mechanically-coupled, large-deformation theory for amorphous polymers in Chapter 3. A special-
ization of the theory which is useful for polymer processing below the glass transition is presented
in Chapter 4 along with a detailed calibration procedure. We further specialize the constitutive
theory in Chapter 5 to capture the polymer behavior continuously through the glass transition;
calibration of this specialized model is also presented in the chapter. Finally in Chapter 6 we show
the utility of our constitutive model and computational procedures in predicting the hot embossing
of PMMA with features at the millimeter, and also the micron-scales.
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Chapter 2

Simple Compression Experiments on
PMMA

2.1 Introduction

This chapter presents the results of the simple compression experiments which were conducted on
poly(methyl methacrylate) (PMMA), the material that is the focus of our study and that which we
will use in later chapters to calibrate and verify our model. To accomplish the calibration, we need
a set of experimental data that satisfies the following requirements: (i) continuous stress/strain
data to at least 100% strain; (ii) a variety of quasi-static strain rates; (iii) temperatures ranging
from room temperature through the PMMA glass transition (≈ 110 C) and into its rubbery regime
(> 150 C). While there is quite a bit of data on PMMA in the literature, there is no single data-set
that satisfies all of these requirements.

Some of the earliest experiments at elevated temperatures on PMMA [1–4] covered a wide
range of strain rates at several temperatures up to the glass transition, however these papers report
only the yield point data and not complete stress/strain curves. More recent data sets have been
published [5–11] which display the complete stress/strain curves for PMMA at various elevated
temperatures, however, they are all limited to narrow temperature or strain-rate ranges, or small
maximum strain ranges, or they are lacking unloading results. Only the data from Dooling et al.
and Palm et al. have results above the glass transition, and those are very limited. Because none
of these existing data sets completely satisfy our requirements, we have conducted our own set of
compression experiments on PMMA to calibrate and verify the model. These experiments span
the temperature range 25 C to 170 C at four strain-rates (3× 10−4, 10−3, 10−2, and 10−1 /s) and
to maximum compressive strains of 100%. The experimental procedure and setup are discussed
briefly in the next section, followed by the stress/strain results.
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22 2 Simple Compression Experiments on PMMA

2.2 Procedure

Because PMMA crazes in tension and is known to undergo deformation by shear-yielding in com-
pression, compression is the optimum mode of deformation for hot-embossing in which the stress-
states are primarily compressive in nature.

The material used in these experiments was purchased from McMaster-Carr (a commercial
vendor) in the form of 0.5” diameter cast rods which were cut into 0.5” tall specimens. Specimens
were annealed before and after machining by heating in a furnace to slightly above the glass
transition temperature of 110 C and holding at that temperature for two hours. The specimens
were then allowed to slowly cool in the furnace to room temperature over a period of several hours.
Before a given experiment, the specimen was allowed to anneal at the testing temperature for one
hour prior to testing.

To reduce friction at the platen/specimen interface, the platens were polished and thin Teflon
(PTFE) films were placed between the specimen and the platens. Oils and greases were not used
as lubricants because they may attack or dissolve the PMMA specimens, or cause them to craze.

All experiments were conducted using a biaxial servo-hydraulic Instron testing machine having
a normal load capacity of 220 kN over an axial travel of 100 mm and a torque capacity of 2.2 kN-m
over a rotational travel of 95◦. All strains were measured using an extensometer with a 12.7 mm
gauge section and ± 5.08 mm travel. All compression tests were carried out using constant true
strain-rate; the details of how this was achieved are given in Appendix A.

Data acquisition was performed on a desktop PC. LabVIEW 6, a customizable data acquisition
software package, interfaces with the Instron through a National Instruments PCI card1 installed
in the PC. Raw data was sampled at 1 kHz, however, LabVIEW performed real time averaging
before recording data, resulting in a smoothed output with an artificial sampling rate ranging from
5 Hz to 100 Hz depending on the speed of the test.

Because PMMA is a poor thermal conductor, in order to heat the compression specimens
thoroughly and efficiently, we were required to use both heated compression platens and an oven.
A custom-sized oven was manufactured by ATS.2 Images of the heated compression platen load train
are shown in Figure 2-1. The platens are manufactured from H13 hot-working tool steel.3 The top
platen has a spherical seat integrated into it to help minimize misalignment. The spherical seat is
suspended from the steel connecting rod with metal springs. Mounting points for the extensometer
are integrated into the load train. The platen temperature is controlled with cartridge heaters and
thermocouples inserted into each platen. More details of the setup, including engineering drawings,
are given given in Appendix A.

1National Instruments PCI Multifunction Data Acquisition Card, Model AT-MIO-16E-10. Analog In: 12bit, 100
kS/s, ranges: ±10V, ±5V, ±2.5V, ±1V, ±500mV, ±250mV, ±100mV, ±50mV; Analog Out: 12bit, 100kS/s, ±10V

2ATS Box Oven, Model 3710 Custom. Max 425C; K-type Thermocouple; Internal: 18.5”W x 18.5”D x 10.5”H;
External: 23.75”W x 30.5”D x 15”H; 4” x 6” viewport; 2208W; 10.6A; 208VAC, single-phase, 60Hz; Cooling option
installed

3Carpenter Powder Products H13 Tool Steel (Designation 2101308-0000). 2” dia x 24” long stock
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Extensometer Specimen
Cartridge Heaters

Steel Platen Thermocouple Instron GripOven

(a) (b)

Figure 2-1: Images of the experimental setup used for the heated compression experiments on PMMA. (a)
Close up of setup showing the cylindrical PMMA specimen between the two heated platens. The extensometer is
mounted on the left side. Cartridge heaters and thermocouples for temperature control are shown on the right.
(b) Larger view of setup showing enclosing temperature-controlled oven and Instron grips.
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2.3 Results

The results of simple compression experiments on PMMA at 10 temperatures ranging from room
temperature through 170 C and at a strain rate of 3 × 10−4 /s is shown in Figure 2-2. As the
temperature increases into the glassy region, from 25C to 110 C, the yield strength decreases by
an order of magnitude from ≈ 100 MPa to ≈ 10 MPa, and the strain-hardening observed at large
strains due to limited extensibility of the polymer chains diminishes. Approximately 10% strain
is recovered upon unloading in this region. Close to the glassy region, at about 100 C, the initial
modulus of the material begins to drop and rapidly falls off by three orders of magnitude as the
temperature is increased to 130 C. At about 120 C, the yield peak disappears and the material
has clearly transitioned into a classical rubber-like response with almost 100% strain-recovery upon
unloading. With a further temperature increase to about 150 C, the molecular network begins
to slip, and the amount of strain recovered upon unloading reduces to 90%; this is reduced even
further to 75% at 170 C.

Experimental results over the same temperature range are shown for strain rates of 10−3, 10−2,
and 10−1/s in Figures 2-3, 2-4, and 2-5, respectively. The results are also presented for a fixed
temperature and varying strain rates in Figures 2-6, 2-7, 2-8, and 2-9. There are obvious strain-
rate dependent features of the material response. In the low-temperature glassy region, the yield
strength of the material increases by about 10% for a one-decade increase in strain-rate at any given
temperature. Additionally, the glass transition region appears to shift to a higher temperature range
with an increase in strain rate. This is most obvious in the results at 120 C (Figure 2-8 top). At
the lowest strain rate of 3 × 10−4/s, the material response is rubber-like, however, at the highest
strain rate of 10−1/s, the material behavior looks more similar to a glassy-type response.

Another strain-rate dependent feature is the softening observed at the higher strain rates of
10−2 and 10−1/s at the lower temperatures of 25 C, 50 C and 70 C, at large strains (Figure 2-
6). In these tests, inelastic dissipation causes internal heating in the compression specimen. No
measurements of the actual internal heating were taken during these experiments, however, Arruda
et al. [5] showed that the temperature of a compression specimen could increase by as much about
20 C at a strain rate of 10−1/s at an initial temperature of 20 C.
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Figure 2-2: Simple compression tests at a strain rate of 3×10−4/s and various temperatures ranging from room
temperature through 170 C.
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Figure 2-3: Simple compression tests at a strain rate of 10−3/s and various temperatures ranging from room
temperature through 170 C.
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Figure 2-4: Simple compression tests at a strain rate of 10−2/s and various temperatures ranging from room
temperature through 170 C.
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Figure 2-5: Simple compression tests at a strain rate of 10−1/s and various temperatures ranging from room
temperature through 170 C.
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Figure 2-6: Simple compression tests at strain rates of 3× 10−4, 10−3, 10−2, and 10−1/s and temperatures of
25 C, 50 C, and 70 C.
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Figure 2-7: Simple compression tests at strain rates of 3× 10−4, 10−3, 10−2, and 10−1/s and temperatures of
90 C, 100 C, and 110 C.
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Figure 2-8: Simple compression tests at strain rates of 3× 10−4, 10−3, 10−2, and 10−1/s and temperatures of
120 C and 130 C.
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Chapter 3

Thermo-mechanically-coupled
Finite-deformation Theory for Isotropic

Elastic-Viscoplastic Materials

3.1 Introduction

An accurate quantitative description of the visco-elastic-plastic constitutive response of amorphous
polymeric material spanning their glass transition temperatures is crucial for the development of
a numerical capability for simulation of polymer processing, and for predicting the relationship
between processing methods and the subsequent mechanical properties of polymeric products. In
addition to the relatively recent microscale hot-embossing process for manufacture of microfluidic
devices, there are numerous other important macroscale polymer manufacturing processes such as
thermoforming and bottle-blowing, where amorphous thermoplastic polymers are subjected to large
stretching deformations above their glass transition temperatures. Constitutive theories aimed at
this class of applications have been recently proposed by Buckley and co-workers [e.g., 1, 2], as well
as Boyce and co-workers [e.g., 3, 4]. Guided by the work of Buckley, Boyce, and their co-workers, it
is the purpose of this chapter to develop a large-deformation, thermo-mechanically coupled, visco-
elastic-plastic theory, aimed at providing a numerically-based capability for the design and analysis
of the micro-hot-embossing processes for the manufacture of microfluidic devices. The constitutive
theory developed here is based on the unpublished work of Prof. L. Anand of MIT

An essential kinematical ingredient of visco-elastic-plastic constitutive theories for amorphous
polymers below their glass transition temperatures, is the classical Kroner [5]- Lee [6] multiplicative
decomposition

F = FeFp (3.1)

of the deformation gradient F into elastic and plastic parts Fe and Fp [e.g., 7–11]. For modeling
the behavior of glassy polymers in the technologically important temperature range which spans
their glass transition temperatures we base our theory on a “multi-mechanism” generalization of
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the decomposition (3.1),
F = Fe (α)Fp (α), α = 1, . . . ,M, (3.2)

where each α denotes a local micromechanism of deformation. Such a multimechanism generaliza-
tion forms the basis of the recent work of Buckley, Boyce, and their co-workers [e.g., 1–4]. It has
also been used to model the visco-hyperelastic behavior of rubber-like materials [e.g., 12–16].

It is important to note from the outset that each Fp (α) is to be regarded as an internal variable
of the theory whose evolution is determined by an equation of the form Ḟp (α) = Lp (α)Fp (α) (to be
discussed shortly), with Fe (α) then defined by Fe (α) def= FFp (α)−1. Hence Fp (α) and Fe (α) in the
decomposition (3.2) are not purely kinematical in nature, as they are not defined independently of
constitutive equations.

3.2 Theory

The purpose of this section is to present a detailed continuum-mechanical development of the
theory.

3.2.1 Notation

We use standard notation of modern continuum mechanics. Specifically: ∇ and Div denote the
gradient and divergence with respect to the material point X in the reference configuration; grad and
div denote these operators with respect to the point x = χ(X, t) in the deformed body ; a superposed
dot denotes the material time-derivative. Throughout, we write Fe−1 = (Fe)−1, Fp−> = (Fp)−>,
etc. We write trA, symA, skwA, A0, and sym0A respectively, for the trace, symmetric, skew,
deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and
B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.

3.2.2 Kinematics

We consider a homogeneous body B identified with the region of space it occupies in a fixed reference
configuration, and denote by X an arbitrary material point of B. A motion of B is then a smooth
one-to-one mapping x = χ(X, t) with deformation gradient, velocity, and velocity gradient given by

F = ∇χ, v = χ̇, L = gradv = ḞF−1. (3.3)

To model the inelastic response of the material we assume that the deformation gradient F may
be decomposed as

F = Fe (α)Fp (α), α = 1, . . . ,M, (3.4)

where each α denotes a local micromechanism of deformation. As is standard, we assume that

J = detF > 0,

and consistent with this we assume that

Je (α) def= detFe (α) > 0, Jp (α) def= detFp (α) > 0, (3.5)
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so that Fe (α) and Fp (α) are invertible.
Restrict attention to a prescribed material point X, and let x denote its place in the deformed

configuration at a fixed time t. Then, bearing in mind that (for X fixed) the linear transformations
Fe (α)(X) and Fp (α)(X) at X are invertible, we let

MX
(α) def= range of Fp (α)(X) = domain of Fe (α)(X), (3.6)

and refer to MX
(α) as the intermediate space at X for the α-th micromechanism. MX

(α) plays
roles for Fp (α)(X) and Fe (α)(X) analogous to those played by the infinitesimal neighborhoods of X
and x for F: Fp (α)(X) is a linear transformation of an infinitesimal neighborhood of X to MX

(α);
Fe (α)(X) is a linear transformation from MX

(α) to an infinitesimal neighborhood of x. Unlike the
reference and deformed configurations, which are global, each intermediate space MX

(α) is local.
Note that the local intermediate spaces MX

(α) are only mathematical constructs, they are not local
“configurations” actually occupied by the body.

For each micromechanism indexed by α, we refer to Fp (α) and Fe (α) as the plastic and elastic
parts of F. Physically, for each α,

• Fp (α)(X) represents the local inelastic distortion of the material at X due to a “plastic
mechanism” such as the relative chain slippage of the long-chain polymer molecules, or the
cumulative effects of destruction of temporary mechanical cross-links. This local deformation
carries the material into — and ultimately “pins” the material to — a coherent structure that
resides in the intermediate space at X for each α (as represented by the range of Fp (α)(X));

• Fe (α)(X) represents the subsequent stretching and rotation of this coherent structure, and
thereby represents the corresponding “elastic distortion,” such as stretching and rotation of
the intermolecular bonds and the long-chain polymer molecules.

By (3.3)3 and (3.4),
L = gradv = Le (α) + Fe (α)Lp (α)Fe (α)−1, (3.7)

with
Le = Ḟe(α)Fe (α)−1, Lp (α) = Ḟp(α)Fp (α)−1. (3.8)

As is standard, we define the total, elastic, and plastic stretching and spin tensors through

D = symL, W = skwL,

De (α) = symLe (α), We (α) = skwLe (α),

Dp (α) = symLp (α), Wp (α) = skwLp (α),

 (3.9)

so that L = D + W, Le (α) = De (α) + We (α), and Lp (α) = Dp (α) + Wp (α).
We assume that the plastic flow is incompressible so that

Jp (α) = 1, (3.10)

and
trLp (α) = trDp (α) = 0 . (3.11)
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Hence
Je (α) = J for all α . (3.12)

The right and left and polar decompositions of Fe (α) are given by

Fe (α) = Re (α)Ue (α) = Ve (α)Re (α), (3.13)

where Re (α) is a rotation (proper orthogonal tensor), while Ue (α) and Ve (α) are symmetric,
positive-definite tensors with

Ue (α) =
√

Fe (α)>Fe (α), Ve (α) =
√

Fe (α)Fe (α)> . (3.14)

Also, the right and left elastic Cauchy-Green tensors are given by

Ce (α) = Ue (α)2 = Fe (α)>Fe (α), Be (α) = Ve (α)2 = Fe (α)Fe (α)> , (3.15)

and the right and left inelastic Cauchy-Green tensors by

Cp (α) = Up (α)2 = Fp (α)>Fp (α), Bp (α) = Vp (α)2 = Fp (α)Fp (α)>. (3.16)

3.2.3 Frame-indifference

Changes in frame (observer) are smooth time-dependent rigid transformations of the Euclidean
space through which the body moves. We require that the theory be invariant under such trans-
formations, and hence under transformations of the form

χ(X, t) → Q(t)(χ(X, t)− o) + y(t) (3.17)

with Q(t) a rotation (proper-orthogonal tensor), y(t) a point at each t, and o a fixed origin. Then,
under a change in observer, the deformation gradient transforms according to

F → QF. (3.18)

Thus, Ḟ → QḞ + Q̇F, and by (3.3)3,

L → QLQ> + Q̇Q>. (3.19)

Hence,
D → QDQ>, W → QWQ> + Q̇Q> . (3.20)

Moreover, Fe (α)Fp (α) → QFe (α)Fp (α), and therefore, since observers view only the deformed
configuration,

Fe (α) → QFe (α), Fp (α) are invariant, (3.21)

and, by (3.8),
Le (α) → QLe (α)Q>+ Q̇Q>, (3.22)

and
Lp (α), Dp (α), and Wp (α) are invariant. (3.23)
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Further, by (3.13),

Fe (α) = Re (α)Ue (α) → QFe (α) = QRe (α)Ue (α),

Fe (α) = Ve (α)Re (α) → QFe (α) = QVe (α)Q> QRe (α),

and we may conclude from the uniqueness of the polar decomposition that

Re (α) → QRe (α), Ve (α) → QVe (α)Q>, Ue (α) are invariant. (3.24)

Hence, from (3.15), Be (α) and Ce (α) transform as

Be (α) → QBe (α)Q>, and Ce (α) are invariant. (3.25)

3.2.4 Development of the theory based on the principle of virtual power

Following Anand and Gurtin [11], Gurtin [17] and Gurtin and Anand [18], the theory presented
here is based on the belief that

• the power expended by each independent “rate-like” kinematical descriptor be expressible in
terms of an associated force system consistent with its own balance.

However, the basic “rate-like” descriptors, namely, v, Le (α), and Lp (α) are not independent, since
by (3.7) they are constrained by

gradv = Le (α) + Fe (α) Lp (α) Fe (α)−1 , trLp (α) = 0, (3.26)

and it is not apparent what forms the associated force balances should take. It is in such situations
that the strength of the principle of virtual power becomes apparent, since the principle of virtual
power automatically determines the underlying force balances.

External and internal expenditures of power

We write Bt = χ(B, t) for the deformed body. We use the term part to denote an arbitrary time-
dependent subregion Pt of Bt that deforms with the body, so that

Pt = χ(P, t) (3.27)

for some fixed subregion P of B. The outward unit normal on the boundary ∂Pt of Pt is denoted
by n.

The power expended on Pt by material or bodies exterior to Pt results from a macroscopic
surface traction t(n), measured per unit area in the deformed body, and a macroscopic body force
b, measured per unit volume in the deformed body, each of whose working accompanies the macro-
scopic motion of the body. The body force b is assumed to include inertial forces; that is, granted
that the underlying frame is inertial,

b = b0 − ρv̇, (3.28)
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with b0 the noninertial body force, and ρ(x, t) > 0 is the mass density in the deformed body. We
therefore write the external power as

Wext(Pt) =
∫

∂Pt

t(n) · v da+
∫

P
b · v dv, (3.29)

with t(n) (for each unit vector n) and b defined over the body for all time.
We assume that power is expended internally by

• elastic stresses Te (α) power-conjugate to Le (α), and

• microstresses Tp (α) power-conjugate to Lp (α),

and we write the internal power as

Wint(Pt) =
∫
Pt

M∑
α=1

(
Te (α) :Le (α) + Je (α)−1 Tp (α) :Lp (α)

)
dv . (3.30)

Here Te (α) and Tp (α) are defined over the body for all time. We assume that Tp (α) are deviatoric,
since Lp (α) are deviatoric. The term Je (α)−1 arises because the microstress-power Tp (α) : Lp (α) is
measured per unit volume in the corresponding intermediate space, but the integration is carried
out within the deformed body.

We require that the internal power be invariant under a change in frame. Thus, consider the
internal power Wint(Pt) under an arbitrary change in frame. In the new frame Pt transforms rigidly
to a region P∗t , Le (α) transforms to

Le (α)∗ = QLe (α)Q> + Q̇Q> ,

Te (α) to Te (α)∗, while
Tp (α)∗ = Tp (α),

since it is conjugate to Lp (α) which is invariant under a change in frame. Hence

W∗
int(P∗t ) =

∫
P∗t

M∑
α=1

{
Te (α)∗ :

(
QLe (α)Q> + Q̇Q>

)
+ Je (α)−1 Tp (α) :Lp (α)

}
dv,

=
∫
Pt

M∑
α=1

{
Te (α)∗ :

(
QLe (α)Q> + Q̇Q>

)
+ Je (α)−1 Tp (α) :Lp (α)

}
dv,

where in the second of the equations above, since P∗t is simply Pt transformed rigidly, we have
replaced the region of integration P∗t by Pt. Thus, we require that

W∗
int(P∗t ) = Wint(Pt).

Since the region Pt is arbitrary, this requirement yields the relation

Te (α)∗ :
(
QLe (α)Q> + Q̇Q>

)
= Te (α) :Le (α),
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for each α. Also, since the change in frame is arbitrary, if we choose it such that Q is an arbitrary
time-independent rotation, so that Q̇ = 0, we find that

Te (α) :Le (α) = Te (α)∗ : (QLe (α)Q>) = (Q>Te (α)∗Q) :Le (α),

or (
Te (α) − (Q>Te (α)∗Q)

)
:Le (α) = 0 .

Since this must hold for all Le (α), we find that the stresses Te (α) transform according to

Te (α)∗ = QTe (α)Q>. (3.31)

Next, if we assume that Q = 1 at the time in question, so that Q̇ is an arbitrary skew tensor,
we find that

Te (α) : Q̇ = 0,

or that the elastic stresses Te (α) are symmetric,

Te (α) = Te (α)> . (3.32)

Finally, using (3.32) we may write the internal power (3.30) as

Wint(Pt) =
∫
Pt

M∑
α=1

(Te (α) :De (α) + Je (α)−1 Tp (α) :Lp (α)) dv. (3.33)

Principle of virtual power. Macroscopic force balance. Microscopic force balance

Assume that, at some arbitrarily chosen but fixed time, the fields χ, Fe (α) (and hence F and
Fp (α)) are known, and consider the fields v, Le (α), and Lp (α) as virtual velocities to be specified
independently in a manner consistent with (3.26); that is, denoting the virtual fields by ṽ, , L̃e (α),
and L̃p (α) to differentiate them from fields associated with the actual evolution of the body. We
require that

grad ṽ = L̃e (α) + Fe (α)L̃p (α)Fe (α)−1 , and tr L̃p (α) = 0 for each α . (3.34)

More specifically, we define a generalized virtual velocity to be a list

V = (ṽ, L̃e (α), L̃p (α))

consistent with (3.34).
We write

Wext(Pt,V) =
∫

∂Pt

t(n) · ṽ da+
∫
Pt

b · ṽ dv,

Wint(Pt,V) =
∫
Pt

M∑
α=1

(Te (α) : L̃e (α) + Je (α)−1 Tp (α) : L̃p (α)) dv,

 (3.35)
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respectively, for the external and internal expenditures of virtual power. Then, the principle of
virtual power is the requirement that the external and internal powers be balanced. That is

• given any part Pt,

Wext(Pt,V) = Wint(Pt,V) for all generalized virtual velocities V. (3.36)

To deduce the consequences of the principle of virtual power, assume that (3.36) is satisfied. In
applying the virtual balance (3.36) we are at liberty to choose any V consistent with the constraint
(3.34).

First consider a generalized virtual velocity which is strictly elastic in the sense that

L̃p (α) ≡ 0, so that by (3.34) grad ṽ = L̃e (α). (3.37)

For this choice of V, (3.36) yields∫
∂Pt

t(n) · ṽ da+
∫
Pt

b · ṽ dv =
∫
Pt

( M∑
α=1

Te (α)
)

: grad ṽ dv =
∫
Pt

T : grad ṽ dv ,

where we have written

T def=
M∑

α=1

Te (α) , (3.38)

and note that on account of (3.32),
T = T>. (3.39)

Then, using the divergence theorem,∫
∂Pt

(
t(n)−Tn

)
· ṽ da+

∫
Pt

(divT + b) · ṽ dv = 0.

Since this relation must hold for all Pt and all ṽ, standard variational arguments yield the traction
condition

t(n) = Tn , (3.40)

and the local force balance
divT + b = 0. (3.41)

Recall that we have assumed that b includes inertial body forces. Thus, recalling (3.28), the local
force balance (3.41) becomes

divT + b0 = ρv̇, (3.42)

with b0 the noninertial body force. Therefore, the symmetric stress T plays the role of the macro-
scopic Cauchy stress, and (3.42) and (3.39) represent the classical macroscopic force and moment
balances.

Further, as is standard, with
TR = JTF−> (3.43)
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denoting the first Piola stress,
b0R = Jb0, (3.44)

the conventional body force measured per unit volume of the reference configuration, and

ρR = Jρ (3.45)

denoting the mass density in the reference configuration, referential forms of (3.42) and (3.39) are

DivTR + b0R = ρR χ̈ (3.46)

and
TRF> = FT>

R, (3.47)

respectively.
Next, to discuss the microscopic counterparts of these results, we choose a generalized virtual

velocity field V for which

ṽ ≡ 0, so that by (3.34) L̃e (α) = −Fe (α)L̃p (α)Fe (α)−1. (3.48)

Then, the external power vanishes identically, so that, by (3.36), the internal power must also
vanish, and satisfy

Wint(Pt,V) =
∫
Pt

M∑
α=1

Je (α)−1
(
Tp (α) − Je (α) Fe (α)>Te (α)Fe (α)−>

)
: L̃p (α) dv = 0.

Since this must be satisfied for all Pt and all deviatoric tensors L̃p (α), a standard argument yields
the microforce balance

Me (α)
0 = Tp (α), (3.49)

where
Me (α) def= Je (α)Fe (α)>Te (α)Fe (α)−> , (3.50)

is called a Mandel stress. The balances of (3.49) characterize the interaction between internal forces
associated with the elastic response of the material and internal forces associated with inelasticity
for each micromechanism α.

For later use we introduce a stress measure

Pe (α) def= Je (α)Fe (α)−1Te (α)Fe (α)−>, (3.51)

and the corresponding Mandel stress is given by

Me (α) = Ce (α)Pe (α). (3.52)

3.2.5 Balance of energy. Entropy imbalance. Local dissipation inequality

Let

• ϑ > 0 denote the absolute temperature,
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• ε and η represent the specific internal energy and specific entropy densities, measured per
unit mass in the deformed body,

• q denote the heat flux, measured per unit area in the deformed body, and

• q denote the scalar heat supply, measured per unit volume in the deformed body.

Then, balance of energy is the requirement that

˙∫
Pt

ρ ε dv = −
∫

∂Pt

q·n da+
∫
Pt

q dv +Wext(Pt), (3.53)

while the second law takes the form of an entropy imbalance

˙∫
Pt

ρ η dv ≥ −
∫

∂Pt

q · n
ϑ

da+
∫
Pt

q

ϑ
dv. (3.54)

Thus, since Wext(Pt) = Wint(Pt) and since Pt is arbitrary, we may use (3.33) to obtain local forms
of (3.53) and (3.54):

ρ ε̇ = −divq + q +
M∑

α=1

Te (α) :De (α) +
M∑

α=1

Je (α)−1 Tp (α) :Lp (α),

ρ η̇ ≥ − 1
ϑ

divq +
1
ϑ2

q · g +
q

ϑ
,

 (3.55)

where we have written
g def= gradϑ (3.56)

for the temperature gradient.
Let

ψ
def= ε− ϑη (3.57)

denote the specific (Helmholtz) free energy. Then (3.55) yields the local dissipation inequality

ρψ̇ + ρ ηϑ̇+
1
ϑ

q · g −
M∑

α=1

Te (α) :De (α) −
M∑

α=1

Je (α)−1 Tp (α) :Lp (α) ≤ 0 . (3.58)

The free-energy density and entropy density per unit volume of the reference configuration are
given by

ψR = ρR ψ, ηR = ρR η. (3.59)

Note that since J = Je (α),
ρR = ρ J = ρ Je (α) = ρ

(α)
I , (3.60)

and the free-energy density ψR and entropy density ηR per unit volume of the reference configuration
are equal to the free-energy density and entropy density when reckoned per unit volume of the
intermediate space for each α. Then multiplying (3.58) through by J = Je (α), and using (3.59),
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(3.60), and the microforce balance (3.49) we obtain

ψ̇R + ηRϑ̇+
(J
ϑ

)
q · g −

M∑
α=1

Je (α) Te (α) :De (α) −
M∑

α=1

Me (α)
0 :Lp (α) ≤ 0. (3.61)

From a standard result in continuum mechanics, the referential heat flux and temperature
gradient qR and ∇ϑ are related to their spatial counterparts q and g = gradϑ by

qR = JF−1q and ∇ϑ = F>g, (3.62)

and therefore
Jq · g = qR · ∇ϑ. (3.63)

Further, differentiating (3.15)1 results in the following expression for the rate of change of Ce (α):

·
Ce (α) =

(
Fe (α)>

·
Fe (α) +

·
Fe (α)>Fe (α)

)
= Fe (α)>

( ·
Fe (α)Fe (α)−1 + Fe (α)−>

·
Fe (α)>

)
Fe (α)

= 2Fe (α)>De (α)Fe (α). (3.64)

Hence

De (α) = 1
2F

e (α)−>
·

Ce (α)Fe (α)−1, (3.65)

and therefore

Je (α)Te (α) :De (α) = Je (α)Te (α) :
(

1
2F

e (α)−>
·

Ce (α)Fe (α)−1
)

(3.66)

= 1
2

(
Je (α)Fe (α)−1Te (α)Fe (α)−>

)
:

·
Ce (α). (3.67)

Thus using (3.51), we obtain

Je (α)Te (α) :De (α) = 1
2 Pe (α) :

·
Ce (α) (3.68)

For later use, from (3.33), (3.49) and (3.68), we note that the internal power per unit volume
of the reference space is

1
2

∑M
α=1 Pe (α) :

·
Ce (α) +

∑M
α=1 Me (α)

0 :Lp (α) . (3.69)

Also, the referential form of the energy balance (3.55)1 is

ε̇R = −DivqR + qR + 1
2

∑M
α=1 Pe (α) :

·
Ce (α) +

∑M
α=1 Me (α)

0 :Lp (α), (3.70)
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where qR = Jq is the heat supply per unit volume of the reference body, and Div is the referential
divergence.

Finally, using (3.63) and (3.68) we may rewrite the free-energy imbalance as

ψ̇R + ηRϑ̇+
1
ϑ

qR · ∇ϑ− 1
2

∑M
α=1 Pe (α) :

·
Ce (α) −

∑M
α=1 Me (α)

0 :Lp (α) ≤ 0, (3.71)

Finally, we note that ψR, ηR and ϑ are invariant under a change in frame since they are scalar
fields, and on account of the transformation rules (3.23), (3.25), (3.31) and the definitions (3.50)
and (3.51), the fields

Ce (α), Lp (α), Pe (α), and Me (α), (3.72)

are also invariant, as are the fields
qR, ∇ϑ, (3.73)

since they are referential vector fields.

3.3 Constitutive theory

To account for the major strain-hardening characteristics of materials observed during plastic de-
formation, we introduce internal state variables which represent important aspects of the mi-
crostructural resistance to plastic flow. Specifically we introduce

• A list of m scalar internal state-variables

ξ(α) = (ξ(α)
1 , ξ

(α)
2 , . . . , ξ(α)

m )

for each α. Since ξ(α) are scalar fields they are invariant under a change in frame.

• A symmetric and unimodular tensor field

A(α)(X, t), A(α) = A(α)>, detA(α) = 1

for each α. Each such tensor field represents a dimensionless squared stretch-like quantity,
which as a linear transformation, maps vectors in the intermediate space for each α, into
vectors in the same space. Thus, A(α) is a structural tensor field, and therefore invariant
under a change in frame.
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Guided by the dissipation inequality (3.71), we assume the following special set of constitutive
equations:

ψR =
M∑

α=1

ψ̄(α)(Ce (α),A(α), ϑ),

ηR =
M∑

α=1

η̄(α)(Ce (α),A(α), ϑ),

Pe (α) = P̄e (α)(Ce (α),A(α), ϑ),

Lp (α) = L̄p(α)(Me (α), ξ(α),A(α), ϑ),

ξ̇
(α)
i = h

(α)
i (Lp (α), ξ(α),A(α), ϑ),

·
A(α) = Lp (α)A(α) + A(α)Lp (α)> −G(α)(ξ(α),A(α), ϑ) lp (α),



(3.74)

where
lp (α) def= |Lp (α)| = l̄p (α)(Me (α), ξ(α),A(α), ϑ), (3.75)

denotes a scalar flow rate; correspondingly, the plastic flow direction for each α is given by

Np (α) =
Lp (α)

lp (α)
= N̄p (α)(Me (α), ξ(α),A(α), ϑ). (3.76)

To these equations we append a simple Fourier’s relation for the heat flux,

qR = −K(ϑ)∇ϑ , (3.77)

where K is a positive definite thermal conductivity.

Note that on account of the transformation rules listed in the paragraph containing (3.72) and
(3.73), and since (ξ(α),A(α)) are also invariant,

• the constitutive equations (3.74) and (3.77) are frame-indifferent.

3.3.1 Thermodynamic restrictions

Since

·
ψ̄(α)(Ce (α),A(α), ϑ) =

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂Ce (α)

:
·

Ce (α)

+
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:

·
A(α) +

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ

ϑ̇,
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and, using (3.74)6,

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

:
·

A(α)

=
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:
(
Lp (α)A(α) + A(α)Lp (α)> −G(α)(ξ(α),A(α), ϑ) lp (α)

)
=
(
2
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
A(α)

)
:Lp (α) −

(∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

:G(α)(ξ(α),A(α), ϑ)
)
lp (α),

the free-energy imbalance (3.71) requires that the constitutive equations (3.74) and (3.77) satisfy

M∑
α=1

[
1
2P̄

e (α)(Ce (α),A(α), ϑ)− ∂ψ̄(α)(Ce (α),A(α), ϑ)
∂Ce (α)

]
:

·
Ce (α)

−
M∑

α=1

[
η̄(α)(Ce (α),A(α), ϑ) +

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ

]
ϑ̇

+
M∑

α=1

[{
Me (α) − 2

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

A(α)

}
0

: N̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
(∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)]
l̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
1
ϑ
∇ϑ ·K(ϑ)∇ϑ ≥ 0, (3.78)

and hold for all arguments in the domains of the constitutive functions, and in all motions of the
body.

Thus, sufficient conditions that the constitutive equations satisfy the free-energy imbalance are

(i) the free energy determines the stress and the entropy via the stress relations and entropy
relations:

P̄e (α)(Ce (α),A(α), ϑ) = 2
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂Ce (α)
, (3.79)

η̄(α)(Ce (α),A(α), ϑ) = −∂ψ̄
(α)(Ce (α),A(α), ϑ)

∂ϑ
. (3.80)

(ii) the plastic distortion-rates Lp (α) and the temperature gradient ∇ϑ satisfy the reduced dis-
sipation inequality

M∑
α=1

[{
Me (α) − 2

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

A(α)

}
0

: N̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
(∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)]
l̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
1
ϑ
∇ϑ ·K(ϑ)∇ϑ ≥ 0, (3.81)
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We assume henceforth that (3.79) and (3.80) hold in all motions of the body, and that the material
is strictly dissipative in the sense that it satisfies the mechanical dissipation inequality[{

Me (α) − 2
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
A(α)

}
0

: N̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
(∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)]
l̄p (α)(Me (α), ξ(α),A(α), ϑ) > 0 (3.82)

whenever Lp (α) 6= 0 for each α, and that it separately satisfies the heat conduction inequality

1
ϑ
∇ϑ ·K(ϑ)∇ϑ > 0 whenever ∇ϑ 6= 0. (3.83)

The last inequality implies that the thermal conductivity tensor is positive definite.

Further consequences of thermodynamics: Gibbs relations. Entropy relation. Partial differential
equation for temperature

In view of (3.74), (3.79) and (3.80), we have the first Gibbs relation,

ψ̇R = 1
2

∑M
α=1 Pe (α) :

·
Ce (α) − ηRϑ̇

+
(
2
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
A(α)

)
0
:Lp (α)

−
(∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)
lp (α), (3.84)

which, with (3.57), yields the second Gibbs relation

ε̇R = ϑη̇R + 1
2

∑M
α=1 Pe (α) :

·
Ce (α)

−
(
2
∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
A(α)

)
0
:Lp (α)

+
(∂ψ̄(α)(Ce (α),A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)
lp (α), (3.85)

where εR

def= ρ J ε is the internal energy density per unit reference volume.
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Using the second Gibbs relation, the balance of energy (3.70) may be written as an entropy
balance

ϑη̇R = −DivqR + qR

+
M∑

α=1

{
Me (α) − 2

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

A(α)

}
0

:Lp (α)

+
M∑

α=1

(∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

:G(α)(ξ(α),A(α), ϑ)
)
lp (α) . (3.86)

Granted the thermodynamically restricted constitutive relations (3.79) and (3.80), this entropy
relation is equivalent to balance of energy.

Next, the internal energy density for each α is given by

ε̄(α)(Ce (α),A(α), ϑ) def= ψ̄(α)(Ce (α),A(α), ϑ) + ϑη̄(α)(Ce (α),A(α), ϑ), (3.87)

so that the total internal energy is

εR =
M∑

α=1

ε̄(α)(Ce (α),A(α), ϑ) . (3.88)

Then, the specific heat is defined by

c
def=

M∑
α=1

∂ε̄(α)(Ce (α),A(α), ϑ)
∂ϑ

. (3.89)

Hence, from (3.87)

c
def=

M∑
α=1

[∂ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ

+ η̄(α)(Ce (α),A(α), ϑ) + ϑ
∂η̄(α)(Ce (α),A(α), ϑ)

∂ϑ

]
, (3.90)

and use of (3.80) gives

c
def= −ϑ

M∑
α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ2

. (3.91)
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Next, from (3.80),

η̇r = −
M∑

α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ ∂Ce (α)

: Ċe (α)

−
M∑

α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ ∂A(α)

: Ȧ(α)

−
M∑

α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ2

ϑ̇ . (3.92)

Then, using (3.91) and (3.92) in (3.86) gives the following partial differential equation for the
temperature

cϑ̇ = −DivqR + qR

+
M∑

α=1

{
Me (α) − 2

∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

A(α)

}
0

:Lp (α)

+
M∑

α=1

(∂ψ̄(α)(Ce (α),A(α), ϑ)
∂A(α)

:G(α)(ξ(α),A(α), ϑ)
)
lp (α)

+ ϑ
M∑

α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ ∂Ce (α)

: Ċe (α)

+ ϑ
M∑

α=1

∂2ψ̄(α)(Ce (α),A(α), ϑ)
∂ϑ ∂A(α)

: Ȧ(α). (3.93)

3.3.2 Isotropy

The following definitions help to make precise our notion of an isotropic material:

(i) Orth+ = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group GR, is the group of all rotations of the reference configuration that leaves
the response of the material unaltered;

(ii) the symmetry group G(α)
I at each time t, is the group of all rotations of the intermediate

structural space for each α that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transformations,
granted the physically natural requirement of invariance of the internal power (3.69), or equivalently,
the requirement that

Pe (α) : Ċe (α) and Me (α) :Lp (α) be invariant. (3.94)
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Fix attention on a given micromechanism α, and let Q be a time-independent rotation of the
reference configuration. Then F → FQ, and hence

Fp (α) → Fp (α)Q and Fe (α) are invariant, (3.95)

so that, by (3.8) and (3.15), Ċe (α) and Lp (α) are invariant. We may therefore use (3.94) to
conclude that Pe (α) and Me (α) are invariant. Further, since the tensor A(α) maps vectors in the
intermediate space into vectors in the same space, A(α) is invariant, and since ξ(α) are scalars, they
too are invariant. Thus

• the constitutive equations (3.74) are unaffected by such rotations of the reference configura-
tion.

Turning our attention next to the constitutive equation (3.77) for the heat flux, a standard result
from the theory of finite thermoelasticity is that under a symmetry transformation Q for the
reference configuration, the temperature gradient ∇ϑ and the heat flux qR transform as

∇ϑ→ Q>∇ϑ, qR → Q>qR.

Hence, from (3.77) the thermal conductivity tensor must obey

K(ϑ) = Q>K(ϑ)Q (3.96)

for all rotations Q in the symmetry group GR.

Next, fix attention on a given micromechanism α, and let Q, a time-independent rotation of the
corresponding intermediate space, be a symmetry transformation. Then F is unaltered by such a
rotation, and hence

Fe (α) → Fe (α)Q and Fp (α) → Q>Fp (α), (3.97)

and also
Ce (α) → Q>Ce (α)Q, Ċe (α) → Q>Ċe (α)Q, Lp (α) → Q>Lp (α)Q. (3.98)

Further, since the tensor A(α) maps vectors in the intermediate space into vectors in the same
space, we assume that A(α) transforms as

A(α) → Q>A(α)Q,

and hence
Ȧ(α) → Q>Ȧ(α)Q.

Then (3.98) and (3.94) yield the transformation laws

Pe (α) → Q>Pe (α)Q, Me (α) → Q>Me (α)Q. (3.99)
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Thus, with reference to the constitutive equations (3.74) we conclude that

ψ̄(α)(Ce (α),A(α), ϑ) = ψ̄(α)(Q>Ce (α)Q,Q>A(α)Q, ϑ),

η̄(α)(Ce (α),A(α), ϑ) = η̄(α)(Q>Ce (α)Q,Q>A(α)Q, ϑ),

Q>P̄e (α)(Ce (α),A(α), ϑ)Q = P̄e (α)(Q>Ce (α)Q,Q>A(α)Q, ϑ),

Q>N̄p (α)(Me (α),A(α), ξ(α), ϑ)Q = N̄p (α)(Q>Me (α)Q,Q>A(α)Q, ξ(α), ϑ),

l̄p (α)(Me (α),A(α), ξ(α), ϑ) = l̄p (α)(Q>Me (α)Q,Q>A(α)Q, ξ(α), ϑ),

h
(α)
i (lp (α),Np (α), ξ(α)A(α), ϑ) = h

(α)
i (lp (α),Q>Np (α)Q, ξ(α),Q>A(α)Q, ϑ),

Q>G(α)(ξ(α),A(α), ϑ)Q = G(α)(ξ(α),Q>A(α)Q), ϑ,



(3.100)

must hold for all rotations Q in the symmetry group G(α)
I at each time t.

We refer to the material as isotropic (and to the reference configuration and intermediate spaces
as undistorted) if

GR = Orth+, G(α)
I = Orth+, (3.101)

so that the response of the material is invariant under arbitrary rotations of the reference and
intermediate space for each α at each time t.1 Henceforth

• we restrict attention to materials that are isotropic.

In this case,

• the response functions ψ̄(α), η̄(α), P̄e (α), N̄p (α), l̄p (α), h(α)
i , and G(α) must each be isotropic,

and that the thermal conductivity has the representation

K(ϑ) = κ(ϑ)1, with κ(ϑ) > 0, (3.102)

a scalar thermal conductivity.

3.3.3 Separability hypothesis for the free energy

We assume that the free energy has the separable form

ψR =
M∑

α=1

ψ̄e (α)(Ce (α), ϑ) +
M∑

α=1

ψ̄d (α)(A(α), ϑ) (3.103)

with ψ̄e (α) an elastic energy, and ψ̄d (α) a defect energy associated with plastic flow, for each α.

1For polymer glasses this notion attempts to characterize situations in which the material has a completely
disordered molecular structure.
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Consequences of isotropy of the elastic energy

Since ψ̄e (α)(Ce (α), ϑ) is an isotropic function of Ce (α), it has the representation

ψ̄e (α)(Ce (α), ϑ) = ψ̃e (α)(ICe (α) , ϑ), (3.104)

where
ICe (α) =

(
I1(Ce (α)), I2(Ce (α)), I3(Ce (α))

)
is the list of principal invariants of Ce (α). Thus, from (3.79)

Pe (α) = 2
∂ψ̃e (α)(ICe (α))

∂Ce (α)
, (3.105)

and we note that Pe (α) is an isotropic function of Ce (α). Then since (cf. (3.52))

Me (α) = Ce (α)Pe (α),

and Pe (α) is isotropic, we find that Pe (α) and Ce (α) commute,

Ce (α)Pe (α) = Pe (α)Ce (α), (3.106)

and hence that

• the Mandel stress Me (α) for each α is symmetric.

Consequences of isotropy of the defect energy

Let
IA(α) =

(
I1(A(α)), I2(A(α)), I3(A(α)), ϑ

)
denote the list of principal invariants of A(α), then the defect free energy has a representation

ψ̄d (α) = ψ̃d (α)(IA(α) , ϑ), (3.107)

and this yields a symmetric tensor

M(α)
back = 2

∂ψ̄d
I (IA(α)), ϑ
∂A(α)

A(α), (3.108)

which we call a back-stress. Then, defining effective stress by

Me (α)
eff

def= Me (α) −M(α)
back, (3.109)
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we may write the mechanical dissipation inequality (3.82) for each α as:[{
Me (α)

eff

}
0
: N̄p (α)(Me (α), ξ(α),A(α), ϑ)

+
(∂ψ̄d (α)(A(α), ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)]
l̄p (α)(Me (α), ξ(α),A(α), ϑ) > 0 (3.110)

whenever lp (α) > 0.

3.3.4 Codirectionality and strong isotropy hypotheses

We now make two major assumptions concerning the plastic flow for isotropic materials:

(1) Codirectionality hypotheses: Guided by the dissipation inequality (3.110), we assume hence-
forth that Np (α) is codirectional with (Me (α)

eff )0,

Np (α) =
(Me (α)

eff )0

|(Me (α)
eff )0|

; (3.111)

an assumption we refer to as the codirectionality hypothesis.

Since both Me (α) and M(α)
back are symmetric, so also is Me (α)

eff , and a consequence of this
assumption is that the skew part of Lp (α), that is the plastic spin, is assumed to vanish,

Wp (α) = 0. (3.112)

Consistent with this we replace lp (α) by the norm of the plastic stretching,

dp (α) = |Dp (α)|, (3.113)

and assume that it is given by

dp = d̂p(Me (α)
eff , ξ(α), ϑ). (3.114)

On account of the isotropy of the scalar flow rate function (3.114), we have that

dp = d̃p(I
M

e (α)
eff

, ξ(α), ϑ) ≥ 0, (3.115)

where I
M

e (α)
eff

is a list of invariants of Me (α)
eff .

Under the codirectionality assumption, the dissipation inequality (3.110) reduces to[
|Me (α)

eff 0|+
(∂ψ̃d (α)(IA(α) , ϑ)

∂A
:G(α)(ξ(α),A(α), ϑ)

)]
d̃p(I

M
e (α)
eff

, ξ(α), ϑ) > 0, (3.116)
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whenever dp (α) 6= 0. In this case, the recovery function G(ξ(α),A(α), ϑ) must satisfy the
constraint[

|Me (α)
eff 0|+

(∂ψ̃d (α)(IA(α) , ϑ)
∂A

:G(α)(ξ(α),A(α), ϑ)
)]

> 0 whenever dp (α) 6= 0. (3.117)

The codirectionality hypothesis above, while central to our definition of an isotropic plastic
material, is not sufficient. We additionally require the:

(2) Strong isotropy hypothesis:

The function h(α)
i (dp (α),Np (α), ξ(α),A(α), ϑ) characterizing the evolution of the scalar internal

variable ξ(α)
i is independent of the flow direction Np (α), an assumption we refer to as the

strong isotropy hypothesis.

3.4 Summary of the constitutive theory for isotropic materials

The underlying constitutive equations relate the following basic fields:

x = χ(X, t), motion;
F = ∇χ, J = detF > 0, deformation gradient;
F = Fe (α)Fp (α), α = 1, . . . ,M , elastic-plastic decomposition of F;
Fp (α), Jp (α) = detFp (α) = 1, inelastic distortion;
Fe (α), Je (α) = detFe (α) = J > 0, elastic distortion;
Fe (α) = Re (α)Ue (α) = Ve (α)Re (α), polar decompositions of Fe (α);
Ce (α) = Fe (α)>Fe (α), elastic right Cauchy-Green tensors;
ϑ > 0, absolute temperature;
∇ϑ, referential temperature gradient;
ψR =

∑M
α=1 ψ̄

(α), free energy density per unit reference volume;
ηR =

∑M
α=1 η̄

(α), entropy density per unit reference volume;

ξ(α) = (ξ(α)
1 , ξ

(α)
2 , . . . , ξ

(α)
m ) m scalar internal variables for each α;

A(α), A(α) = A(α)>, detA(α) = 1 tensorial internal variables for each α;
qR, referential heat flux vector.

The constitutive equations are:

1. Free energy:

ψR =
M∑

α=1

ψ̄e (α)(ICe (α) , ϑ) +
M∑

α=1

ψ̄d (α)(IA(α) , ϑ), (3.118)

where ICe (α) and IA(α) are the lists of the principal invariants of Ce (α) and A(α), respectively.

2. Cauchy stress:

T =
M∑

α=1

Te (α), (3.119)



3.4 Summary of the constitutive theory for isotropic materials 57

with
Te (α) def= J−1

(
Fe (α)Pe (α)Fe (α)>

)
, (3.120)

where

Pe (α) = 2
∂ψ̄e (α)(ICe (α) , ϑ)

∂Ce (α)
. (3.121)

3. Driving stresses for plastic flow:

The symmetric Mandel stress for each α is given by

Me (α) = Ce (α)Pe (α) , (3.122)

and the symmetric back stress is given by

M(α)
back = 2

∂ψ̄d (α)(IA(α) , ϑ)
∂A(α)

A(α). (3.123)

Then, the stress difference
Me (α)

eff
def= Me (α) −M(α)

back, (3.124)

called the effective stress, is taken to be the driving stress for plastic flow.

4. Flow rules:

The evolution equation for each Fp (α) is

Ḟp (α) = Lp (α) Fp (α), Fp (α)(X, 0) = 1, (3.125)

with
Wp (α) ≡ skwLp (α) = 0, (3.126)

and Dp (α) = symLp (α) given by

Dp (α) = dp (α) Np (α), (3.127)

Np (α) =
(Me (α)

eff )0

|(Me (α)
eff )0|

, (3.128)

dp (α) = d̃p(I
M

e (α)
eff

, ξ(α), ϑ) ≥ 0. (3.129)

5. Evolution equations for internal variables:

ξ̇
(α)
i = h

(α)
i (dp (α), ξ(α),A(α), ϑ),

Ȧ(α) = Dp (α)A(α) + A(α)Dp (α) −G(α)(ξ(α),A(α), ϑ)dp (α),

 (3.130)

with the functions h(α)
i and G(α) isotropic functions of their arguments.

The evolution equations for Fp (α), ξ(α) and A(α) need to be accompanied by initial conditions.
Typical initial conditions presume that the body is initially (at time t = 0, say) in a virgin
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state in the sense that

F(X, 0) = Fp (α)(X, 0) = A(α)(X, 0) = 1, ξ
(α)
i (X, 0) = ξ

(α)
i, 0 (= constant), (3.131)

so that by F = Fe (α)Fp (α) we also have Fe (α)(X, 0) = 1.

6. Entropy relation. Fourier’s Law:

Finally, we have the entropy relation

ηR =
M∑

α=1

η(α), η(α) = −

[
∂ψ̄e (α)(ICe (α) , ϑ)

∂ϑ
+
∂ψ̄d (α)(IA(α) , ϑ)

∂ϑ

]
, (3.132)

together with Fourier’s law
qR = −κ∇ϑ, (3.133)

with κ(ϑ) > 0 the thermal conductivity.

3.4.1 Partial differential equations for the deformation and temperature fields

The partial differential equation for the deformation is obtained from the local force balance (cf.
(3.46)):

DivTR + b0R = ρR χ̈. (3.134)

The specific heat in the theory is given by

c
def= −ϑ

[
M∑

α=1

∂2ψ̄e (α)(ICe (α) , ϑ)
∂ϑ2

+
M∑

α=1

∂2ψ̄d (α)(IA(α) , ϑ)
∂ϑ2

]
. (3.135)

Then, balance of energy gives the following partial differential equation for the temperature (cf.
(3.93))

cϑ̇ = −DivqR + qR

+

[
|Me (α)

eff 0|+
(∂ψ̃d (α)(IA(α) , ϑ)

∂A
:G(α)(ξ(α),A(α), ϑ)

)]
dp (α)

+ ϑ
M∑

α=1

∂2ψ̄e (α)(ICe (α) , ϑ)
∂ϑ ∂Ce (α)

: Ċe (α)

+ ϑ
M∑

α=1

∂2ψ̄d (α)(IA(α) , ϑ)
∂ϑ ∂A(α)

: Ȧ(α). (3.136)

3.5 Specialization of the constitutive equations

The constitutive equations listed above are fairly general. With a view towards applications, we
specialize the the theory by imposing additional constitutive assumptions based on experience with
existing recent theories of isotropic viscoplasticity of polymeric materials [e.g., 1–4, 19–21].
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To begin, we follow Buckley and Jones [1], Dooling et al. [2] and Boyce et al. [3] and assume
that that the change in the stress of an amorphous polymer arises due to two basic reasons: (i)
changes due to the stretching of intermolecular (and perhaps intramolecular) bonds, and (ii) changes
in the configurational entropy due to changes in the molecular conformations. Accordingly, we
take a micromechanism, indexed by α = 1, to represent the contribution to the stress due to
intermolecular bond-stretching, and we take an additional micromechanism, indexed by α = 2,
to represent contributions to stress changes due to entropic changes in molecular conformations
and molecular relaxations. We specialize the constitutive equations for α = 1 and α = 2 in the
subsections below.

3.5.1 Case alpha = 1

Here the free-energy is

ψ(1) = ψ̄e (1)(Ce(1), ϑ)︸ ︷︷ ︸
energetic, bond-stretching contribution

+ ψ̄d (1)(A(1), ϑ)︸ ︷︷ ︸
defect energy

. (3.137)

For most of the rest of this section, to ease the notation, we suppress the superscript α = 1.

Elastic energy and stress

The spectral representation of Ce is

Ce =
3∑

i=1

ωe
i r

e
i ⊗ re

i . (3.138)

where (ωe
1, ω

e
2, ω

e
3) are the positive eigenvalues, and (re

1, r
e
2, r

e
3) are the orthonormal eigenvectors of

Ce. Let
λe

i =
√
ωe

i , (3.139)

denote the positive eigenvalues of Ue =
√

Ce. Then the principal invariants of Ce may be expressed
as

I1(Ce) = λe 2
1 + λe 2

2 + λe 2
3 ,

I2(Ce) = λe 2
1 λe 2

2 + λe 2
2 λe 2

3 + λe 2
3 λe 2

1 ,

I3(Ce) = λe 2
1 λe 2

2 λe 2
3 ;

 (3.140)

Using (3.140) in (3.118) to express the free energy in terms of the principal stretches, we obtain:

ψe = ψ̃e(ICe , ϑ)

= ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ). (3.141)
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Then, by the chain-rule and (3.121), the stress Pe is given by

Pe = 2
∂ψ̆e(λe

1, λ
e
2, λ

e
3, ϑ)

∂Ce

= 2
3∑

i=1

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

∂λe
i

∂Ce

=
3∑

i=1

1
λe

i

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

∂ωe
i

∂Ce
. (3.142)

Assume that the squared principal stretches ωe
i are distinct, so that the ωe

i and the principal
directions re

i may be considered as functions of Ce. Then, from (3.138),

∂ωe
i

∂Ce
= re

i ⊗ re
i , (3.143)

and, granted this, (3.143) and (3.142) imply that

Pe =
3∑

i=1

1
λe

i

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

re
i ⊗ re

i . (3.144)

Also, use of (3.138) and (3.144) in (3.122) gives

Me =
3∑

i=1

λe
i

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

re
i ⊗ re

i . (3.145)

Next, since

Fe =
3∑

i=1

λe
i l

e
i ⊗ re

i , (3.146)

where
lei = Re re

i ,

are the eigenvectors of Ve (or Be), use of (3.120) and (3.144) gives

Te = Je−1
( 3∑

i=1

λe
i l

e
i ⊗ re

i

)( 3∑
i=1

1
λe

i

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

re
i ⊗ re

i

)( 3∑
i=1

λe
i r

e
i ⊗ lei

)
,

or

Te = Je−1
3∑

i=1

λe
i

∂ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

lei ⊗ lei . (3.147)

Further, (3.147) and (3.145) yield the important relation

Me = Je Re>TeRe. (3.148)
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Next, let
Ee

i
def= lnλe

i (3.149)

define principal elastic logarithmic strains, and consider a free energy function of the form

ψ̆e(λe
1, λ

e
2, λ

e
3, ϑ) = ψ̂e(Ee

1, E
e
2, E

e
3, ϑ) (3.150)

so that, using (3.147),

Te = Je−1
3∑

i=1

∂ψ̂e(Ee
1, E

e
2, E

e
3, ϑ)

∂Ee
i

lei ⊗ lei . (3.151)

We consider the following simple generalization of the classical strain energy function of infinitesimal
isotropic elasticity which uses a logarithmic measure of finite strain,

ψ̂e(Ee
1, E

e
2, E

e
3, ϑ) = G

[
(Ee

1)
2 + (Ee

2)
2 + (Ee

3)
2
]
+ 1

2 (K − 2
3G) (Ee

1 + Ee
2 + Ee

3)
2 ,

− (ϑ− ϑ0)(3K α) (Ee
1 + Ee

2 + Ee
3) + c(ϑ− ϑ0)− c ϑ ln

( ϑ
ϑ0

)
, (3.152)

where the temperature-dependent parameters

G(ϑ) > 0, K(ϑ) > 0, α(ϑ) > 0, c(ϑ) > 0, (3.153)

are the shear modulus, bulk modulus, coefficient of thermal expansion, and specific heat; ϑ0 is a
reference temperature. Then, (3.151) gives

Te = Je−1

{
3∑

i=1

(
2GEe

i + (K − 2
3
G) (Ee

1 + Ee
2 + Ee

3)− (ϑ− ϑ0)(3K α)
)
lei ⊗ lei

}
. (3.154)

Let

He def=
3∑

i=1

Ee
i lei ⊗ lei , (3.155)

denote the logarithmic elastic strain tensor in the deformed body, and

Ee def=
3∑

i=1

Ee
i re

i ⊗ re
i , (3.156)

denote the logarithmic elastic strain tensor in the intermediate space, so that

Ee = Re>HeRe. (3.157)

Then, (3.154) gives

Te = Je−1
{
2GHe

0 +K
(
trHe − 3α(ϑ− ϑ0)

)
1
}
. (3.158)
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Further, using (3.148) and (3.158), we find that the Mandel stress is given by the simple relation

Me = 2GEe
0 +K (trEe − 3α(ϑ− ϑ0))1. (3.159)

Thus, reinstating the superscript α = 1 and summarizing, with

Ce(1) =
3∑

i=1

ωe
i re

i ⊗ re
i , (3.160)

the spectral representation of Ce(1), and with

Ee(1) def=
1
2

lnCe(1) (3.161)

denoting a logarithmic strain measure, we consider an elastic free energy of the form:

ψ̃(1)(Ee (1), ϑ) = G|Ee (1)
0 |

2
+ 1

2K(trEe (1))2

− (ϑ− ϑ0)(3K α)(trEe (1)) + c(ϑ− ϑ0)− c ϑ ln
( ϑ
ϑ0

)
, (3.162)

where the temperature-dependent parameters

G(ϑ) > 0, K(ϑ) > 0, α(ϑ) > 0, c(ϑ) > 0, (3.163)

are the shear modulus, bulk modulus, coefficient of thermal expansion, and specific heat; ϑ0 is a
reference temperature.

In this case the constitutive equations for the Mandel stress becomes

Me (1) = 2GEe (1)
0 +K

{
trEe (1) − 3α (ϑ− ϑ0)

}
1 . (3.164)

and the corresponding Cauchy stress, using (3.148), is

Te (1) = J−1Re (1)Me (1)Re (1)>. (3.165)

Defect energy and back stress

The spectral representation of A is

A =
3∑

i=1

aildi ⊗ ldi , (3.166)

where (a1, a2, a3) are the positive eigenvalues, and (ld1, l
d
2, l

d
3) are the orthonormal eigenvectors of

A. The principal invariants of A are:

I1(A) = a1 + a2 + a3,

I2(A) = a1a2 + a2a3 + a3a1,

I3(A) = a1a2a3 = 1 (since detA = 1).

 (3.167)
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Thus, using (3.167) in (3.137), we express the defect energy as:

ψd = ψ̃d(IA, ϑ)

= ψ̆d(a1, a2, a3, ϑ). (3.168)

Then, by the chain-rule

∂ψ̆d(a1, a2, a3, ϑ)
∂A

=
3∑

i=1

∂ψ̆d(a1, a2, a3, ϑ)
∂ai

∂ai

∂A
. (3.169)

Assume that ai are distinct, so that the ai and the principal directions ldi may be considered as
functions of A. Then,

∂ai

∂A
= ldi ⊗ ldi , (3.170)

and, granted this, (3.169) implies that

∂ψ̆d(a1, a2, a3, ϑ)
∂A

=
3∑

i=1

∂ψ̆d(a1, a2, a3, ϑ)
∂ai

ldi ⊗ ldi (3.171)

Also, use of (3.166) and (3.171) in (3.123) gives

Mback = 2
3∑

i=1

ai
∂ψ̆d(a1, a2, a3, ϑ)

∂ai
ldi ⊗ ldi . (3.172)

Next, we consider the following simple defect energy:

ψ̆d(a1, a2, a3, ϑ) =
1
4
C
[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
, (3.173)

with C(ϑ) > 0 a defect energy modulus. Then

∂ψ̆d(a1, a2, a3, ϑ)
∂A

= 1
2C
∑3

i=1

ln ai

ai
ldi ⊗ ldi = 1

2C(lnA)A−1, (3.174)

where

lnA def=
3∑

i=1

ln ai ldi ⊗ ldi , (3.175)

denotes the defect logarithimic strain tensor, and

A−1 =
3∑

i=1

a−1
i ldi ⊗ ldi . (3.176)

Then, using (3.174) in (3.172) gives
Mback = C lnA; (3.177)
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where we call the positive-valued constitutive parameter C(ϑ) ≥ 0 the back stress modulus.
Note that since a1a2a3 = 1 (on account of (3.167)3),

tr(lnA) = ln a1 + ln a2 + ln a3 = ln(a1a2a3) = 0.

Hence the defect strain tensor (lnA) is traceless, and therefore

• the back stress Mback is not only symmetric, but also deviatoric.

Thus, reinstating the superscript α = 1 and summarizing, we have that with

A(1) =
3∑

i=1

ai ldi ⊗ ldi , (3.178)

the spectral representation of A(1), and with

lnA(1) =
3∑

i=1

ln ai ldi ⊗ ldi , (3.179)

denoting a defect logarithmic strain measure, we consider a simple defect free energy of the form

ψ̃d (1)(A(1), ϑ) =
1
4
C(ϑ)

[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
, (3.180)

where the positive-valued temperature-dependent parameter

C(ϑ) ≥ 0, (3.181)

is a back-stress modulus. In this case the constitutive equation for the symmetric and deviatoric
back stress becomes

M(1)
back = C lnA(1). (3.182)

Thus, with the symmetric Mandel stress and the symmetric and deviatoric back stress for α = 1
given by (3.164) and (3.182), respectively, the driving stress for plastic flow is the effective stress
given by

Me (1)
eff = Me (1) −M(1)

back. (3.183)

Flow function. Internal variables

Here we are concerned with specializing the functions (3.127)–(3.129). First, consider the isotropic
function for the scalar flow rate

dp(1)(I
M

e (1)
eff

, ξ(1), ϑ).

Noting that M(1)
back is deviatoric, and recalling (3.164) for Me (1), we define the mean normal pressure

by

p̄(1) def= −1
3
trMe (1)

eff = −1
3
trMe (1) = −K

{
trEe (1) − 3α (ϑ− ϑ0)

}
. (3.184)



3.5 Specialization of the constitutive equations 65

We also define an equivalent shear stress by

τ̄ (1) def=
1√
2
|(Me (1)

eff )0|, (3.185)

and an equivalent shear strain rate by

νp (1) def=
√

2dp (1) =
√

2 |Dp(1)| , (3.186)

respectively. Further, we restrict the list ξ(1) of internal variables to two, positive-valued variables

S(1) ≥ 0 and ϕ ≥ 0,

that represent aspects of the intermolecular shear resistance to plastic flow. The parameter S(1) has
dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is a dimensionless
order-parameter representing the local free-volume (a measure of disorder) of the polymeric glass.

With these definitions and specializations, we rewrite the flow equations (3.127)–(3.129) as

Dp(1) = νp (1)
((Me (1)

eff )0
2 τ̄ (1)

)
, νp (1) = f (1)(τ̄ (1), p̄(1), ϑ, S(1), ϕ) ≥ 0 . (3.187)

Let
τ̄ (1)
e

def= τ̄ (1) − S(1) − αp p̄
(1) (3.188)

denote an effective shear stress, where the parameter αp ≥ 0 denotes the pressure sensitivity of
plastic flow. Then, guided by the literature [21–25], for the flow function f (1) we choose a thermally-
activated relation in the specific form:

νp (1) =


0 if τ̄

(1)
e ≤ 0,

ν
(1)
0 exp

{
−∆F (1)

kB ϑ

} [
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m(1)

if τ̄
(1)
e > 0.

(3.189)

Here ν(1)
0 is a pre-exponential factor with units of 1/time, ∆F (1) is an activation energy, kB is

Boltzmann’s constant, V is a shear activation volume, andm(1) is a strain rate sensitivity parameter.

Evolution equations for the internal variables S(1), ϕ, and A(1)

The evolution equations for S(1) and ϕ are taken in the coupled form

Ṡ(1) = h(1)(S(1), ϕ, ϑ, νp (1)), S(1)(X, 0) = S
(1)
0 ,

ϕ̇ = g(1)(S(1), ϕ, ϑ, νp (1)), ϕ(X, 0) = ϕ0,

 (3.190)

while that for A(1) is taken as

Ȧ(1) = Dp(1)A(1) + A(1)Dp(1) − γA(1) lnA(1) νp (1), A(1)(X, 0) = 1, (3.191)

where γ(ϑ) ≥ 0 is a constitutive parameter which governs the recovery of A(1).
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3.5.2 Case alpha = 2 — Molecular network resistance

Free energy function

Here, we neglect any defect energy, and take

ψ(2) = ψ̄e (2)(Ce (2), ϑ)︸ ︷︷ ︸
entropic, molecular conformation-change contribution

. (3.192)

We denote the distortional part of Fe(2) by

Fe (2)
dis

def= J −1/3 Fe(2), detFe (2)
dis = 1. (3.193)

Correspondingly, let
Ce (2)

dis
def= (Fe (2)

dis )>Fe (2)
dis = J−2/3Ce(2), (3.194)

denote the distortional elastic right Cauchy-Green tensor, and consider a free-energy function in
the special form2

ψ(2) = ψ̄e (2)(Ce (2)
dis , ϑ) (3.195)

For ease of notation, suppress for the time being the superscript α = 2. Then using (3.121) the
Piola stress with a free energy of the form above is

Pe = 2
∂ψ̄e(Ce

dis, ϑ)
∂Ce

= 2
{
∂Ce

dis

∂Ce

}> ∂ψ̄e(Ce
dis, ϑ)

∂Ce
dis

. (3.196)

Next, since J =
√

detCe, and

∂detCe

∂Ce
= (detCe)Ce−1 = J2 Ce−1,

we have
∂J

∂Ce
=

1
2
J Ce−1, and

∂J−2/3

∂Ce
= −1

3
J−2/3Ce−1 . (3.197)

Also,

∂Ce
dis

∂Ce
=
∂(J−2/3Ce)

∂Ce
= J−2/3

(
I + J2/3Ce ⊗ ∂J−2/3

∂Ce

)
,

2Since Je (α) = J for all α, and we have already accounted for a volumetric elastic energy for α = 1, it would
appear physically incorrect to also allow for a volumetric elastic energy for α = 2.
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or using (3.197)2,

∂Ce
dis

∂Ce
= J−2/3

(
I− 1

3
Ce ⊗Ce−1

)
,

= J−2/3
(

I− 1
3
Ce

dis ⊗Ce−1
dis

)
, (3.198)

where I is the fourth-order identity tensor. Thus, using (3.198) in (3.196), the second Piola stress
has the form

Pe = 2J−2/3(I− 1
3C

e−1
dis ⊗Ce

dis)
∂ψ̄e(Ce

dis, ϑ)
∂Ce

dis

= 2J−2/3

[
∂ψ̄e(Ce

dis, ϑ)
∂Ce

dis

− 1
3

(
Ce

dis :
∂ψ̄e(Ce

dis, ϑ)
∂Ce

dis

)
Ce−1

dis

]
. (3.199)

Then, with
I1

def= trCe
dis (3.200)

denoting the first principal invariant of Ce
dis, we consider a special free energy of the form [26]

ψe = −1
2µR I1,max ln

(
1− I1 − 3

I1,max

)
, (3.201)

which involves two temperature-dependent material parameters

µR(ϑ) > 0, I1,max(ϑ) > 3. (3.202)

In particular, µR represents the ground state rubbery shear modulus of the material, and I1,max

represents the upper limit of I1 (i.e., I1 < (3 + I1,max)), associated with limited chain extensibility
of polymeric molecules. For this simple free energy

∂ψ̄e(Ce
dis, ϑ)

∂Ce
dis

= 1
2 µR

(
1− I1 − 3

I1,max

)−1 ∂I1
∂Ce

dis

= 1
2 µR

(
1− I1 − 3

I1,max

)−1
1. (3.203)

Using (3.203) in (3.199) gives

Pe = Je−2/3µR

(
1− I1 − 3

I1,max

)−1
[
1− 1

3

(
trCe

dis

)
Ce−1

dis

]
. (3.204)

From (3.120),
Te = Je−1FePeFe> = Je−1/3Fe

disP
eFe

dis
>, (3.205)
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and hence, using (3.204),

Te = Je−1µR

(
1− I1 − 3

I1,max

)−1
[
Fe

disF
e
dis
> − 1

3

(
trCe

dis

)
Fe

disC
e−1
dis Fe

dis
>

]
,

= Je−1µR

(
1− I1 − 3

I1,max

)−1
[
Be

dis −
1
3

(
trBe

dis

)
1
]
,

or reinstating the superscript α = 2,

Te(2) = J−1

[
µR

(
1− I1 − 3

I1,max

)−1
(Be(2)

dis)0

]
. (3.206)

Further, from (3.122), the Mandel stress is

Me = CePe = J2/3Ce
disP

e, (3.207)

and hence, using (3.204),

Me = µR

(
1− I1 − 3

I1,max

)−1
[
Ce

dis −
1
3

(
trCe

dis

)
1
]
, (3.208)

or reinstating the superscript α = 2,

Me(2) = µR

(
1− I1 − 3

I1,max

)−1
(Ce

dis
(2))0. (3.209)

Note that for α = 2 we have ignored a defect energy, and hence there is no back stress.

Flow function. Internal variables

As before, we introduce the definitions of the equivalent shear stress and the equivalent plastic
shear strain rate by

τ̄ (2) def=
1√
2
|Me (2)

0 |, νp (2) def=
√

2 dp (2) =
√

2 |Dp(2)| . (3.210)

We consider only one internal variable

ξ(2) → S(2),

with S(2) > 0 a positive-valued stress-dimensioned shear resistance, and take the plastic stretching
to be given by

Dp(2) = νp (2)
(Me (2)

0

2 τ̄ (2)

)
, with νp (2) = f (2)(τ̄ (2), ϑ, S(2)) ≥ 0 . (3.211)
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For simplicity, we consider a standard, power-law thermally-activated form for the flow function:

νp (2) = ν
(2)
0 exp

{
−∆F (2)

kB ϑ

} (
τ̄ (2)

S(2)

)1/m(2)

; (3.212)

here the parameters ν(2)
0 , ∆F (2), and m(2) represent a reference strain rate, an activation energy,

and a strain rate-sensitivity parameter. The shear deformation resistance S2 is assumed to be a
constant.

3.6 Summary of the specialized constitutive model using two micromech-
anisms alpha = 1, 2

In this section, we summarize the specialized form of our theory, which should be useful in appli-
cations. The underlying constitutive equations relate the following basic fields:

x = χ(X, t), motion;
F = ∇χ, J = detF > 0, deformation gradient;
F = Fe (α)Fp (α), α = 1, . . . ,M , elastic-plastic decomposition of F;
Fp (α), Jp (α) = detFp (α) = 1, inelastic distortion;
Fe (α), Je (α) = detFe (α) = J > 0, elastic distortion;
Fe (α) = Re (α)Ue (α) = Ve (α)Re (α), polar decompositions of Fe (α);
Ce (α) = Fe (α)>Fe (α), elastic right Cauchy-Green tensors;
Be (α) = Fe (α)Fe (α)>, elastic left Cauchy-Green tensors;

Fe (α)
dis

def= J −1/3 Fe (α), detFe (α)
dis = 1, distortional part of Fe (α);

Ce (α)
dis = (Fe (α)

dis )>Fe (α)
dis , Be (α)

dis = Fe (α)
dis (Fe (α)

dis )> distortional elastic Cauchy-Green strains;
T, Cauchy stress;
T =

∑2
α=1 Te (α), decomposition of Cauchy stress;

Me (α) = JRe (α)>Te (α) Re (α), Mandel stress;
ψR =

∑M
α=1 ψ̄

(α), free energy density per unit ref. vol.;
ηR =

∑M
α=1 η̄

(α), entropy density per unit ref. vol.;

ξ(α) = (ξ(α)
1 , ξ

(α)
2 , . . . , ξ

(α)
m ) m scalar internal variables for each α;

A(α), A(α) = A(α)>, detA(α) = 1 tensorial internal variables for each α;

Me (α)
back , Back stress;

ϑ > 0, absolute temperature;
∇ϑ, referential temperature gradient;
qR, referential heat flux vector.

The temperature-dependence of the material properties of amorphous polymers depends strongly
on the temperature relative to the

• glass transition temperature ϑg
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of the material. It is well-known that the glass transition temperature of such materials is not a
constant, but depends strongly on the strain rate to which the material is subjected. Let

d
def=
√

2|D0| (3.213)

denote the shear strain rate, and dref a reference strain rate, we assume that the variation of the
glass transition temperature with strain rate may be adequately described by [21, cf. their eq.
(10)],

ϑg =


ϑref

g if d ≤ dref,

ϑref
g +

[
C2g × log10(d/d

ref)
C1g − log10(d/d

ref)

]
if d > dref,

(3.214)

where C1g and C2g are Williams-Landel-Ferry (WLF) parameters [27] relative to the reference glass
transition temperature ϑref

g .
With the governing fields and the glass transition temperature so defined, we assume the fol-

lowing constitutive equations:

3.6.1 Constitutive equations for alpha=1, intermolecular resistance

1. Free energy:

With

Ce (1) =
3∑

i=1

ωi re
i ⊗ re

i , (3.215)

denoting the spectral representation of Ce (1), and with

Ee (1) =
3∑

i=1

Ee
i re

i ⊗ re
i , Ee

i = ln
√
ωe

i , (3.216)

denoting a elastic logarithmic strain measure, we consider an elastic free energy of the form

ψe (1)(Ce (1), ϑ) = G|Ee (1)
0 |

2
+ 1

2K(trEe (1))2

− (ϑ− ϑ0)(3K α)(trEe (1)) + c(ϑ− ϑ0)− c ϑ ln
( ϑ
ϑ0

)
. (3.217)

where
G(ϑ) > 0, K(ϑ) > 0, α(ϑ), c(ϑ), (3.218)

are temperature-dependent shear modulus, bulk modulus, coefficient of thermal expansion,
and specific heat, and ϑ0 is a reference temperature.

With

A(1) =
3∑

i=1

ai ldi ⊗ ldi , (3.219)
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denoting the spectral representation of A(1), and with

lnA(1) =
3∑

i=1

ln ai ldi ⊗ ldi , (3.220)

denoting a defect logarithmic strain measure, we consider a defect free energy of the form

ψ̃d (1)(A(1), ϑ) =
1
4
C(ϑ)

[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
, (3.221)

where the positive-valued temperature-dependent parameter

C(ϑ) ≥ 0, (3.222)

is a back-stress modulus.

2. Mandel stress. Cauchy stress. Back stress. Effective stress:

The Mandel stress is given by

Me (1) = 2GEe (1)
0 +K

{
trEe (1) − 3α (ϑ− ϑ0)

}
1. (3.223)

The Cauchy stress is given by

Te (1) def= J−1 Re (1) Me (1) Re (1)>. (3.224)

The symmetric and deviatoric back stress is

M(1)
back = C lnA(1). (3.225)

The driving stress for plastic flow is the effective stress given by

Me (1)
eff = Me (1) −M(1)

back. (3.226)

The corresponding equivalent shear stress and mean normal pressure are given by

τ̄ (1) def=
1√
2
|(Me (1)

eff )0|, and p̄(1) def= −1
3
trMe (1), (3.227)

respectively.

3. Internal variables:

We restrict the list ξ(1) of internal variables to two, positive-valued variables

S(1) ≥ 0, ϕ ≥ 0

that represent aspects of the intermolecular shear resistance to plastic flow. The parameter
S(1) has dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is
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a dimensionless order-parameter representing the local free-volume (a measure of disorder) of
the polymeric glass.

4. Flow rule:

The evolution equation for Fp(1) is

Ḟp (1) = Dp(1) Fp(1), Fp(1)(X, 0) = 1,

Dp(1) = νp (1)
((Me (1)

eff )0
2 τ̄ (1)

)
,

νp (1) =


0 if τ̄

(1)
e ≤ 0,

ν
(1)
0 exp

{
−∆F (1)

kB ϑ

} [
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m(1)

if τ̄
(1)
e > 0 ,


(3.228)

where
τ̄ (1)
e

def= τ̄ (1) − S(1) − αp p̄
(1) (3.229)

denotes an effective shear stress, with αp ≥ 0 a pressure sensitivity parameter, ν(1)
0 is a pre-

exponential factor with units of 1/time, m(1) is a strain rate sensitivity parameter, ∆F (1) is
an activation energy, V is a shear activation volume, and kB is Boltzmann’s constant.

5. Evolution equations for the internal variables S(1), ϕ, and A(1)

The evolution equations for S(1) and ϕ are taken in the coupled form

Ṡ(1) = h(S(1), ϕ, ϑ, νp (1)), S(1)(X, 0) = S
(1)
0 ,

ϕ̇ = g(S(1), ϕ, ϑ, νp (1)), ϕ(X, 0) = ϕ0,

 (3.230)

while that for A(1) is taken as

Ȧ(1) = Dp(1)A(1) + A(1)Dp(1) − γA(1) lnA(1) νp (1), A(1)(X, 0) = 1, (3.231)

where γ(ϑ) ≥ 0 is a constitutive parameter which governs the recovery of A(1).

3.6.2 Constitutive equations for alpha=2, molecular network resistance

1. Free energy

Let
I1

def= trCe (2)
dis (3.232)

denote the first principal invariant of Ce (2)
dis . We consider following elastic free energy

ψe (2) = −1
2µR I1,max ln

(
1− I1 − 3

I1,max

)
, (3.233)

where
µR(ϑ) > 0, I1,max(ϑ) > 3 (3.234)
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are two temperature-dependent material constants. In particular, µR represents the ground
state rubbery shear modulus of the material, and I1,max represents the upper limit of I1 (i.e.,
I1 < (3 + I1,max)), associated with limited chain extensibility.

2. Mandel stress. Cauchy stress:

The Mandel stress is given by

Me(2) = µR

(
1− I1 − 3

I1,max

)−1
(Ce

dis
(2))0. (3.235)

The Cauchy stress is given by

Te(2) = J−1

[
µR

(
1− I1 − 3

I1,max

)−1
(Be(2)

dis)0

]
. (3.236)

For α = 2 we have neglected a defect energy, and hence there is no back stress. The corre-
sponding equivalent shear stress is given by

τ̄ (2) def=
1√
2
|Me (2)

0 |, (3.237)

3. Internal variables:

We restrict the list ξ(2) of internal variables to a single stress-dimensioned positive-valued
variable

S(2) > 0

that represents a shear resistance to plastic flow for molecular relaxation processes.

4. Flow rule:

The evolution equation for Fp(2) is

Ḟp (2) = Dp(2) Fp(2), Fp(2)(X, 0) = 1,

Dp(2) = νp (2)
(Me (2)

0

2 τ̄ (2)

)
,

νp (2) = ν
(2)
0 exp

{
−∆F (1)

kB ϑ

} ( τ̄ (2)

S(2)

)1/m(2)


(3.238)

where ν(2)
0 is a pre-exponential factor with units of 1/time, ∆F (2) is an activation energy, kB

is Boltzmann’s constant, and m(2) is a strain rate sensitivity parameter.

5. Evolution equation for S(2)

The shear deformation resistance S(2) is assumed to remain constant.

6. Entropy relation. Fourier’s Law:
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Finally, we have the entropy relation

ηR =
M∑

α=1

η(α), η(α) = −

[
∂ψ̄e (α)(Ce (α), ϑ)

∂ϑ
+
∂ψ̄d (α)(A(α), ϑ)

∂ϑ

]
, (3.239)

together with Fourier’s law
qR = −κ∇ϑ, (3.240)

with κ(ϑ) > 0 the thermal conductivity.

3.7 Partial differential equations for the deformation and temperature
fields

The partial differential equation for the deformation is obtained from the local force balance:

DivTR + b0R = ρR χ̈. (3.241)

The specific heat in the theory is given by

c
def= −ϑ

[
M∑

α=1

∂2ψ̄e (α)(ICe (α) , ϑ)
∂ϑ2

+
M∑

α=1

∂2ψ̄d (α)(IA(α) , ϑ)
∂ϑ2

]
. (3.242)

Then, balance of energy gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR

+
M∑

α=1

[
|Me (α)

eff 0|+
(∂ψ̃d (α)(IA(α) , ϑ)

∂A(α)
:G(α)(ξ(α),A(α), ϑ)

)]
dp (α)

+ ϑ
M∑

α=1

∂2ψ̄e (α)(ICe (α) , ϑ)
∂ϑ ∂Ce (α)

: Ċe (α)

+ ϑ
M∑

α=1

∂2ψ̄d (α)(IA(α) , ϑ)
∂ϑ ∂A(α)

: Ȧ(α). (3.243)
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Chapter 4

Application of the theory to PMMA
below its glass transition temperature

4.1 Introduction

In this chapter we calibrate the constitutive parameters/functions in the theory developed in the
previous chapter for the thermo-mechanical response of PMMA below its glass transition tempera-
ture. A summary of this specialized model is presented in Section 4.2 followed by the corresponding
calibration procedure for PMMA in Section 4.3. A summary of the key constitutive equations, as
well as the material parameters used, for both the one-dimensional and three-dimensional models
are shown in Section 4.4.

4.2 Summary of the Specialized Material Model

Based on experience with recent theories of isotropic viscoplasticity of polymeric materials [1–6],
we assume that the change in the macroscopic stress response of an amorphous polymer arises due
to two basic reasons: (i) changes due to the stretching of intermolecular bonds, and (ii) changes
in the configurational entropy due to changes in the molecular conformations. Accordingly, in
developing our continuum mechanical theory, we assume two major operative micromechanisms
to represent these concepts. Although no real material is composed of springs and dashpots, as a
visual aid, Figure 4-1 shows a schematic rheological representation of these micromechanisms. The
left micromechanism indexed by α = 1 represents contributions to the stress due to intermolecular
bond-stretching, and the right micromechanism indexed by α = 2 represents contributions to the
stress due to entropic changes in molecular conformations.

With such a micromechanical picture in mind, we have developed a rigorous three-dimensional
thermo-mechanically coupled large deformation continuum framework for amorphous polymers,
details of which were given in Chapter 3. The specialization of this framework to polymer behavior
below the glass transition is presented here.

79
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Figure 4-1: One-dimensional rheological representation of the proposed model for temperatures below the glass
transition.

4.2.1 Summary of Three-Dimensional Constitutive Equations

This section summarizes a specialized form of our theory which should be useful in modeling
the complex finite deformation response of amorphous thermoplastic polymers below their glass
transition temperatures. For this case, we neglect plastic deformation in micromechanism α = 2 so
that

Fp (2) = 1 (4.1)

and to ease notation, we introduce

Fp (1) = Fp, Fe (1) = Fe, Fe (2) = F, (4.2)

The underlying constitutive equations relate the following basic fields:

χ(X, t), motion;
F = ∇χ, J = detF > 0, deformation gradient;
F = FeFp, elastic-plastic decomposition of F;
Fp, Jp = detFp = 1, inelastic distortions;
Fe, Je = detFe = J > 0, elastic distortions;
F = RU = VR, polar decomposition of F;
Fe = ReUe = VeRe, polar decomposition of Fe;
C = F>F, Ce = Fe>Fe, right Cauchy-Green strains;
B = FF>, Be = FeFe>, left Cauchy-Green strains;

Fdis
def= J −1/3 F, detFdis = 1, distortional part of F;

Cdis = (Fdis)>Fdis, Bdis = Fdis (Fdis)>, distortional Cauchy-Green strains;
T, Cauchy stress;
T =

∑2
α=1 Te (α), decomposition of Cauchy stress;

Me (1) = JRe>Te (1) Re, Mandel stress for α = 1;
Me (2) = JR>Te (2) R, Mandel stress for α = 2;
ψR =

∑2
α=1 ψ̄

(α), free energy density per unit reference volume;
ηR =

∑2
α=1 η̄

(α), entropy density per unit reference volume;
ξ = (ξ1, ξ2, . . . , ξm), scalar internal variables;
A, A = A>, detA = 1, tensorial internal variable;
Me

back, back stress;
ϑ > 0, absolute temperature;
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∇ϑ, referential temperature gradient;
qR, referential heat flux vector.

Temperature dependence

The temperature-dependence of the material properties of amorphous polymers depends strongly
on the temperature relative to the glass transition temperature ϑg of the material. It is well-known
that the glass transition temperature of such materials is not a constant, but depends strongly on
the strain rate to which the material is subjected. Let

d
def=
√

2|D0| (4.3)

denote the macroscopic effective shear strain rate, and dref a reference strain rate. We assume that
the variation of the glass transition temperature with strain rate may be adequately described by
[5, cf. their eq. (10)]

ϑg =


ϑref

g if d ≤ dref,

ϑref
g +

[
C2g × log10(d/d

ref)
C1g − log10(d/d

ref)

]
if d > dref,

(4.4)

where C1g and C2g are Williams-Landel-Ferry (WLF) parameters [7] relative to the reference glass
transition temperature ϑref

g .
For this specialization of the model below the glass transition, we choose a temperature ϑ∗

below the glass transition which we will use to define the temperature dependence of our material
parameters. We assume that it varies identically to the glass transition temperature such that

ϑ∗ =


ϑref
∗ if d ≤ dref,

ϑref
∗ +

[
C2g × log10(d/d

ref)
C1g − log10(d/d

ref)

]
if d > dref,

(4.5)

where ϑref
∗ is the reference value of the temperature. With the governing fields so defined, we assume

the following constitutive equations for the two micromechanisms α = 1, 2.

1. Free energy:

For micromechanism α = 1, with

Ce =
3∑

i=1

ωi re
i ⊗ re

i , (4.6)

denoting the spectral representation of Ce, and with

Ee =
3∑

i=1

Ee
i re

i ⊗ re
i , Ee

i = ln
√
ωe

i , (4.7)
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denoting an elastic logarithmic strain measure, we consider an elastic free energy of the form

ψe (1)(Ce, ϑ) = G|Ee
0|

2 + 1
2K(trEe)2

− 3K αth(ϑ− ϑ0) trEe + c(ϑ− ϑ0)− c ϑ ln
( ϑ
ϑ0

)
. (4.8)

where G(ϑ) > 0 is the temperature-dependent shear modulus, K > 0 is the bulk modulus,
αth > 0 is the coefficient of thermal expansion, c > 0 is the specific heat, and ϑ0 is a reference
temperature. The shear modulus is assumed to decrease linearly with increasing temperature
such that

G(ϑ) = Gref −XG(ϑ− ϑ∗), (4.9)

where Gref is the value of the shear modulus at a chosen reference temperature ϑref, and XG

describes the variation of the shear modulus with temperature.

With

A =
3∑

i=1

ai ldi ⊗ ldi , (4.10)

denoting the spectral representation of A, and with

lnA =
3∑

i=1

ln ai ldi ⊗ ldi , (4.11)

denoting a defect logarithmic strain measure, we consider a defect free energy of the form

ψ̃d(A, ϑ) =
1
4
C(ϑ)

[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
, (4.12)

where C(ϑ) ≥ 0 is a backstress modulus chosen to decrease linearly with temperature following
the form of the internal stress used by Fotheringham et al. [8], Povolo and Hermida [9] and
Richeton et al. [10]. So that

C(ϑ) =

{
−XC(ϑ− ϑC) if ϑ ≤ ϑC ,

0 if ϑ > ϑC ,
(4.13)

where XC > 0 is a material parameter and ϑC is the temperature near the material’s glass
transition where C(ϑ) vanishes.

For micromechanism α = 2, let
I1

def= trCdis (4.14)

denote the first principal invariant of Cdis. We consider following elastic free energy

ψe (2) = −1
2µR I1,max ln

(
1− I1 − 3

I1,max

)
, (4.15)

where µR(ϑ) > 0 and I1,max > 3 are two material parameters. In particular, µR represents the
ground state rubbery shear modulus of the material, and I1,max represents the upper limit
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of I1 (i.e., I1 < (3 + I1,max)), associated with limited chain extensibility. We assume that µR

decreases linearly with increasing temperature such that

µR(ϑ) = µref
R −Xµ(ϑ− ϑ∗), (4.16)

where µref
R is the value of µR at a chosen reference temperature ϑref and Xµ describes the

variation of µR with temperature.

2. Mandel stress. Cauchy stress. Back stress. Effective stress:

For micromechanism α = 1, the Mandel stress is given by

Me (1) = 2GEe
0 +K

{
trEe − 3αth (ϑ− ϑ0)

}
1, (4.17)

and the corresponding Cauchy stress is then

Te (1) def= J−1 Re Me (1) Re>. (4.18)

The symmetric and deviatoric back stress is

Mback = C lnA, (4.19)

and the driving stress for plastic flow is the effective stress given by

Me (1)
eff = Me (1) −Mback. (4.20)

The corresponding equivalent shear stress and mean normal pressure are given by

τ̄
def=

1√
2
|(Me (1)

eff )0|, and p̄
def= −1

3
trMe (1), (4.21)

respectively.

For micromechanism α = 2, the Mandel stress is given by

Me(2) = µR

(
1− I1 − 3

I1,max

)−1
(Cdis)0, (4.22)

and the corresponding Cauchy stress is then

Te(2) = J−1

[
µR

(
1− I1 − 3

I1,max

)−1
(Bdis)0

]
. (4.23)

3. Internal variables:

We restrict the list ξ of internal variables to two, positive-valued variables

S ≥ 0, ϕ ≥ 0
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that represent aspects of the intermolecular shear resistance to plastic flow. The parameter
S has dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is a
dimensionless parameter representing the local free-volume of the polymeric glass.

4. Flow rule: The evolution equation for Fp is assumed to follow the “cooperative model” of
Fotheringham et al. [8], Povolo and Hermida [9] and Richeton et al. [10]. The equations are

Ḟp = Dp Fp, Fp(X, 0) = 1,

Dp = νp
((Me (1)

eff )0
2 τ̄

)
,

νp =


0 if τ̄

(1)
e ≤ 0,

ν0 exp
{
− ∆F
kB ϑ

} [
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m

if τ̄
(1)
e > 0 ,


(4.24)

where
τ̄ (1)
e

def= τ̄ − S − αp p̄ (4.25)

denotes an effective shear stress, with αp ≥ 0 a pressure sensitivity parameter, ν0 is a pre-
exponential factor with units of 1/time, m is a strain rate sensitivity parameter, ∆F is an
activation energy, V is a shear activation volume, and kB is Boltzmann’s constant.

5. Evolution equations for the internal variables S, ϕ, and A

We assume that the material disorders and is accompanied by a microscale dilatation as
plastic deformation occurs resulting in an increase of the free volume ϕ. This increase leads
to a fluctuation in the isotropic resistance S causing a transient rise in the flow stress of
the material as plastic deformation proceeds. We therefore assume that the evolution of the
free volume ϕ is coupled to the evolution of the isotropic resistance S in order to reproduce
the typical yield peak observed in the stress-strain response of amorphous polymers below
the glass transition temperature ϑg. The coupling is introduced through this special set of
equations:

ϕ̇ = g (ϕ∗ − ϕ) νp, ϕ(X, 0) = ϕi > 0,

Ṡ = h (S∗ − S) νp, S(X, 0) = Si ≥ 0,
S∗ = Si + b (ϕ∗ − ϕ) ,

 (4.26)

where the material parameter ϕ∗ ≥ ϕi represents a saturation value of the free volume ϕ.1

The material parameters/functions g(ϑ) > 0, h > 0, and b(ϑ, νp) ≥ 0 describe the initial
hardening, subsequent rate of softening, and magnitude of the yield peak. We assume the
following particular functions to describe the temperature and rate-dependence of g and b:

g = g1 + g2ϑ,

b = b1
(
ϑ2 + b2ϑ+ b3

) ( νp

νref

)b4

,

 (4.27)

1The saturation value ϕ∗ is in general expected to be a function of the temperature ϑ and the strain-rate νp, but
there is insufficient experimental information to be more precise about such variations at this time
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where the list {g1, g2, b1, b2, b3, b4} are material parameters and νref is a reference strain-rate.
These functions for b and g are empirical and have been chosen to fit experimental data.

The evolution equation for A is taken as

Ȧ = DpA + ADp − γ
(
A lnA

)
νp, A(X, 0) = 1, (4.28)

where γ ≥ 0 is a constitutive parameter which governs the dynamic recovery of A.

6. Entropy relation. Fourier’s Law:

Finally, we have the entropy relation

ηR = −

[
∂ψ̄e (1)(Ce, ϑ)

∂ϑ
+
∂ψ̄e (2)(C, ϑ)

∂ϑ
+
∂ψ̄d(A, ϑ)

∂ϑ

]
, (4.29)

together with Fourier’s law
qR = −κ∇ϑ, (4.30)

where κ(ϑ) > 0 is the thermal conductivity and

∂ψ̄e (1)(Ce, ϑ)
∂ϑ

=
∂G

∂ϑ
|Ee

0|
2 − 3Kαth(trEe)− c ln

( ϑ
ϑ0

)
,

∂ψ̄e (2)(C, ϑ)
∂ϑ

=
1
2
∂µR

∂ϑ
I1,max ln

(
1− I1 − 3

I1,max

)
,

∂ψ̄d(A, ϑ)
∂ϑ

=
1
4
∂C

∂ϑ

[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
.


(4.31)

We have assumed that K, αth, c, and I1,max are temperature-independent below the glass
transition.

7. Partial differential equations for the temperature field

The specific heat in the theory is given by

c
def= −ϑ

[
∂2ψ̄e (1)(ICe , ϑ)

∂ϑ2
+
∂2ψ̄e (2)(IC, ϑ)

∂ϑ2
+
∂2ψ̄d(IA, ϑ)

∂ϑ2

]
, (4.32)

and balance of energy gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR +

[
|(Me (1)

eff )0|+
∂ψ̃d(IA, ϑ)

∂A
:G(A)

]
dp

︸ ︷︷ ︸
rate of plastic dissipation

+ ϑ

[
∂2ψ̄e (1)(ICe , ϑ)

∂ϑ ∂Ce
: Ċe +

∂2ψ̄e (2)(IC, ϑ)
∂ϑ ∂C

: Ċ +
∂2ψ̄d(IA, ϑ)
∂ϑ ∂A

: Ȧ

]
︸ ︷︷ ︸

“thermoelastic coupling” terms due to variation of Ce, C, and A

(4.33)
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Table 4.1: Summary of the five terms in the heat equation of (4.35)

Term Description

τ̄ νp Plastic dissipation

1
2 C γ | lnA|2 νp Backstress dissipation

ϑ
∂Me (1)

∂ϑ
: [Fe>De Fe−>] Thermoelastic storage

1
2 ϑ

∂C

∂ϑ

[
(lnA)A−1

]
: Ȧ Backstress storage

ϑ
∂Me (2)

∂ϑ
: [F>DF−>] Gent storage

where
G(A) =

1√
2
γA lnA,

∂ψ̃d(IA, ϑ)
∂A

=
1
2
C (lnA)A−1,

∂2ψ̄e (1)(ICe , ϑ)
∂ϑ ∂Ce

=
∂

∂ϑ

[
1
2

Ce−1 Me (1)

]
,

∂2ψ̄e (2)(IC, ϑ)
∂ϑ ∂C

=
∂

∂ϑ

[
1
2

C−1 Me (2)

]
.


(4.34)

Using the symmetry of A, Me (α), Ce and C, (4.33) can be rewritten as

cϑ̇ = −DivqR + qR +
[
τ̄ +

1
2
C γ | lnA|2

]
νp︸ ︷︷ ︸

rate of plastic dissipation

+ ϑ

[
∂Me (1)

∂ϑ
:
[
Fe>De Fe−>]+

∂Me (2)

∂ϑ
:
[
F>DF−>

]
+

1
2
∂C

∂ϑ

[
(lnA)A−1

]
: Ȧ

]
︸ ︷︷ ︸

“thermoelastic coupling” terms

(4.35)

where
∂Me (1)

∂ϑ
= 2

∂G

∂ϑ
Ee

0 − 3Kαth1,

∂Me (2)

∂ϑ
=
∂µR

∂ϑ

(
1− I1 − 3

I1,max

)−1
(Cdis)0.

 (4.36)
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Figure 4-2: Contributions of the various terms of the the heat equation of (4.35) during a one-element
adiabatic ABAQUS calculation at a strain-rate of 10−1/s at 25 C. The specific form of each term is
summarized in Table 4.1.

At this stage of the development of the theory, the “thermoelastic-coupling” terms which give
rise to a temperature change due to variations of Ce, C and A with deformation are not well-
characterized. To demonstrate this, in Figure 4-2 we plot the contribution of all terms of the
plastic dissipation and thermoelastic-coupling to the heat equation for a simple compression
simulation at 25 C. The five terms are summarized in Table 4.1. As the test progresses,
the contribution from the Gent storage term begins to contribute significantly to the cooling
of the specimen at large deformations. It is not immediately clear why this contribution is
physically unrealistic; it is likely that some of the large strain hardening is dissipated and not
fully stored. Accordingly, as an approximation, we neglect these terms and assume instead
that only a fraction 0 / β / 1 of the rate of plastic dissipation is dissipated as heat

cϑ̇ = −DivqR + qR + β

(
τ̄ +

1
2
C γ | lnA|2

)
νp (4.37)

where β is the fraction of inelastic work that is dissipated, and we have used
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4.2.2 Summary of One-Dimensional Constitutive Equations

In this section we present an approximate one-dimensional version of the model which substantially
aids in the calibration of material properties from experimental data. The underlying constitutive
equations relate the following basic fields:

U > 0, stretch,
Up, plastic stretch,
U e = UUp−1, elastic part of the stretch,
ε = lnU, logarithmic strain,
εe = lnU e, logarithmic elastic strain,
ξ =

(
V, ϕ

)
scalar internal variables,

A > 0, squared stretch-like internal variable,
ϑ > 0, absolute temperature,
ψ = ψe (1)

(
U e, ϑ

)
+ ψe (2)

(
U, ϑ

)
+ ψd

(
A, ϑ

)
, free energy density,

σ =
2∑

α=1

σe(α), decomposition of the Cauchy stress.

Temperature dependence

The temperature-dependence of the material properties of amorphous polymers depends strongly
on the temperature relative to the glass transition temperature ϑg of the material. It is well-known
that the glass transition temperature of such materials is not a constant, but depends strongly on
the strain-rate to which the material is subjected. Let

ε̇
def=

∂ε

∂t
(4.38)

denote the axial strain-rate, and ε̇ref a reference strain-rate. We assume that the variation of the
glass transition temperature with strain-rate may be adequately described by [5, cf. their eq. (10)]

ϑg =


ϑref

g if ε̇ ≤ ε̇ref,

ϑref
g +

[
C2g × log10(ε̇/ε̇ref)
C1g − log10(ε̇/ε̇ref)

]
if ε̇ > ε̇ref,

(4.39)

where C1g and C2g are Williams-Landel-Ferry (WLF) parameters [7] relative to the reference glass
transition temperature ϑref

g . With the governing fields and the glass transition temperature so
defined, we assume the following constitutive equations for the two micromechanisms α = 1, 2.

For this specialization of the model below the glass transition, we choose a temperature ϑ∗
below the glass transition which we will use to define the temperature dependence of our material
parameters. We assume that it varies identically to the glass transition temperature such that

ϑ∗ =


ϑref
∗ if ε̇ ≤ ε̇ref,

ϑref
∗ +

[
C2g × log10(ε̇/ε̇ref)
C1g − log10(ε̇/ε̇ref)

]
if ε̇ > ε̇ref,

(4.40)
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where ϑref
∗ is the reference value of the temperature. With the governing fields so defined, we assume

the following constitutive equations for the two micromechanisms α = 1, 2.

1. Free Energy: For ψe(1) we use a simple linear elastic form for the free energy

ψe (1) = 1
2 E |ε

e|2, (4.41)

where E(ϑ) > 0 is the temperature-dependent Young’s modulus. The modulus is assumed to
decrease linearly with increasing temperature such that

E(ϑ) = Eref −XE(ϑ− ϑ∗), (4.42)

where Eref is the value of the modulus at a chosen reference temperature ϑref andXE describes
the variation of the modulus with temperature.

For ψd we use a simple defect free energy of the form2

ψd (1) = 3
8 C (lnA)2, (4.43)

where C(ϑ) ≥ 0 is a back-stress modulus chosen to decrease linearly with temperature follow-
ing the form of the internal stress used by Povolo and Hermida [9], Fotheringham and Cherry
[11], and Richeton et al. [10]

C(ϑ) =

{
−XC(ϑ− ϑC) if ϑ ≤ ϑC ,

0 if ϑ > ϑC ,
(4.44)

where XC is a material parameter and ϑC is the temperature near the material’s glass tran-
sition where C(ϑ) vanishes.

For ψ(2) we use the first invariant of the stretch3

2Let (a1, a2, a3) denote the set of a principal stretches of a symmetric positive definite unimodular tensor A in
three dimensions representing a squared stretch tensor. Since detA = 1, the ai satisfy a1a2a3 = 1. Assuming a
corresponding defect free energy of the form

ψd = 1
4
C

[
(ln a1)

2 + (ln a2)
2 + (ln a3)

2],
then in one-dimension, with A

def
= a1, a2 = a3 = A−

1
2 , the defect free energy can be written as

ψd = 3
8
C (lnA)2,

3Let (λ1, λ2, λ3) denote the set of a principal stretches of a symmetric positive definite tensor U in three dimensions
representing a stretch tensor. For incompressibility of such a stretch, the λi satisfy λ1λ2λ3 = 1. The first invariant
I1 of the stretch is defined by

I1
def
= λ2

1 + λ2
2 + λ2

3.

In one-dimension, with λ
def
= λ1, λ2 = λ3 = λ−

1
2 ,

I1 = λ2 + 2λ−1.
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I1 ≡ U + 2U−1, (4.45)

and adopt the Gent [12] form of the free energy

ψe (2) = −1
2 µR I1,max ln

(
1− I1 − 3

I1,max

)
(4.46)

where µR(ϑ) > 0 and I1,max > 3 are two material parameters. In particular, µR represents the
ground state rubbery shear modulus of the material, and I1,max represents the upper limit
of I1 (i.e., I1 < (3 + I1,max)), associated with limited chain extensibility. We assume that µR

decreases linearly with increasing temperature such that

µR(ϑ) = µref
R −Xµ(ϑ− ϑ∗), (4.47)

where µref
R is the value of µR at a chosen reference temperature ϑref and Xµ describes the

variation of µR with temperature.

2. Equation for the stress: The elastic stress in mechanism α = 1 is given by

σe (1) = E εe (4.48)

and the back-stress relation is4

σback = 3
2 C lnA. (4.49)

such that the driving stress for plastic flow is the effective stress given by

σ
(1)
eff = σe (1) − σback (4.50)

4Given a free energy function of the form
ψ = ψ̂(A),

the engineering stress S is defined by

S = 2
∂ψ

∂A
.

Also, assuming incompressibility, the Cauchy stress σ can then be represented as

σ = SA = 2A
∂ψ̂

∂A
,
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The stress in mechanism α = 2 is given by5

σe(2) = µR

(
1− I1 − 3

I1,max

)−1 (
U2 − U−1

)
(4.51)

3. Internal variables:

The list ξ of internal variables is
S ≥ 0, ϕ ≥ 0,

that represent aspects of the intermolecular shear resistance to plastic flow. The parameter
S has dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is a
dimensionless parameter representing the local free-volume of the polymeric glass.

4. Flow rule: The evolution equation for Up is

U̇p = DpUp, Up(0) = 1,

Dp = ε̇p sign(σe(1))

σ̄
def= |σ(1)

eff | − S − αp p̄, p̄
def= −1

3 σ
e(1)

ε̇p =

ε̇0 exp
(
−∆F
kBϑ

)[
sinh

(
σ̄V

2 kBϑ

)]1/m

if σ̄ > 0,

0 if σ̄ ≤ 0.


(4.52)

The quantity ε̇p is the plastic strain-rate and follows the form of the “cooperative model” used
by Richeton et al. [10], where σ̄ denotes an effective stress with αp ≥ 0 a pressure sensitivity
parameter and p̄ a pressure. Additionally, ε̇0 is a pre-exponential factor with units of 1/time,
∆F is an activation energy, m is a strain rate sensitivity parameter, V represents a tensile
activation volume, and kB is Boltzmann’s constant.

5. Evolution equations for the internal variables S, ϕ, and A

We assume that the material disorders and is accompanied by a microscale dilatation as
plastic deformation occurs resulting in an increase of the free volume ϕ. This increase leads
to a fluctuation in the isotropic resistance S causing a transient rise in the flow stress of
the material as plastic deformation proceeds. We therefore assume that the evolution of the

5Given a free energy function of the form

ψ = ψ̂ (I1) , I1 = λ2 + 2λ−1,

the engineering stress S is defined by

S =
∂ψ

∂λ
=
∂ψ̂

∂I1

∂I1
∂λ

.

Also, assuming incompressibility
a0 = aλ,

where a0 is the original cross-sectional area and a is the current cross-sectional area. The Cauchy stress σ can then
be represented as

σ = Sλ = λ
∂ψ̂

∂I1

∂I1
∂λ

,
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free volume ϕ is coupled to the evolution of the isotropic resistance S in order to reproduce
the typical yield peak observed in the stress-strain response of amorphous polymers below
the glass transition temperature ϑg. The coupling is introduced through this special set of
equations:

ϕ̇ = g (ϕ∗ − ϕ) ε̇p, ϕ(0) = ϕi > 0,

Ṡ = h (S∗ − S) ε̇p, S(0) = Si ≥ 0,
S∗ = Si + b (ϕ∗ − ϕ) ,

 (4.53)

where the material parameter ϕ∗ ≥ ϕi represents a saturation value of the free volume ϕ.
The material parameters/functions g(ϑ) > 0, h > 0, and b(ϑ, ε̇p) ≥ 0 describe the initial
hardening, subsequent rate of softening, and magnitude of the yield peak. We assume the
following particular functions to describe the temperature and rate-dependence of g and b

g = g1 + g2ϑ,

b = b1
(
ϑ2 + b2ϑ+ b3

) ( ε̇p

ε̇ref

)b4

,

 (4.54)

where the list {g1, g2, b1, b2, b3, b4} are material parameters and ε̇ref is a reference strain-rate.
These functions for b and g are empirical and have been chosen to fit experimental data.

The evolution equation for A is taken as

Ȧ = 2DpA− γ(A lnA) ε̇p, A(0) = 1, (4.55)

where γ > 0 is a constitutive parameter that governs the dynamic recovery of A.
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4.3 Material Parameter Calibration Below the Glass Transition

With the full three-dimensional and simplified one-dimensional version of the theory in place, we
are in position to determine the material parameters/functions appearing in the theory by curve-
fitting the experimental data for PMMA. We start with the one-dimensional calibration procedure
using MATLAB in Section 4.3.1 followed by the appropriate adjustments necessary to complete
calibration of the three-dimensional model in the finite element program ABAQUS/Explicit in
Section 4.3.2.

Once the three-dimensional isothermal model is calibrated, a set of multi-element fully-coupled
calculations is performed in ABAQUS/Explicit to calibrate the internal heating response of the
material. These calculations and results are summarized in 4.3.3.

4.3.1 One-Dimensional Model Calibration Procedure

We have implemented the one-dimensional model of Section 4.2.2 in MATLAB using an explicit
integration scheme, and we use it to calibrate the material parameters from the experiments de-
scribed in Chapter 2. The one-dimensional calibration process consists of five sequential steps
which are outlined in detail in this section. The five steps cover calibration of these aspects of the
stress-strain response: (1) initial yield stress, (2) back stress, (3) elastic modulus, (4) large strain
behavior, and (5) yield peak shape.

Initial Yield Stress

We have chosen to use the cooperative model [6, 9, 11] to describe the rate and temperature
dependence of the yield stress of PMMA below the glass transition. One important difference
between our implementation and that of the earlier authors is that we have replaced their scalar
internal stress with a stretch-dependent back stress (4.49). The reasoning is that the internal stress
must be conjugate to a stretch measure so that it can be accounted for in the total internal energy
of the system, and therefore in the partial differential equation governing the temperature field.
However, for the purposes of finding material parameters, we start with the earlier form using the
scalar internal stress, and then we replace it with a suitable stretch-dependent back stress later in
the calibration procedure.

From (4.52), for simple compression, during fully-developed flow when ε̇p ≈ ε̇ (taken to be
positive) the expression for yield stress σy as a function of temperature ϑ and strain rate ε̇ is given
by (

1− αp

3

)
|σy| = r(ϑ) +

2kBϑ

V
sinh−1

[(
ε̇

ε̇∗(ϑ)

)m]
(4.56)

where αp is a pressure sensitivity parameter, r is a temperature dependent internal stress, kB is
the Boltzmann constant, V is an activation volume, ε̇∗ is a thermally activated characteristic strain
rate, and m is a strain rate sensitivity parameter. Because of (4.44), the “internal stress” r follows
a linear relationship with temperature such that

r =

{
r1(ϑr − ϑ) : ϑ ≤ ϑr,

0 : ϑ > ϑr,
(4.57)
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Figure 4-3: Schematic showing yield stress determined by the intersection of the initial loading path with the
tangent of the stress-strain curve at 0.4 strain

where ϑr describes the temperature at which the internal stress vanishes and r1 is a material
parameter. The characteristic strain rate ε̇∗ is assumed to follow an Arrhenius-type temperature
dependence

ε̇∗ = ε̇0 exp
(
−∆F
kBϑ

)
(4.58)

where ε̇0 is a reference strain rate and ∆F is an activation energy. To summarize, from (4.56),
(4.57), and (4.58), there is a list of six material parameters that must be calibrated with the
experimental yield data

{V,m, r1, ϑr, ε̇0,∆F } (4.59)

At this point in the calibration procedure we ignore the effects of the yield peak and define the
yield stress as the intersection of the initial loading path with the tangent of the stress-strain curve at
approximately 0.4 strain; this is shown schematically in Figure 4-3.6 Following this approach, yield
stress values have been extracted from the PMMA compression experiments in the temperature
range 25 C to 110 C at four strain-rates. The ratio of these yield stresses to test temperature are
shown in Figure 4-4 as a function of the logarithm of strain-rate. Estimated isotherms have been
drawn to visually connect the yield points for a given testing temperature.

Unfortunately, for a given temperature we have only four data points spanning a relatively
narrow strain-rate range which makes fitting the flow function (4.56) very difficult. By utilizing
the yield stress superposition principle [10, 13], however, we can form a master curve of all 24 data
points at a single reference temperature that covers a much wider range of strain rates. To obtain
the master curve, the experimental data is shifted along both axes by temperature-dependent shift

6This is a non-standard definition of the yield stress for polymeric materials. In most previous studies the yield
stress is identified with the yield-peak in the compressive stress-strain curve.
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Figure 4-4: Ratio of compressive yield stress to temperature as a function of the logarithm of strain rate.
(*) indicates experimental results, (- -) indicates estimated isotherms. The right figure shows the master curve
constructed at 383 K from the data in the left figure.

factors that follow a linearized Arrhenius law

Horizontal shift: ∆(log10 ε̇) = H

(
1
ϑ
− 1
ϑref

)
,

Vertical shift: ∆
(σy

ϑ

)
= B

(
1
ϑ
− 1
ϑref

)
,

 (4.60)

where ϑ is the temperature of the experiment, ϑref is the temperature that the data will be shifted
to, and H and B are material parameters. Povolo and Hermida [9] and Richeton et al. [10] reasoned
that these shift factors could be equated with the material parameters used in the cooperative model
such that

H =
∆F

kB ln 10
,

B = −r(ϑ = 0) = −r1θr,

 (4.61)

This gives some physical significance to the values of the shift factors that are chosen. We have
used Richeton’s [10] value of ∆F to establish the H shift factor, and then selected B to match our
data; the values are listed in Table 4.2. Figure 4-4 shows the master curve constructed at ϑref =
383 K using these shift factors.

To complete the fitting of the flow function (4.56) to the master curve, we introduce the as-
sumptions:

• The pressure sensitivity parameter αp is set equal to 0.353 [14].

• The internal stress r vanishes at the glass transition temperature [11]; that is ϑr = ϑg, and
r(ϑg) = 0.
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Table 4.2: PMMA material parameters for yield point calibration below ϑg

Parameter Value
H (s−1 K−1) 5.7× 103

B (MPa) -180
V (m3) 2.11× 10−28

m 0.218
ε̇0 (s−1) 1.15× 1016

∆F (kJ mol−1) 109
r1 (MPa K−1) 0.47
ϑr (K) 383

• The glass transition is assumed to occur at a single temperature independent of both strain-
rate and pressure. For the purposes of fitting the yield point, we assume ϑg = 383 K.

• The initial value of the isotropic resistance Si is equal to zero, and the isotropic resistance S
does not evolve; that is Ṡ = 0 and S = Si = 0.

Therefore, for a master curve constructed at ϑref = ϑg = 383 K, the internal stress term drops out
of the flow function (4.56) resulting in

|σy|
ϑg

=
2kB

V

(
1− αp

3

)−1
sinh−1

[(
ε̇

ε̇∗(ϑg)

)m]
(4.62)

with the list of unknown parameters reduced to: {V , ε̇∗(ϑg), m}. A non-linear least-squares fitting
method was used in MATLAB to obtain these parameters from the shifted experimental data.
Subsequently, by considering (4.57), (4.58), and (4.61), the values of r1 and ε̇0 are easily determined.
The complete set of parameters is listed in Table 4.2. The resulting fit to the 383 K master curve
is shown in Figure 4-5 along with the corresponding result for the unshifted experimental data.

Back Stress

Once the yield data has been satisfactorily calibrated, the internal stress r(ϑ) in the flow function
needs to be replaced with the stretch-dependent back stress σback. To begin, we note that for
compression

Dp = −ε̇p, (4.63)

and we may then rewrite the evolution equation for A (4.55) as

Ȧ = −(2 + γ lnA)A ε̇p. (4.64)

It follows then that the saturation value of A in compression is

A∗ = exp
(
−2
γ

)
. (4.65)
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Figure 4-5: Fit of flow function for compressive yield stress normalized by temperature versus strain rate. (*)
indicates experimental results, (-) indicates model. Fit of flow function to master curve at 383 K.

Combining this result with the equation for the back stress (4.49) gives the saturation value of the
back stress as a function of the material parameters C(ϑ) and γ

σ∗back(ϑ) = 3
C(ϑ)
γ

. (4.66)

Equating the back stress saturation value with the internal stress r results in these relations between
the back stress parameters and those for the internal stress

ϑC = ϑr,

XC

γ
=
r1
3
.

 (4.67)

To determine γ, we note that it controls the rate of saturation of the back stress. This is highlighted
in Figure 4-6 where the back stress and total stress response are shown with varying values of γ but
with a constant ratio of C/γ (and therefore constant σ∗back. As γ increases, the rate of saturation
of the back stress increases. Similarly, γ is also related to the viscoelastic response of the material.
Therefore, γ should be chosen such that the creep and total stress-strain response of the material is
calibrated suitably throughout the temperature range of interest. Since we do not have a complete
set of creep data for our entire temperature range, we select (γ = constant) and fit it to room-
temperature creep data from Anand and Ames [14] in Figure 4-7 and also choose it such that
the unloading curvature at room temperature is suitably fit. The values of all the back stress
parameters are shown in Table 4.6.
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Figure 4-7: One-dimensional MATLAB simulations (- -) and simple compressive creep tests (–) at four pre-yield
stress levels.
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Elastic Modulus

The elastic modulus is assumed to decrease linearly with temperature and be rate-independent in
the temperature range of interest. The initial modulus was estimated from stress-strain data and
fit to (4.42). The resulting material parameters are shown in Table 4.6.

Large Strain Behavior

To calibrate the large strain behavior of PMMA, the complete one-dimensional model is imple-
mented in MATLAB with all material parameters that have been determined up to this step. By
iterating in MATLAB, values for µR and I1,max are chosen to match the lowest strain-rate data sets
(3×10−4/s) throughout the temperature range. To do this, we note that the parameter µR controls
the initial slope of the post-yield hardening and I1,max controls the “locking stretch”, the stretch
at which rapid hardening sets in and the stress appears to go to infinity. The chosen values for µR

are fit to (4.47) to determine µref
R and Xµ. It is difficult to estimate I1,max from our experimental

data because our data does not extend to strains that are large enough to observe “locking”. We
therefore assume a reasonable constant value for I1,max. The resulting material parameters for the
large strain behavior are listed in Table 4.6.

The stress-strain curves at this stage of the calibration procedure are shown in Figures 4-8 and
4-9. The fit to room-temperature creep data from Anand and Ames [14] is shown in Figure 4-7.
For the lower strain-rates of 3×10−4/s and 10−3/s, the simulations correlate with the experimental
data very well. However, for the higher strain-rates of 10−2/s and 10−1/s, there is an excessive
discrepancy in the large strain behavior between the experiments and simulations. This discrepancy
is caused by thermal softening in the material due to inelastic dissipation, and at this point we
are using an isothermal version of the model that does not account for internal heating. Later, in
Section 4.3.3, we add thermo-mechanical coupling to the model in order to capture the internal
heating effect.
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Figure 4-8: One-dimensional MATLAB simulations (- -) and simple compression tests (–) at strain-rates of
3×10−4/s (top) and 10−3/s (bottom) at temperatures ranging from room temperature through 100 C. Simulation
excludes yield-peak (Ṡ = 0).
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Figure 4-9: One-dimensional MATLAB simulations (- -) and simple compression tests (–) at strain-rates of
10−2/s (top) and 10−1/s (bottom) at temperatures ranging from room temperature through 100 C. Simulation
excludes yield-peak (Ṡ = 0).
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Yield Peak

To calibrate the yield peak, we must determine the list of parameters which guide the evolution of
S and ϕ: {ϕi, ϕ∗, Si, b, g, h}.

Below the glass-transition we assume the free volume parameters to be ϕi = 0 and ϕ∗ = 0.001.
While these values should depend on strain-rate and temperature, we do not have the appropriate
data to be specific about any such dependencies. Further, we assume the initial value of the isotropic
resistance to be Si = 0.

To find {b, g, h}, several simulations are performed using different values of these parameters to
obtain the correct shape of the yield peak at the various strain-rates and temperatures. In order to
aid the iterative curve-fitting procedure, Figure 4-10 can be used as a guide to illustrate how these
parameters affect the shape of the yield-peak. Once {b, g, h} are determined for each stress-strain
curve, they were found to match the functional forms given in (4.54); the parameters for these
functions are listed in Table 4.6. The final stress-strain curves using the one-dimensional model in
MATLAB including the yield peak calibration are shown in Figures 4-11 and 4-12.
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Figure 4-10: Schematic of the effect of the material parameters {b, g, h} on the shape of the yield peak of the
stress-strain curve. Arrows indicate an increase of the parameter: (top) b, (middle) g, (bottom) h.



104 4 Application of the theory to PMMA below its glass transition temperature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

25 C

50 C

70 C

90 C

100 C

Compressive True Strain

C
om

pr
es

si
ve

Tr
ue

St
re

ss
(M

Pa
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

25 C

50 C

70 C

90 C

100 C

Compressive True Strain

C
om

pr
es

si
ve

Tr
ue

St
re

ss
(M

Pa
)

Figure 4-11: One-dimensional MATLAB simulations (- -) and simple compression tests (–) at strain-rates of
3× 10−4/s (top) and 10−3/s (bottom) at temperatures ranging from room temperature through 100 C.
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Figure 4-12: One-dimensional MATLAB simulations (- -) and simple compression tests (–) at strain-rates of
10−2/s (top) and 10−1/s (bottom) at temperatures ranging from room temperature through 100 C.
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4.3.2 Three-Dimensional Model Calibration Procedure

Except for the list of parameters {αp, ν0, V , Si, b, g, h, γ}, the values of the one-dimensional
material parameters are unchanged when used in the three-dimensional equations. Noting that

τν = σε̇, σ =
√

3τ, ε̇ =
ν√
3

(4.68)

the list of parameters {αp, ν0, V , Si, b, g, h, γ} may be converted from the one-dimensional tension
form to the three-dimensional shear form using

ε̇0 = 1√
3
ν0 ,

αtension
p =

√
3αshear

p ,

Stension
i =

√
3Sshear

i ,

V tension = 1√
3
V shear ,

btension
1 =

√
3 bshear

1 ,

gtension
1 =

√
3 gshear

1 ,

gtension
2 =

√
3 gshear

2 ,

htension =
√

3hshear ,

γtension =
√

3 γshear .



(4.69)

Further, assuming a value of νpoi = 0.35 as Poisson’s ratio, we may use the standard relations for
converting the elastic modulus E to the shear and bulk moduli (G,K).

Figure 4-13 shows the results of using these conversion factors with the parameters determined
from the one-dimensional calibration procedure. We see that the three-dimensional single-element
result from ABAQUS/Explicit agrees fairly well with the one-dimensional MATLAB results. A
slight adjustment of µref

R in ABAQUS brings the simulations into even closer agreement. The
final stress-strain curves from the ABAQUS calculations are shown in Figures 4-14 and 4-15. The
complete list of material parameters used in the ABAQUS calculations is in Table 4.7.
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Figure 4-13: Comparison of one-dimensional MATLAB simulation (- -) to three-dimensional one-element
ABAQUS simulation (· · · ) with material parameter conversion between the two models using only the rela-
tions in (4.69). Further adjustment of µref

R and Xµ in ABAQUS (–) gives an even better match to the MATLAB
results.
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Figure 4-14: Three-dimensional one-element isothermal ABAQUS simulations (- -) and simple compression tests
(–) at strain-rates of 3 × 10−4/s (top) and 10−3/s (bottom) at temperatures ranging from room temperature
through 100 C.
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Figure 4-15: Three-dimensional one-element isothermal ABAQUS simulations (- -) and simple compression tests
(–) at strain-rates of 10−2/s (top) and 10−1/s (bottom) at temperatures ranging from room temperature through
100 C.
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Figure 4-16: Specific heat of PMMA versus temperature. Reproduced from Gaur et al. [16]

4.3.3 Internal Heating

While the model works very well for the low strain-rates where the material behaves nearly isother-
mally (cf. Figure 4-14), there is a large discrepancy between the model and experiment at the
higher strain rates of 10−2/s and 10−1/s (cf. Figure 4-15). This discrepancy is due to the thermal
softening of the material caused by inelastic dissipation coupled with the low thermal diffusivity
of PMMA [15]. In order to capture this internal heating, we must introduce a thermo-mechanical
coupling in our finite element implementation using the heat equation of (4.37)

cϑ̇ = −DivqR + qR + β

(
τ̄ (1) νp +

1
2
C γ | lnA|2

)
(4.70)

where the factor β is the fraction of inelastic work that is dissipated. To complete thermo-
mechanical coupling, we must also specify two additional material parameters: the specific heat c,
and the thermal conductivity κ. The temperature dependence of these parameters is taken from
the literature [16, 17] and reproduced in Figures 5-27 and 5-28 respectively.

Multi-Element Model

In order to accurately predict the temperature rise for intermediate strain-rates where isothermal
or adiabatic approximations do not suffice, we must setup a realistic finite element model of our ex-
perimental apparatus that includes thermal interactions between the specimen and its environment
[15]. Because our specimens are cylindrical, we have chosen to model the compression experiment
as an axisymmetric problem with additional symmetry about the horizontal axis. A schematic of
this model is shown in Figure 4-18. For the steel platen, we assume a basic thermoelastic material
model whose material parameters are listed in Table 4.3. For the surface film coefficient between
the specimen sidewall and air, we assume h1 = 40 (W/m2-K). We create a heat sink on the top
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Figure 4-17: Thermal conductivity of PMMA versus temperature. Reproduced from Eiermann and Hellwege [17]

Table 4.3: Steel material parameters for thermo-mechanically coupled three-dimensional model

Parameter Value
Young’s Modulus, E (GPa) 200
Poisson’s Ratio, ν 0.3
Density, ρ (kg m−3) 7833
Thermal Conductivity, κ (W m−1 K−1) 52
Specific Heat, c (J kg−1 K−1) 586

of the steel platen by fixing the nodes at the ambient temperature T∞. At the interface between
the PMMA specimen and the steel platen we assume frictionless contact. To assure excellent heat
transfer at this interface, we use a thermal conductance of k = 1000 (W/m2-K). The ambient tem-
perature of each simulation T∞ is initially constant throughout the specimen and platen. A true
strain-rate velocity profile is applied to the top surface of the steel platen to impose deformation
on the specimen.

The final stress-strain curves using this multi-element fully coupled calculation are shown in
Figures 4-19 and 4-20 for the various strain-rates and temperatures using a factor of β = 0.8 in the
heat equation of (4.70).

Figure 4-21 shows the contours of nodal temperature rise at a strain of -1.0 for the room tem-
perature (25 C) multi-element fully-coupled ABAQUS simulation at a strain-rate of 10−1/s. As
others have shown, there is a large gradient in temperature throughout the height and diameter
of the specimen. Figure 4-22 shows experimental measurements of surface temperature rise from
Mulliken [18] under a test of similar conditions compared with surface midpoint temperature mea-
surements from our simulations. While the results do not match perfectly, the general trend of
the experiments does seem to be well reproduced in the simulation, namely a large temperature
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Figure 4-18: Axisymmetric finite element geometry for thermo-mechanically coupled compression simulations.

rise for the high-rate nearly adiabatic case and a negligible temperature rise for the low-rate nearly
isothermal case. Arruda et al. [15] saw similar results for their experiments and simulations.
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Figure 4-19: Three-dimensional multi-element full-coupled ABAQUS simulations (- -) and simple compression
tests (–) at strain-rates of 3×10−4/s (top) and 10−3/s (bottom) at temperatures ranging from room temperature
through 100 C. A factor of β = 0.8 is used in the heat equation of (4.70).
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Figure 4-20: Three-dimensional multi-element fully-coupled ABAQUS simulations (- -) and simple compression
tests (–) at strain-rates of 10−2/s (top) and 10−1/s (bottom) at temperatures ranging from room temperature
through 100 C. A factor of β = 0.8 is used in the heat equation of (4.70).
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Figure 4-21: Contours of nodal temperature rise at a strain of -1.0 for the room temperature (25 C) multi-element
fully-coupled ABAQUS simulation at a strain-rate of 10−1/s .
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Figure 4-22: ABAQUS surface midpoint temperature measurements (- -) for three strain rates at room temper-
ature. Experimental data is from Mulliken [18] for a similarly sized specimen.
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4.4 Summary of Equations and Parameters

The equations and associated parameters for the one-dimensional and full three-dimensional con-
stitutive theory are briefly summarized here for convenience. For a more detailed summary, refer
to Section 4.2.

Table 4.4: Summary of the the one-dimensional equations

Term Description

σ = σe (1) + σe (2) Total stress

σe (1) = E εe = E (ε− εp) Elastic stress in α = 1
E = Eref −XE(ϑ− ϑ∗) Modulus temperature dependence

σback = 3
2 C lnA Backstress in α = 1

C =

{
XC(ϑC − ϑ) : ϑ ≤ ϑC

0 : ϑ > ϑC

Modulus temperature dependence

Ȧ = 2DpA− γA lnA ε̇p, A(0) = 1 Backstress stretch evolution

σe(2) = µR

(
1− I1 − 3

I1,max

)−1 (
U2 − U−1

)
Stress in α = 2

µR(ϑ) = µref
R −Xµ(ϑ− ϑ∗) Modulus temperature dependence

ε̇p = ε̇0 exp
(
−∆F
kBϑ

)[
sinh

(
σ̄V

2 kBϑ

)]1/m

Flow rule

σ̄ = |σe (1) − σback| − S − αp p̄ Driving stress
p̄ = − 1

3 σ
e(1) Pressure

ϕ̇ = g (ϕ∗ − ϕ) ε̇p, ϕ(0) = ϕi > 0 Free volume evolution
Ṡ = h (S∗ − S) ε̇p, S(0) = Si ≥ 0 Isotropic resistance evolution
S∗ = Si + b (ϕ∗ − ϕ) Saturation value of S
g = g1 + g2ϑ Temperature dependence of g

b = b1
(
ϑ2 + b2ϑ+ b3

) ( ε̇p

ε̇ref

)b4

Temperature and rate dependence of b
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Table 4.5: Summary of the the three-dimensional equations

Term Description

T = Te (1) + Te (2) Total Cauchy stress
Te (1) = J−1Re Me (1) Re> Cauchy stress for α = 1
Te (2) = J−1RMe (2) R> Cauchy stress for α = 2

Me(1) = 2GEe
0 +K

{
trEe − 3αth (ϑ− ϑ0)

}
1 Mandel stress for α = 1

G = Gref −XG(ϑ− ϑ∗) Modulus temperature dependence

Mback = C lnA Backstress for α = 1

C =

{
−XC(ϑ− ϑC) : ϑ ≤ ϑC

0 : ϑ > ϑC

Modulus temperature dependence

Ȧ = DpA + ADp − γA lnAνp, A(X, 0) = 1 Backstress stretch evolution

Me(2) = µR

(
1− I1 − 3

I1,max

)−1

(Cdis)0 Mandel stress for α = 2

µR(ϑ) = µref
R −Xµ(ϑ− ϑ∗) Modulus temperature dependence

νp = ν0 exp
{
− ∆F
kB ϑ

} [
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m

Flow rule

p̄ = − 1
3 trMe (1) Pressure

Me (1)
eff = Me (1) −Mback Driving stress

τ̄ = 1√
2
|(Me (1)

eff )0| Equivalent shear stress

τ̄
(1)
e = τ̄ − S − αp p̄ Effective shear stress

ϕ̇ = g (ϕ∗ − ϕ) νp, ϕ(X, 0) = ϕi > 0 Free volume evolution
Ṡ = h (S∗ − S) νp, S(X, 0) = Si ≥ 0 Activation volume evolution
S∗ = Si + b (ϕ∗ − ϕ) Saturation value of S
g = g1 + g2ϑ Temperature dependence of g

b = b1
(
ϑ2 + b2ϑ+ b3

) ( νp

νref

)b4

Temperature and rate dependence of b
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Table 4.6: PMMA material parameters for one-
dimensional model

Parameter Value
ρ (kg m−3) 1200
ε̇ref (s−1) 3× 10−4

ϑref
∗ (K) 298

C1g 11
C2g (K) 36
Eref (GPa) 3.5
XE (MPa K−1) 20

µref
R (MPa) 23
Xµ (MPa K−1) 0.26
I1,max 5.5
XC (MPa K−1) 9.4
ϑC (K) 383
γ 60
V (m3) 2.11× 10−28

m 0.218
ε̇0 (s−1) 1.15× 1016

∆F (kJ mol−1) 109
αp 0.353
ϕi 0
ϕ∗ 0.001
Si 0
b1 (Pa K−2) −3.16× 106

b2 (K) -562
b3 (K2) 6.62× 104

b4 0.054
g1 -8.52
g2 (K−1) 5.48× 10−2

h (s) 70

Table 4.7: PMMA material parameters for three-
dimensional model

Parameter Value
ρ (kg m−3) 1200
νref (s−1) 5× 10−4

ϑref
∗ (K) 298

C1g 11
C2g (K) 36
Gref (GPa) 1.3
XG (MPa K−1) 7.4
K (GPa) 3.9
αth (K−1) 7× 10−5

µref
R (MPa) 20
Xµ (MPa K−1) 0.22
I1,max 5.5
XC (MPa K−1) 9.4
ϑC (K) 383
γ 34.64
V (m3) 3.65× 10−28

m 0.218
ν0 (s−1) 2× 1016

∆F (kJ mol−1) 109
αp 0.204
ϕi 0
ϕ∗ 0.001
Si (Pa) 0
b1 (Pa K−2) −1.82× 106

b2 (K) -562
b3 (K2) 6.62× 104

b4 0.054
g1 -4.92
g2 (K−1) 3.16× 10−2

h (s) 40.4
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modulus of amorphous polymers across transition temperatures and strain rates. Polymer, 46:
8194–8201, 2006. doi: 10.1016/j.polymer.2005.06.103.

[6] J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, and R. R. Adharapurapu. Influence of
temperature and strain rate on the mechanical behavior of three amorphous polymers: Char-
acterization and modeling of the compressive yield stress. InternationalJournal of Solids and
Structures, 43:2318–2335, 2006. doi: 10.1016/j.ijsolstr.2005.06.040.

[7] J. D. Ferry. Viscoelastic properties of polymers. Wiley, New York, 3rd edition, 1980.

[8] D. G. Fotheringham, B. W. Cherry, and C. Bauwens-Crowet. Comment on “the compression
yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-
rates”. Journal of Materials Science, 11:1368–1371, 1976. doi: 10.1007/BF00545162.

[9] F. Povolo and E. B. Hermida. Phenomenlogical description of strain rate and temperature-
dependent yield stress of pmma. Journal of Applied Polymer Science, 58:55–68, 1995. doi:
10.1002/app.1995.070580106.

[10] J. Richeton, S. Ahzi, L. Daridon, and Y. Rémond. A formulation of the cooperative model
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Chapter 5

Application of the theory to PMMA
through its glass transition temperature

5.1 Introduction

As shown in the previous chapter, the continuum-mechanical framework developed in Chapter 3
works well in capturing the material response of PMMA below the glass transition. In this chapter
we specialize the constitutive equations further to be able to capture the material response of
PMMA not only below the glass transition, but continuously through it to temperatures above
the glass transition. A summary of this specialized model is presented in Section 5.2 followed
by the corresponding calibration procedure for PMMA in Section 5.3. A summary of the key
constitutive equations, as well as the material parameters used, for both the one-dimensional and
three-dimensional models are given in Section 5.4.

5.2 Summary of the Specialized Material Model

Based on experience with recent theories of isotropic viscoplasticity of polymeric materials [1–6],
we assume that the change in the macroscopic stress response of an amorphous polymer arises due
to two basic reasons: (i) changes due to the stretching of intermolecular bonds, and (ii) changes
in the configurational entropy due to changes in the molecular conformations. Accordingly, in
developing our continuum mechanical theory, we assume two major operative micromechanisms
to represent these concepts. Although no real material is composed of springs and dashpots, as a
visual aid, Figure 5-1 shows a schematic rheological representation of these micromechanisms. The
left micromechanism indexed by α = 1 represents contributions to the stress due to intermolecular
bond-stretching, and the right micromechanism indexed by α = 2 represents contributions to the
stress due to entropic changes in molecular conformations, but this time allowing for chain-slippage
at mechanical crosslinks – the additional dashpot in the branch α = 2.

With such a micromechanical picture in mind, we have developed a rigorous three-dimensional
thermo-mechanically coupled large deformation continuum framework for amorphous polymers,

121
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Figure 5-1: One-dimensional rheological representation of the proposed model for temperatures below the glass
transition.

details of which are given later in Chapter 3. The specialization of this framework to polymer
behavior through the glass transition is presented here.

5.2.1 Summary of Three-Dimensional Constitutive Equations

This section summarizes a specialized form of our theory which should be useful in modeling
the complex finite deformation response of amorphous thermoplastic polymers through their glass
transition.

The underlying constitutive equations relate the following basic fields:

x = χ(X, t), motion;
F = ∇χ, J = detF > 0, deformation gradient;
F = Fe (α)Fp (α), α = 1, 2, elastic-plastic decompositions of F;
Fp (α), Jp (α) = detFp (α) = 1, inelastic distortions;
Fe (α), Je (α) = detFe (α) = J > 0, elastic distortions;
Fe (α) = Re (α)Ue (α) = Ve (α)Re (α), polar decompositions of Fe (α);
Ce (α) = Fe (α)>Fe (α), elastic right Cauchy-Green tensors;
Be (α) = Fe (α)Fe (α)>, elastic left Cauchy-Green tensors;

Fe (α)
dis

def= J −1/3 Fe (α), detFe (α)
dis = 1, distortional part of Fe (α),

Ce (α)
dis = (Fe (α)

dis )>Fe (α)
dis , Be (α)

dis = Fe (α)
dis (Fe (α)

dis )>, distortional elastic Cauchy-Green strains;
T, Cauchy stress;
T =

∑2
α=1 Te (α), decomposition of Cauchy stress;

Me (α) = JRe (α)>Te (α) Re (α), Mandel stress;
ψR =

∑M
α=1 ψ̄

(α), free energy density per unit reference volume;
ηR =

∑M
α=1 η̄

(α), entropy density per unit reference volume;
ξ(α) = (ξ(α)

1 , ξ
(α)
2 , . . . , ξ

(α)
m ) m scalar internal variables for each α;

A(1), A(1) = A(1)>, detA(1) = 1 tensorial internal variable;

Me (1)
back, Back stress;

ϑ > 0, absolute temperature;
∇ϑ, referential temperature gradient;
qR, referential heat flux vector.
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Glass transition

The temperature-dependence of the material properties of amorphous polymers depends strongly
on the temperature relative to the glass transition temperature ϑg of the material. It is well-known
that the glass transition temperature of such materials is not a constant, but depends strongly on
the strain rate to which the material is subjected. Let

d
def=
√

2|D0| (5.1)

denote the macroscopic effective shear strain rate, and dref a reference strain rate. We assume that
the variation of the glass transition temperature with strain rate may be adequately described by
[5, cf. their eq. (10)]

ϑg =


ϑref

g if d ≤ dref,

ϑref
g +

[
C2g × log10(d/d

ref)
C1g − log10(d/d

ref)

]
if d > dref,

(5.2)

where C1g and C2g are Williams-Landel-Ferry (WLF) parameters [7] relative to the reference glass
transition temperature ϑref

g . With the governing fields and the glass transition temperature so
defined, we assume the following constitutive equations for the two micromechanisms α = 1, 2.

Constitutive equations for alpha=1, intermolecular resistance

1. Free energy:

With

Ce (1) =
3∑

i=1

ωi re
i ⊗ re

i , (5.3)

denoting the spectral representation of Ce (1), and with

Ee (1) =
3∑

i=1

Ee
i re

i ⊗ re
i , Ee

i = ln
√
ωe

i , (5.4)

denoting an elastic logarithmic strain measure, we consider an elastic free energy of the form

ψe (1)(Ce (1), ϑ) = G|Ee (1)
0 |

2
+ 1

2K(trEe (1))2

− (ϑ− ϑ0)(3K αth)(trEe (1)) + c(ϑ− ϑ0)− c ϑ ln
( ϑ
ϑ0

)
. (5.5)

where
G(ϑ) > 0, K(ϑ) > 0, αth(ϑ), c(ϑ), (5.6)

are the temperature-dependent shear modulus, bulk modulus, coefficient of thermal expansion,
and specific heat, and ϑ0 is a reference temperature.

For polymeric materials the magnitude of the elastic shear modulus decreases drastically
as the temperature increases through the glass transition temperature ϑg of the material.
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Figure 5-2: Schematic of the phenomenological temperature dependence of the shear modulus G.

Following Dupaix and Boyce [4], we assume that the temperature-dependence of the shear
modulus may be adequately approximated by a phenomenological function of the form

G(ϑ) = 1
2(Ggl +Gr)− 1

2(Ggl −Gr) tanh
( 1

∆ϑ
(ϑ− ϑg)

)
+XG(ϑ− ϑg), (5.7)

where ϑg is the glass transition temperature, Ggl and Gr are representative modulii in the
glassy and rubbery regions, ∆ϑ is a parameter denoting the temperature range across which
the glass transition occurs, and Xg represents the slope of the temperature variation beyond
the transition region (cf. Figure 5-2), where

XG =

{
XGg : ϑ ≤ ϑg

XGr : ϑ > ϑg

(5.8)

For the temperature-dependence of Poisson’s ratio νpoi we also assume

νpoi(ϑ) = 1
2(νgl + νr)− 1

2(νgl − νr) tanh
( 1

∆ϑ
(ϑ− ϑg)

)
, (5.9)

with νgl and νr representative values of Poisson’s ratio below and above the material’s glass
transition temperature respectively. The bulk modulus K can then be found from the stan-
dard relation

K = G× 2(1 + νpoi)
3(1− 2νpoi)

(5.10)

With

A(1) =
3∑

i=1

ai ldi ⊗ ldi , (5.11)
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denoting the spectral representation of A(1), and with

lnA(1) =
3∑

i=1

ln ai ldi ⊗ ldi , (5.12)

denoting a defect logarithmic strain measure, we consider a defect free energy of the form

ψ̃d (1)(A(1), ϑ) =
1
4
C(ϑ)

[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
, (5.13)

where the positive-valued temperature-dependent parameter

C(ϑ) ≥ 0, (5.14)

is a back-stress modulus chosen to decrease linearly with temperature following the form of
the internal stress used by Fotheringham et al. [8], Povolo and Hermida [9] and Richeton et al.
[10]. So that

C(ϑ) =

{
XC(ϑC − ϑ) if ϑ ≤ ϑC ,

0 if ϑ > ϑC ,
(5.15)

where XC > 0 is a material parameter and ϑC is the temperature near the material’s glass
transition where C(ϑ) vanishes.

2. Mandel stress. Cauchy stress. Back stress. Effective stress: The Mandel stress is given by

Me (1) = 2GEe (1)
0 +K

{
trEe (1) − 3αth (ϑ− ϑ0)

}
1, (5.16)

and the corresponding Cauchy stress is

Te (1) def= J−1 Re (1) Me (1) Re (1)>. (5.17)

The symmetric and deviatoric back stress is

M(1)
back = C lnA(1). (5.18)

and the driving stress for plastic flow is the effective stress given by

Me (1)
eff

def= Me (1) −M(1)
back. (5.19)

The corresponding equivalent shear stress and mean normal pressure are given by

τ̄ (1) def=
1√
2
|(Me (1)

eff )0|, and p̄(1) def= −1
3
trMe (1), (5.20)

respectively.

3. Internal variables: We restrict the list ξ(1) of internal variables to two, positive-valued vari-
ables

S(1) ≥ 0, ϕ ≥ 0
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that represent aspects of the intermolecular shear resistance to plastic flow. The parameter
S(1) has dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is
a dimensionless order-parameter representing the local free-volume (a measure of disorder) of
the polymeric glass.

4. Flow rule: The evolution equation for Fp(1) is

Ḟp (1) = Dp(1) Fp(1), Fp(1)(X, 0) = 1,

Dp(1) = νp (1)

(
(Me (1)

eff )0
2 τ̄ (1)

)
,

τ̄ (1)
e

def= τ̄ (1) − S(1) − αp p̄
(1)

νp (1) =


0 if τ̄

(1)
e ≤ 0,

ν∗

[
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m(1)

if τ̄
(1)
e > 0 ,



(5.21)

The quantity νp (1) is a plastic strain-rate and follows the form of the “cooperative model” used
by Richeton et al. [10], where σ̄(1) denotes an effective stress with αp ≥ 0 a pressure sensitivity
parameter, and p̄(1) a pressure. Additionally, m(1) is a strain-rate sensitivity parameter, V is
a shear activation volume, kB is Boltzmann’s constant, and ν∗ is a characteristic thermally-
activated strain-rate

ν∗(ϑ) =


ν

(1)
0 exp

(
−∆F (1)

kBϑ

)
if ϑ < ϑg,

ν
(1)
0 exp

(
−∆F (1)

kBϑg

)
exp

(
ln 10× c∗1(ϑ− ϑg)

c∗2 + ϑ− ϑg

)
if ϑ ≥ ϑg.

(5.22)

where ν(1)
0 is a pre-exponential factor with units of 1/time, ∆F (1) is an activation energy,

and c∗1 and c∗2 are WLF parameters which govern the drastic increase of the characteristic
strain-rate through the glass transition region.

5. Evolution equations for the internal variables S(1), ϕ, and A(1)

We assume that the material disorders and is accompanied by a microscale dilatation as
plastic deformation occurs resulting in an increase of the free volume ϕ. This increase leads
to a fluctuation in the isotropic resistance S(1) causing a transient rise in the flow stress of
the material as plastic deformation proceeds. We therefore assume that the evolution of the
free volume ϕ is coupled to the evolution of the isotropic resistance S in order to reproduce
the typical yield peak observed in the stress-strain response of amorphous polymers below
the glass transition temperature ϑg. The coupling is introduced through this special set of
equations:

ϕ̇ = g (ϕ∗ − ϕ) νp (1), ϕ(X, 0) = ϕi > 0,

Ṡ(1) = h
(
S∗ − S(1)

)
νp (1), S(1)(X, 0) = Si ≥ 0,

S∗ = Si + b (ϕ∗ − ϕ) ,

 (5.23)
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where the material parameter ϕ∗(ϑ, νp (1)) ≥ ϕi represents the saturation value of the free
volume ϕ.

We expect that the difference between the initial ϕi and saturation ϕ∗ values of the free
volume ϕ goes to zero as the material transitions into its rubbery regime above the glass
transition. Therefore, we assign a hyperbolic tangent function to the value of ϕ∗ to smoothly
change its value at the glass transition along with the elastic modulus. For the rubbery region
we choose ϕ∗ = ϕi, and in the glass region we choose ϕ∗ = ϕ∗g, resulting in this function for
ϕ∗:

ϕ∗ = 1
2(ϕ∗g + ϕi)− 1

2(ϕ∗g − ϕi) tanh
(

1
∆ϑ

(ϑ− ϑg)
)
. (5.24)

Note that the width ∆ϑ and temperature ϑg of this transition are identical to the values used
for the elastic modulus.

The material parameters h > 0, g(ϑ) > 0, and b(ϑ, νp (1)) ≥ 0 describe the initial hardening,
subsequent rate of softening, and magnitude of the yield peak. We have assumed the following
functions to describe their temperature and rate-dependence

g = g1 + g2ϑ,

b = b1
(
ϑ2 + b2ϑ+ b3

) (νp (1)

νref

)b4

,

 (5.25)

where the list {g1, g2, b1, b2, b3, b4} are material parameters and νref is a reference strain-rate.
The functions for b and g are empirical and the forms given in (5.25) have been chosen to fit
experimental data.

The evolution equation for for A(1) is taken as

Ȧ(1) = Dp(1)A(1) + A(1)Dp(1) −
√

2Gνp (1), A(1)(X, 0) = 1,

G = 1√
2
γA(1) lnA(1),

}
(5.26)

where γ(ϑ) ≥ 0 is a constitutive parameter which governs the recovery of A(1).

Constitutive equations for alpha=2, molecular network resistance

1. Free energy Let
I1

def= trCe (2)
dis (5.27)

denote the first principal invariant of Ce (2)
dis . We then consider following elastic free energy

ψe (2) = −1
2µR I1,max ln

(
1− I1 − 3

I1,max

)
, (5.28)

where
µR(ϑ) > 0, I1,max(ϑ) > 3 (5.29)

are two temperature-dependent material parameters. In particular, µR represents the ground
state rubbery shear modulus of the material, and I1,max represents the upper limit of I1
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(i.e., I1 < (3 + I1,max)), associated with limited chain extensibility. We assume that µR

decreases with increasing temperature and I1,max increases. Empirical functions which fit the
experimental temperature dependence of these parameters are

µR(ϑ) = 1
2(µa

R + µb
R)− 1

2(µa
R − µb

R) tanh
(

1
∆µ

(ϑ− ϑµ)
)

+Xµ(ϑ− ϑµ) (5.30)

I1,max(ϑ) = 1
2(Ia

1 + Ib
1)− 1

2(Ia
1 − Ib

1) tanh
(

1
∆I

(ϑ− ϑI)
)
. (5.31)

where we note that the transition of these parameters is not necessarily related to the tran-
sition of the elastic moduli in micromechanism α = 1.

2. Mandel stress. Cauchy stress:

The Mandel stress is given by

Me(2) = µR

(
1− I1 − 3

I1,max

)−1
(Ce

dis
(2))0. (5.32)

and the Cauchy stress is then

Te(2) = J−1

[
µR

(
1− I1 − 3

I1,max

)−1
(Be(2)

dis)0

]
. (5.33)

For α = 2 we have neglected a defect energy, and hence there is no back stress. The corre-
sponding equivalent shear stress is given by

τ̄ (2) def=
1√
2
|Me (2)

0 |, (5.34)

3. Internal variables:

We restrict the list ξ(2) of internal variables to a single stress-dimensioned positive-valued
variable

S(2) > 0

that represents a shear resistance to plastic flow for molecular relaxation processes.

4. Flow rule:

The evolution equation for Fp(2) is

Ḟp (2) = Dp(2) Fp(2), Fp(2)(X, 0) = 1,

Dp(2) = νp (2)

(
Me (2)

0

2 τ̄ (2)

)
,

νp (2) = ν
(2)
0 exp

{
−∆F (2)

kB ϑ

} (
τ̄ (2)

S(2)

)1/m(2)


(5.35)
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where ν(2)
0 is a pre-exponential factor with units of 1/time, ∆F (2) is an activation energy, kB

is Boltzmann’s constant, and m(2) is a strain rate sensitivity parameter.

5. Evolution equation for S2

The shear deformation resistance S(2) is assumed to remain constant.

Entropy relation. Fourier’s Law:

Finally, we have the entropy relation

ηR = −

[
∂ψ̄e (1)(Ce(1), ϑ)

∂ϑ
+
∂ψ̄e (2)(Ce(2), ϑ)

∂ϑ
+
∂ψ̄d (1)(A(1), ϑ)

∂ϑ

]
, (5.36)

together with Fourier’s law
qR = −κ∇ϑ, (5.37)

with κ(ϑ) > 0 the thermal conductivity.

Partial differential equations for the deformation and temperature fields

The partial differential equation for the deformation is obtained from the local force balance:

DivTR + b0R = ρR χ̈. (5.38)

The specific heat in the theory is given by

c
def= −ϑ

[
∂2ψ̄e (1)(ICe (1) , ϑ)

∂ϑ2
+
∂2ψ̄e (2)(ICe (2) , ϑ)

∂ϑ2
+
∂2ψ̄d (1)(IA(1) , ϑ)

∂ϑ2

]
. (5.39)

Balance of energy gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR +
M∑

α=1

[
|Me (α)

eff 0|dp (α)
]

+

[
∂ψ̃d (1)(IA(1) , ϑ)

∂A(1)
:G(1)(ξ(1),A(1), ϑ)

]
dp (1)

︸ ︷︷ ︸
rate of plastic dissipation

+ ϑ

[
∂2ψ̄e (1)(ICe (1) , ϑ)

∂ϑ ∂Ce (1)
: Ċe (1) +

∂2ψ̄e (2)(ICe (2) , ϑ)
∂ϑ ∂Ce (2)

: Ċe (2) +
∂2ψ̄d (1)(IA(1) , ϑ)

∂ϑ ∂A(1)
: Ȧ(1)

]
︸ ︷︷ ︸

“thermoelastic-coupling” terms

. (5.40)

As argued in the previous chapter, we neglect the “thermoelastic-coupling” terms and assume
instead that only a fraction of the inelastic work is dissipated so that our final heat equation
become

cϑ̇ = −DivqR + qR + β
(
τ̄ (1) νp (1) + 1

2 C γ | lnA(1)|2 νp (1) + τ̄ (2) νp (2)
)

(5.41)
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where β is the fraction of inelastic work that is dissipated, and we have used

G(A) =
1√
2
γA lnA,

∂ψ̃d(IA(1) , ϑ)
∂A(1)

=
1
2
C (lnA(1))A(1)−1.

 (5.42)

5.2.2 Summary of One-Dimensional Constitutive Equations

In this section we present an approximate one-dimensional version of the model which substantially
aids in the calibration of material properties from experimental data. The underlying constitutive
equations relate the following basic fields:

U > 0, stretch,
Up(α), plastic stretch,
U e(α) = UUp(α)−1, elastic part of the stretch,
ε = lnU, logarithmic strain,
εe(α) = lnU e(α), logarithmic elastic strains,
ξ(α) =

(
ξ
(α)
1 , ξ

(α)
2 , . . . , ξ

(α)
m

)
scalar internal variables,

A > 0, squared stretch-like internal variable,
ϑ > 0, absolute temperature,

ψ =
2∑

α=1

ψe (α)
(
U e (α), ϑ

)
+ ψd (1)

(
A, ϑ

)
, free energy density,

σ =
2∑

α=1

σe(α), decomposition of the Cauchy stress.

Glass transition

The temperature-dependence of the material properties of amorphous polymers depends strongly
on the temperature relative to the glass transition temperature ϑg of the material. It is well-known
that the glass transition temperature of such materials is not a constant, but depends strongly on
the strain-rate to which the material is subjected. Let

ε̇
def=

∂ε

∂t
(5.43)

denote the axial strain-rate, and ε̇ref a reference strain-rate. We assume that the variation of the
glass transition temperature with strain-rate may be adequately described by [5, cf. their eq. (10)]

ϑg =


ϑref

g if ε̇ ≤ ε̇ref,

ϑref
g +

[
C2g × log10(ε̇/ε̇ref)
C1g − log10(ε̇/ε̇ref)

]
if ε̇ > ε̇ref,

(5.44)

where C1g and C2g are Williams-Landel-Ferry (WLF) parameters [7] relative to the reference glass
transition temperature ϑref

g . With the governing fields and the glass transition temperature so
defined, we assume the following constitutive equations for the two micromechanisms α = 1, 2.
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Figure 5-3: Schematic of the phenomenological temperature dependence of the elastic modulus E.

Constitutive equations for alpha=1

1. Free Energy: For ψe(1) we use a simple linear elastic form for the free energy

ψe(1) = 1
2 E |ε

e(1)|2, (5.45)

where E(ϑ) > 0 is the Young’s modulus. Following Dupaix and Boyce [4], we assume that
the temperature-dependence of the elastic modulus may be adequately approximated by a
phenomenological function of the form

E(ϑ) = 1
2(Egl + Er)− 1

2(Egl − Er) tanh
(

1
∆ϑ

(ϑ− ϑg)
)

+XE(ϑ− ϑg), (5.46)

where Egl and Er are representative modulii in the glassy and rubbery regions, ∆ϑ is a
parameter denoting the temperature range across which the glass transition occurs, and the
constantXE represents the change in modulus with temperature outside of the glass transition
region (cf. Figure 5-3), where

XE =

{
XEg : ϑ ≤ ϑg

XEr : ϑ > ϑg

(5.47)
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For ψd(1) we use a simple defect free energy of the form1

ψd (1) = 3
8 C (lnA)2, (5.48)

where C(ϑ) ≥ 0 is a back-stress modulus chosen to decrease linearly with temperature follow-
ing the form of the internal stress used by Povolo and Hermida [9], Fotheringham and Cherry
[11], and Richeton et al. [10]

C(ϑ) =

{
XC(ϑC − ϑ) if ϑ ≤ ϑC ,

0 if ϑ > ϑC .
(5.49)

HereXC is a material parameter and ϑC is the temperature near the material’s glass transition
where C(ϑ) vanishes.

2. Equation for the stress: The elastic stress is given by

σe (1) = E εe(1) (5.50)

and the back-stress relation is2

σ
(1)
back = 3

2 C lnA. (5.51)

such that the driving stress for plastic flow is the effective stress given by

σ
(1)
eff = σe (1) − σ

(1)
back (5.52)

3. Internal variables: We restrict the list ξ(1) of internal variables to two, positive-valued vari-
ables

S(1) ≥ 0, ϕ ≥ 0

1Let (a1, a2, a3) denote the set of a principal stretches of a symmetric positive definite unimodular tensor A in three
dimensions representing a squared stretch tensor. For incompressibility of such a stretch, the ai satisfy a1a2a3 = 1.
Assuming a corresponding defect free energy of the form

ψd = 1
4
C

[
(ln a1)

2 + (ln a2)
2 + (ln a3)

2],
then in one-dimension, with A

def
= a1, a2 = a3 = A−

1
2 , the defect free energy can be written as

ψd = 3
8
C (lnA)2,

2Given a free energy function of the form
ψ = ψ̂(A),

the engineering stress S is defined by

S = 2
∂ψ

∂A
.

Also, assuming incompressibility, the Cauchy stress σ can then be represented as

σ = SA = 2A
∂ψ̂

∂A
,
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that represent aspects of the intermolecular shear resistance to plastic flow. The parameter
S(1) has dimensions of stress and represents an isotropic resistance to plastic flow, while ϕ is
a dimensionless parameter representing the local free-volume of the polymeric glass.

4. Flow rule: The evolution equation for Up (1) is

U̇p (1) = Dp (1)Up (1), Up (1)(0) = 1, (5.53)

Dp (1) = ε̇p (1) sign(σe (1)) (5.54)

σ̄(1) def= |σ(1)
eff | − S(1) − αp p̄, p̄

def= −1
3 σ

e (1) (5.55)

ε̇p (1) =

ε̇
∗(ϑ)

[
sinh

(
σ̄(1)V

2 kBϑ

)]1/m(1)

if σ̄(1) > 0,

0 if σ̄(1) ≤ 0.

(5.56)

The quantity ε̇p (1) is a plastic strain-rate and follows the form of the “cooperative model”
used by Richeton et al. [10], where σ̄(1) denotes a pressure modified effective stress with
αp ≥ 0 a pressure sensitivity parameter, and p̄(1) a pressure. Additionally, m(1) is a strain-
rate sensitivity parameter, V is a tensile activation volume, kB is Boltzmann’s constant, and
ε̇∗ is a characteristic thermally-activated strain-rate

ε̇∗(ϑ) =


ε̇
(1)
0 exp

(
−∆F (1)

kBϑ

)
if ϑ < ϑg,

ε̇
(1)
0 exp

(
−∆F (1)

kBϑg

)
exp

(
ln 10× c∗1(ϑ− ϑg)

c∗2 + ϑ− ϑg

)
if ϑ ≥ ϑg.

(5.57)

where ε̇(1)
0 is a pre-exponential factor with units of 1/time, ∆F (1) is an activation energy,

and c∗1 and c∗2 are WLF parameters which govern the drastic increase of the characteristic
strain-rate through the glass transition region.

5. Evolution equations for the internal variables S(1), ϕ, and A

We assume that the material disorders and is accompanied by a microscale dilatation as
plastic deformation occurs resulting in an increase of the free volume ϕ. This increase leads
to a fluctuation in the isotropic resistance S(1) causing a transient rise in the flow stress of
the material as plastic deformation proceeds. We therefore assume that the evolution of the
free volume ϕ is coupled to the evolution of the isotropic resistance S in order to reproduce
the typical yield peak observed in the stress-strain response of amorphous polymers below
the glass transition temperature ϑg. The coupling is introduced through this special set of
equations:

ϕ̇ = g (ϕ∗ − ϕ) ε̇p (1), ϕ(0) = ϕi > 0,

Ṡ(1) = h
(
S∗ − S(1)

)
ε̇p (1), S(1)(0) = Si ≥ 0,

S∗ = Si + b (ϕ∗ − ϕ) ,

 (5.58)
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where the material parameter ϕ(ϑ, ε̇p (1))∗ ≥ ϕi represents the saturation value of the free
volume ϕ.

We expect that the difference between the initial ϕi and saturation ϕ∗ values of the free
volume ϕ goes to zero as the material transitions into its rubbery regime above the glass
transition. Therefore, we assign a hyperbolic tangent function to the value of ϕ∗ to smoothly
change its value at the glass transition along with the elastic modulus. For the rubbery region
we choose ϕ∗ = ϕi, and in the glass region we choose ϕ∗ = ϕ∗g, resulting in this function for
ϕ∗:

ϕ∗ = 1
2(ϕ∗g + ϕi)− 1

2(ϕ∗g − ϕi) tanh
(

1
∆ϑ

(ϑ− ϑg)
)
. (5.59)

Note that the width ∆ϑ and temperature ϑg of this transition are identical to the values used
for the elastic modulus.

The material parameters h > 0, g(ϑ) > 0, and b(ϑ, ε̇p (1)) ≥ 0 describe the initial hardening,
subsequent rate of softening, and magnitude of this yield peak. We have assumed the following
functions to describe their temperature and rate-dependence

g = g1 + g2ϑ,

b = b1
(
ϑ2 + b2ϑ+ b3

) ( ε̇p (1)

ε̇ref

)b4

,

 (5.60)

where the list {g1, g2, b1, b2, b3, b4} are material parameters and ε̇ref is a reference strain-rate.
The functions for b and g are purely empirical and the forms given in (5.60) have been chosen
to fit experimental data.

The evolution equation for A is taken as

Ȧ = 2Dp (1)A−G ε̇p (1), A(0) = 1,
G = γA lnA,

}
(5.61)

where γ > 0 is a constitutive parameter that governs the dynamic recovery of A.

Constitutive equations for alpha=2

1. Free energy: For ψ(2) we use the first invariant of the stretch3

I1 ≡
(
U e(2)

)2
+ 2U e(2)−1, (5.62)

3Let (λ1, λ2, λ3) denote the set of a principal stretches of a symmetric positive definite tensor U in three dimensions
representing a stretch tensor. For incompressibility of such a stretch, the λi satisfy λ1λ2λ3 = 1. The first invariant
I1 of the stretch is defined by

I1
def
= λ2

1 + λ2
2 + λ2

3.

In one-dimension, with λ
def
= λ1, λ2 = λ3 = λ−

1
2 ,

I1 = λ2 + 2λ−1.
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and adopt the Gent [12] form of the free energy

ψ(2) = −1
2 µR I1,max ln

(
1− I1 − 3

I1,max

)
(5.63)

where µR(ϑ) > 0 and I1,max(ϑ) > 3 are two temperature-dependent material parameters.
In particular, µR represents the ground state rubbery shear modulus of the material, and
I1,max represents the upper limit of I1 (i.e., I1 < (3 + I1,max)), associated with limited chain
extensibility. We assume that µR decreases with increasing temperature and I1,max increases.
Empirical functions which fit the experimental temperature dependence of these parameters
are

µR(ϑ) = 1
2(µa

R + µb
R)− 1

2(µa
R − µb

R) tanh
(

1
∆µ

(ϑ− ϑµ)
)

+Xµ(ϑ− ϑµ) (5.64)

I1,max(ϑ) = 1
2(Ia

1 + Ib
1)− 1

2(Ia
1 − Ib

1) tanh
(

1
∆I

(ϑ− ϑI)
)
. (5.65)

where we note that the transition of these parameters is not necessarily related to the tran-
sition of the elastic moduli in micromechanism α = 1.

2. Equation for the stress:4 The stress in micromechanism α = 2 is

σe (2) = µR

(
1− I1 − 3

I1,max

)−1((
U e (2)

)2
− U e (2)−1

)
(5.66)

3. Internal variables: We restrict the list ξ(2) of internal variables to a single, stress-dimensioned
positive-valued variable

S(2) > 0 (5.67)

that represents a resistance to plastic flow for molecular relaxation processes.

4Given a free energy function of the form

ψ = ψ̂ (I1) , I1 = λ2 + 2λ−1,

the engineering stress S is defined by

S =
∂ψ

∂λ
=
∂ψ̂

∂I1

∂I1
∂λ

.

Also, assuming incompressibility
a0 = aλ,

where a0 is the original cross-sectional area and a is the current cross-sectional area. The Cauchy stress σ can then
be represented as

σ = Sλ = λ
∂ψ̂

∂I1

∂I1
∂λ

,
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4. Flow rule: The evolution equation for Up (2) is

U̇p (2) = Dp (2)Up (2), Up (2)(0) = 1, (5.68)

Dp (2) = ε̇p (2) sign(σe (2)) (5.69)

ε̇p (2) = ε̇
(2)
0 exp

{
−∆F (2)

kBϑ

}(
|σe (2)|
S(2)

)1/m(2)

(5.70)

where ε̇(2)
0 is a pre-exponential factor with units of 1/time, m(2) is a strain-rate sensitivity

parameter, ∆F (2) is an activation energy, and kB is Boltzmann’s constant.

5. Evolution equation for the internal variable S(2)

We assume that the internal variable S(2) is constant.
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5.3 Material Parameter Calibration Through the Glass Transition

With the full three-dimensional and simplified one-dimensional version of the theory in place, we can
now determine the material parameters required by the theory. We start with the one-dimensional
calibration procedure using MATLAB in Section 5.3.1, followed by the appropriate adjustments
necessary to complete calibration of the three-dimensional model in the finite element program
ABAQUS/Explicit in Section 5.3.2.

Once the three-dimensional isothermal model is calibrated, a set of multi-element fully-coupled
calculations is performed in ABAQUS/Explicit to calibrate the internal heating response of the
material. These calculations and results are summarized in 5.3.3.

5.3.1 One-Dimensional Material Parameter Calibration Procedure

We have implemented the one-dimensional model of Section 5.2.2 in MATLAB using an explicit in-
tegration scheme, and we use it to calibrate the material parameters from the experiments described
in Chapter 2. The one-dimensional calibration process consists of six sequential steps which are
outlined in detail in this section. The six steps cover calibration of these aspects of the stress-strain
response: (1) initial yield stress, (2) back stress, (3) elastic modulus, (4) large strain behavior, (5)
high-temperature network slipping, and (6) yield peak shape.

Initial Yield Stress

We have chosen to use the cooperative model [6, 9, 11] to describe the rate and temperature
dependence of the yield stress of PMMA below the glass transition. One important difference
between our implementation and that of the earlier authors is that we have replaced their scalar
internal stress with a stretch-dependent back stress (5.51). The reasoning is that the internal stress
must be conjugate to a stretch measure so that it can be accounted for in the total internal energy
of the system, and accordingly in the partial differential equation governing the temperature field.
However, for the purposes of finding material parameters, we start with the earlier form using the
scalar internal stress, and then we replace it with a suitable stretch-dependent back stress later in
the calibration procedure.

For uniaxial compression, the expression for yield stress σy as a function of temperature ϑ and
strain-rate ε̇ is given by (

1− αp

3

)
|σy| = r(ϑ) +

2kBϑ

V
sinh−1

[(
ε̇

ε̇∗(ϑ)

)m]
(5.71)

where αp is a pressure sensitivity parameter, r is a temperature dependent internal stress, kB is the
Boltzmann constant, V is an activation volume, ε̇∗ is a thermally-activated characteristic strain-
rate, and m is a strain-rate sensitivity parameter. The internal stress r follows a linear relationship
with temperature such that

r =

{
r1(ϑr − ϑ) : ϑ ≤ ϑr,

0 : ϑ > ϑr,
(5.72)

where ϑr describes the temperature at which the internal stress vanishes and r1 is a material
parameter. The characteristic strain-rate ε̇∗ is assumed to follow an Arrhenius-type temperature
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Figure 5-4: Schematic showing yield stress determined by the intersection of the initial loading path with the
tangent of the stress-strain curve at 0.4 strain

dependence

ε̇∗ = ε̇0 exp
(
−∆F
kBϑ

)
(5.73)

where ε̇0 is a reference strain-rate and ∆F is an activation energy. To summarize, from (5.71),
(5.72), and (5.73), there is a list of six material parameters that must be calibrated with the
experimental yield data

{V,m, r1, ϑr, ε̇0,∆F } (5.74)

At this point in the calibration procedure we ignore the effects of the yield peak and define the
yield stress as the intersection of the initial loading path with the tangent of the stress-strain curve
at approximately 0.4 strain; this is shown schematically in Figure 5-4. Following this approach, yield
stress values have been extracted from the PMMA compression experiments in the temperature
range 25 C to 110 C at all four strain-rates. The ratio of these yield stresses to test temperature
are shown in Figure 5-5 as a function of the logarithm of strain-rate. Estimated isotherms have
been drawn to visually connect the yield points for a given testing temperature.

Unfortunately, for a given temperature we have only four data points spanning a relatively
narrow strain-rate range which makes fitting the flow function (5.71) very difficult. By utilizing
the yield stress superposition principle [10, 13], however, we can form a master curve of all 24 data
points at a single reference temperature that covers a much wider range of strain-rates. To obtain
the master curve, the experimental data is shifted along both axes by temperature-dependent shift
factors that follow a linearized Arrhenius law

∆(log10 ε̇) = H

(
1
ϑ
− 1
ϑref

)
∆
(σy

ϑ

)
= B

(
1
ϑ
− 1
ϑref

)
 (5.75)
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Figure 5-5: Ratio of compressive yield stress to temperature as a function of the logarithm of strain-rate. (*)
indicates experimental results, (- -) indicates estimated isotherms. The right figure shows the master curve
constructed at 383 K from the data in the left figure.

where ϑ is the temperature of the experiment, ϑref is the temperature that the data will be shifted
to, and H and B are material parameters. Povolo and Hermida [9] and Richeton et al. [10] reasoned
that these shift factors could be equated with the material parameters used in the cooperative model
such that

H =
∆F

kB ln 10
B = −r(ϑ = 0) = −r1 θr

 (5.76)

This gives some physical significance to the values of the shift factors that are chosen. We have
used Richeton’s [10] value of ∆F to establish the H shift factor, and then selected B to match our
data; the values are listed in Table 5.1. Figure 5-5 shows the master curve constructed at ϑref =
383 K using these shift factors.

To complete the fitting of the flow function (5.71) to the master curve, we introduce three
assumptions:

• The pressure sensitivity parameter αp is set equal to 0.353 [14].

• The internal stress r vanishes at the glass transition temperature [11]; that is ϑr = ϑg, and
r(ϑg) = 0.

• The glass transition is assumed to occur at a single temperature independent of both strain-
rate and pressure. For the purposes of fitting the yield point, we assume ϑg = 383 K.

• The initial value of the isotropic resistance S(1)
i is equal to zero, and the isotropic resistance

S(1) does not evolve; that is Ṡ(1) = 0 and S(1) = S
(1)
i = 0.
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Figure 5-6: Fit of flow function for compressive yield stress normalized by temperature versus strain-rate. (*)
indicates experimental results, (-) indicates model. Fit of flow function to master curve at 383 K.

Therefore, for a master curve constructed at ϑref = ϑg = 383 K, the internal stress term drops out
of the flow function (5.71) resulting in

|σy|
ϑg

=
2kB

V

(
1− αp

3

)−1
sinh−1

[(
ε̇

ε̇∗(ϑg)

)m]
(5.77)

with the list of unknown parameters reduced to: {V , ε̇∗(ϑg), m}. A non-linear least-squares fitting
method was used in MATLAB to obtain these parameters from the shifted experimental data.
Subsequently, by considering (5.72), (5.73), and (5.76), the values of r1 and ε̇0 are easily determined.
The complete set of parameters is listed in Table 5.1. The resulting fit to the 383 K master curve
is shown in Figure 5-6 along with the corresponding result for the unshifted experimental data.

In the glass transition region, the yield stress drops off to zero very rapidly and has been shown
to follow a WLF-like trend. Therefore, for temperatures above ϑg the temperature dependence of
ε̇∗ becomes [10]

ε̇∗ = ε̇
(1)
0 exp

(
−∆F (1)

kBϑg

)
exp

(
ln 10× c∗1(ϑ− ϑg)

c∗2 + ϑ− ϑg

)
if ϑ ≥ ϑg. (5.78)

where c∗1 and c∗2 are WLF parameters which govern the change of the characteristic strain-rate
through the glass transition region. To determine these two material parameters, the complete
one-dimensional model is implemented in MATLAB and values for ε̇∗ are chosen for each of the
experiments at temperatures greater than ϑg. The selected values of ε̇∗ are shown in Figure 5-7
along with a fit to the function (5.78). The material parameters used to obtain this fit are listed
in Table 5.1.
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Figure 5-7: WLF fit of characteristic strain-rate ε̇∗ versus temperature above the glass transition temperature
ϑg. Symbols indicate selected value for fitting one-dimensional MATLAB model, lines indicate fit of function
given in (5.78).

Table 5.1: PMMA material parameters for yield point calibration

Parameter Value
H (s−1 K−1) 5.7× 103

B (MPa) -180
V (m3) 2.11× 10−28

m 0.218
ε̇0 (s−1) 1.15× 1016

∆F (kJ mol−1) 109
r1 (MPa K−1) 0.47
ϑr (K) 383
c∗1 13
c∗2 (K) 16
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Back Stress

Once the yield data has been satisfactorily calibrated, the internal stress r(ϑ) in the flow function
can be replaced with the stretch-dependent back stress σback. To begin, we note that for compression

Dp = −ε̇p, (5.79)

and we may then rewrite the evolution equation for A (5.61) in compression as

Ȧ = −(2 + γ lnA)A ε̇p. (5.80)

It follows then that the saturation value of A in compression is

A∗ = exp
(
−2
γ

)
. (5.81)

Combining this result with the equation for the back stress (5.51) gives the saturation value of the
back stress as a function of the material parameters C(ϑ) and γ

σ∗back(ϑ) = 3
C(ϑ)
γ

. (5.82)

Equating the back stress saturation value with the internal stress r gives these relations between
the back stress moduli and the internal stress parameters

ϑC = ϑr,

XC

γ
=
r1
3
.

 (5.83)

To determine γ, we note that it controls the rate of saturation of the back stress. This is highlighted
in Figure 5-8 where the back stress and total stress response are shown with varying values of γ but
with a constant ratio of C/γ (and therefore constant σ∗back. As γ increases, the rate of saturation
of the back stress increases. Similarly, γ is also related to the viscoelastic response of the material.
Therefore, γ should be chosen such that the creep and total stress-strain response of the material is
calibrated suitably throughout the temperature range of interest. Since we do not have a complete
set of creep data for our entire temperature range, we select (γ = constant) and fit it to room-
temperature creep data from Anand and Ames [14] in Figure 5-9 and also choose it such that
the unloading curvature at room temperature is suitably fit. The values of all the back stress
parameters are shown in Table 5.5.

Elastic Modulus

The elastic modulus is assumed to decrease linearly with temperature according to (5.46) and
acquires rate-dependence through the rate-sensitivity of the glass transition (5.44). The initial
modulus was estimated from stress-strain data for all our data sets and then fit to (5.46) and (5.44)
as seen in Figure 5-10. The resulting material parameters are shown in Table 5.5.
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Figure 5-10: Fit of elastic modulus to phenomenological functions (5.46) and (5.44).

Large Strain Behavior

To calibrate the large strain behavior of PMMA, the complete one-dimensional model is imple-
mented in MATLAB and the following assumptions are made:

• There is no inelastic deformation associated with slipping of the molecular network; that is
ε̇p (2) = 0.

• The large strain hardening behavior of PMMA is rate-independent; that is µR and I1,max are
rate-independent.

Following these assumptions, values for µR and I1,max are chosen for each testing temperature at
the lowest strain-rate (3× 10−4/s). To do this, we note that the parameter µR controls the initial
slope of the post-yield hardening and I1,max controls the “locking stretch”, the stretch at which
rapid hardening sets in and the stress appears to go to infinity. The selected values for µR are shown
in Figure 5-11 along with a fit to the phenomenological function (5.64). It is difficult to estimate
I1,max from our experimental data however. This is because our data does not extend to strains
that are large enough to observe a substantial change in the hardening slope. We therefore assume
a suitable constant value below ϑg and allow it to transition smoothly to a higher value above the
glass transition using the phenomenological function of (5.65). The selected values of I1,max are
shown in Figure 5-12 along with the functional fit. The material parameters used to describe µR

and I1,max are shown in Table 5.5.

High-Temperature Network Slipping

We have very little experimental data to calibrate the high-temperature network slipping parame-
ters, however, we can complete a rough calibration given some additional assumptions:

• In order to allow for inelastic deformation associated with slipping of the molecular network,
ε̇p (2) is no longer restricted.
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• The activation energy for network slipping is equivalent to the activation energy for the
intermolecular resistance below the glass transition; that is ∆F (1) = ∆F (2).

• The deformation resistance S(2) does not evolve with strain and is independent of temperature.

Recall that the flow function for ε̇p (2) is given by

ε̇p(2) = ε̇
(2)
0 exp

{
−∆F (2)

kBϑ

}(
|σy|
S(2)

)1/m(2)

. (5.84)

At yield, for a given strain-rate ε̇ and temperature ϑ, we assume that S(2) = σy and approximate
the flow function as

ε̇
(2)
0 = ε̇ exp

{
∆F (2)

kBϑ

}
, (5.85)

so that a value for ε̇(2)
0 can be obtained. We observe obvious slipping in our experimental data for

the test at 170 C at a strain-rate of 3× 10−4/s and use these values to choose ε̇(2)0 . Values for S(2)

and m(2) are then chosen to provide a good fit for the data in the temperature region above the
glass transition. The material parameters used to obtain this fit are shown in Table 5.5.

The resulting stress-strain curves at this stage of the calibration procedure are shown in Fig-
ures 5-13, 5-14, 5-15 and 5-16. For the lower strain-rates of 3× 10−4/s and 10−3/s, the simulations
correlate with the experimental data very well, yet for the higher strain-rates of 10−2/s and 10−1/s,
there is an excessive discrepancy in the large strain behavior between the experiments and simula-
tions. This discrepancy is caused by thermal softening in the material due to inelastic dissipation,
and at this point we are using an isothermal version of the model that does not account for inter-
nal heating. Later, in Section 5.3.3, we add thermo-mechanical coupling to the model in order to
capture the internal heating effect.
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Figure 5-13: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate
of 3 × 10−4/s and various temperatures ranging from room temperature through 170 C. Simulation includes
yield-point and large strain calibrations only.
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Figure 5-14: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−3/s and various temperatures ranging from room temperature through 170 C. Simulation includes yield-point
and large strain calibrations only.
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Figure 5-15: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−2/s and various temperatures ranging from room temperature through 170 C. Simulation includes yield-point
and large strain calibrations only.
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Figure 5-16: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−1/s and various temperatures ranging from room temperature through 170 C. Simulation includes yield-point
and large strain calibrations only.
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Yield Peak

To calibrate the yield peak, we must determine the list of parameters which guide the evolution of
S(1) and ϕ: {ϕi, ϕ∗, g, b, h}.

While the initial and saturation values of the free-volume should depend on strain-rate and
temperature, we do not have the appropriate data to choose these values accordingly. Therefore,
below the glass-transition we assume these parameters to be ϕi = 0 and ϕ∗g = 0.001. Above the glass
transition, we assume ϕ∗ = ϕi = 0 and we use a hyperbolic-tangent function (5.59) to smoothly
interpolate ϕ∗ within the glass transition. Note that rate-dependence in the glass transition region
is introduced by use of the rate-dependent glass transition temperature ϑg in (5.59).

Next, several simulations using different values of {b, g, h} must be performed to obtain the
correct shape of the yield peak at the various strain-rates and temperatures. Figure 5-17 shows
how these parameters affect the shape of the yield-peak in order to aid the iterative curve-fitting
procedure. Once these parameters are determined for each stress-strain curve, they were found to
fit the functional forms given in (5.60); the parameters for these functions are listed in Table 5.5.
The final stress-strain curves including the yield peak calibration are shown in Figures 5-18, 5-19,
5-20 and 5-21.
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Figure 5-17: Schematic of the effect of the material parameters {b, g, h} on the shape of the yield peak of the
stress-strain curve. Arrows indicate an increase of the parameter: (top) b, (middle) g, (bottom) h.
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Figure 5-18: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
3× 10−4/s and various temperatures ranging from room temperature through 170 C.
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Figure 5-19: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−3/s and various temperatures ranging from room temperature through 170 C.
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Figure 5-20: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−2/s and various temperatures ranging from room temperature through 170 C.
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Figure 5-21: One-dimensional MATLAB simulation (- -) and uniaxial compression tests (–) at a strain-rate of
10−1/s and various temperatures ranging from room temperature through 170 C.
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5.3.2 Three-Dimensional Model Calibration Procedure

Except for the list of parameters {αp, ν0, V , S(1)
i , b, g, h, γ, S(2)}, the values of the one-dimensional

material parameters are unchanged when used in the three-dimensional equations. Noting that

τν = σε̇, σ =
√

3τ, ε̇ =
ν√
3

(5.86)

the list of parameters {αp, ν0, V , S(1)
i , b, g, h, γ} may be converted from the one-dimensional

tension form to the three-dimensional shear form using

ε̇0 = 1√
3
ν0 ,

αtension
p =

√
3αshear

p ,

S
(1) tension
i =

√
3S(1) shear

i ,

V tension = 1√
3
V shear ,

btension
1 =

√
3 bshear

1 ,

gtension
1 =

√
3 gshear

1 ,

gtension
2 =

√
3 gshear

2 ,

htension =
√

3hshear ,

γtension =
√

3 γshear ,

S(2) tension =
√

3S(2) shear .



(5.87)

Further, assuming a value of Poisson’s ratio

νpoi =

{
0.35 : ϑ ≤ ϑg

0.495 : ϑ > ϑg

(5.88)

we may use the standard relations for converting the elastic modulus E to the shear modulus G.
Figure 5-22 shows the results of using these conversion factors with the parameters determined

from the one-dimensional calibration procedure. We see that the three-dimensional single-element
result from ABAQUS/Explicit agrees fairly well with the one-dimensional MATLAB results. A
slight adjustment of µR in ABAQUS brings the simulations into even closer agreement. The final
stress-strain curves from the ABAQUS calculations are shown in Figures 5-23, 5-24, 5-25 and 5-26.
The complete list of material parameters used in the ABAQUS calculations is in Table 5.6.
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Figure 5-22: Comparison of one-dimensional MATLAB simulation (- -) to three-dimensional one-element
ABAQUS simulation (· · · ) with material parameter conversion between the two models using only the relations
in (5.87). Further adjustment of µref

R and Xµ in ABAQUS (–) gives a better match to the MATLAB results.
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Figure 5-23: Three-dimensional one-element isothermal ABAQUS simulations (- -) and uniaxial compression
tests (–) at strain-rates of 3× 10−4/s at temperatures ranging from room temperature through 170 C.
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Figure 5-24: Three-dimensional one-element isothermal ABAQUS simulations (- -) and uniaxial compression
tests (–) at strain-rates of 10−3/s at temperatures ranging from room temperature through 170 C.
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Figure 5-25: Three-dimensional one-element isothermal ABAQUS simulations (- -) and uniaxial compression
tests (–) at strain-rates of 10−2/s at temperatures ranging from room temperature through 170 C.
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Figure 5-26: Three-dimensional one-element isothermal ABAQUS simulations (- -) and uniaxial compression
tests (–) at strain-rates of 10−1/s at temperatures ranging from room temperature through 170 C.
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Figure 5-27: Specific heat of PMMA versus temperature. Reproduced from Gaur et al. [16]

5.3.3 Internal Heating

While the model works very well for the low strain-rates where the material behaves nearly isother-
mally (cf. Figures 5-23 and 5-24), there is a large discrepancy between the model and experiment
at the higher strain rates of 10−2/s and 10−1/s (cf. Figures 5-25 and 5-26). This discrepancy is
due to the thermal softening of the material caused by inelastic dissipation coupled with the low
thermal diffusivity of PMMA [15]. In order to capture this internal heating, we must introduce a
thermo-mechanical coupling in our finite element implementation using the heat equation of (5.41)

cϑ̇ = −DivqR + qR + β

(
τ̄ (1) νp (1) + τ̄ (2) νp (2) +

1
2
C γ | lnA|2

)
(5.89)

where the factor β is the fraction of inelastic work that is dissipated. To complete the thermo-
mechanical coupling, we must also specify two additional material parameters: the specific heat c,
and the thermal conductivity κ. The temperature dependence of these parameters is taken from
the literature [16, 17] and reproduced in Figures 5-27 and 5-28 respectively.

Multi-Element Model

In order to accurately predict the temperature rise for intermediate strain-rates where isothermal
or adiabatic approximations do not suffice, we must setup a realistic finite element model of our ex-
perimental apparatus that includes thermal interactions between the specimen and its environment
[15]. Because our specimens are cylindrical, we have chosen to model the compression experiment
as an axisymmetric problem with additional symmetry about the horizontal axis. A schematic of
this model is shown in Figure 5-29. For the steel platen, we assume a basic thermoelastic material
model whose material parameters are listed in Table 5.2. For the surface film coefficient between
the specimen sidewall and air, we assume h1 = 40 (W/m2-K). We create a heat sink on the top
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Figure 5-28: Thermal conductivity of PMMA versus temperature. Reproduced from Eiermann and Hellwege [17]

Table 5.2: Steel material parameters for thermo-mechanically coupled three-dimensional model

Parameter Value
Young’s Modulus, E (GPa) 200
Poisson’s Ratio, ν 0.3
Density, ρ (kg m−3) 7833
Thermal Conductivity, κ (W m−1 K−1) 52
Specific Heat, c (J kg−1 K−1) 586

of the steel platen by fixing the nodes at the ambient temperature T∞. At the interface between
the PMMA specimen and the steel platen we assume frictionless contact. To assure excellent heat
transfer at this interface, we use a thermal conductance of k = 1000 (W/m2-K). The ambient tem-
perature of each simulation T∞ is initially constant throughout the specimen and platen. A true
strain-rate velocity profile is applied to the top surface of the steel platen to impose deformation
on the specimen.

The final stress-strain curves using this multi-element fully-coupled calculation in ABAQUS/Explicit
are shown in Figures 5-30, 5-31, 5-32 and 5-33 for the various strain-rates and temperatures. An
inelastic heat fraction of β = 0.80 was used in the heat equation (5.89) to obtain these results.

Figure 5-34 shows the contours of nodal temperature rise at a strain of -1.0 for the room
temperature (25 C) simulation conducted at a strain-rate of 10−1/s. As others have shown, there
is a large gradient in temperature throughout the height and diameter of the specimen. Figure
5-35 shows experimental measurements of surface temperature rise from Mulliken [18] under a
test of similar conditions compared with surface midpoint temperature measurements from our
simulations. While the results do not match perfectly, the general trend of the experiments does
seem to be well reproduced in the simulation, namely a large temperature rise for the high-rate
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Figure 5-29: Axisymmetric finite element geometry for thermo-mechanically coupled compression simulations.

nearly adiabatic case and a negligible temperature rise for the low-rate nearly isothermal case.
Arruda et al. [15] saw similar results for their experiments and simulations.
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Figure 5-30: Three-dimensional multi-element fully-coupled ABAQUS simulations (- -) and uniaxial compression
experiments (–) at a strain-rate of 3× 10−4/s and temperatures ranging from room temperature through 170 C.
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Figure 5-31: Three-dimensional multi-element fully-coupled ABAQUS simulations (- -) and uniaxial compression
experiments (–) at a strain-rate of 10−3/s and temperatures ranging from room temperature through 170 C.
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Figure 5-32: Three-dimensional multi-element fully-coupled ABAQUS simulations (- -) and uniaxial compression
experiments (–) at a strain-rate of 10−2/s and temperatures ranging from room temperature through 170 C.
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Figure 5-33: Three-dimensional multi-element fully-coupled ABAQUS simulations (- -) and uniaxial compression
experiments (–) at a strain-rate of 10−1/s and temperatures ranging from room temperature through 170 C.
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5.4 Summary of Equations and Parameters

The equations and associated parameters for the one-dimensional and full three-dimensional con-
stitutive theory are briefly summarized here for convenience. For a more detailed summary, refer
to Section 5.2.

Table 5.3: Summary of the the one-dimensional equations

Term Description

σ = σe (1) + σe (2) Total stress

σe (1) = E εe (1) Elastic stress in α = 1

E = 1
2
(Egl + Er)− 1

2
(Egl − Er) tanh

(
1

∆ϑ
(ϑ− ϑg)

)
+XE(ϑ− ϑg) Elastic modulus

ϑg = ϑref
g +

[
C2g × log10(ε̇/ε̇ref)

C1g − log10(ε̇/ε̇ref)

]
Glass transition

σ
(1)
back = 3

2
C lnA Backstress in α = 1

C =

{
−XC(ϑ− ϑC) : ϑ ≤ ϑC

0 : ϑ > ϑC

Backstress modulus

Ȧ = 2Dp (1)A− γA lnA ε̇p (1), A(0) = 1 Backstress stretch evolution

σe (2) = µR

(
1− I1 − 3

I1,max

)−1 ((
Ue (2)

)2

− Ue (2)−1

)
Stress in α = 2

µR = 1
2
(µa

R + µb
R) − 1

2
(µa

R − µb
R) tanh

(
1

∆µ
(ϑ− ϑµ)

)
+Xµ(ϑ− ϑµ) Gent modulus

I1,max = 1
2
(Ia

1 + Ib
1)− 1

2
(Ia

1 − Ib
1) tanh

(
1

∆I
(ϑ− ϑI)

)
Gent parameter

ε̇p (1) = ε̇∗
[
sinh

(
σ̄V

2 kBϑ

)]1/m(1)

Flow rule for α = 1

ε̇∗ =


ε̇
(1)
0 exp

(
−∆F (1)

kBϑ

)
: ϑ < ϑg,

ε̇
(1)
0 exp

(
−∆F (1)

kBϑg

)
exp

(
ln 10× c∗1(ϑ− ϑg)

c∗2 + ϑ− ϑg

)
: ϑ ≥ ϑg

p̄ = − 1
3
σe (1) Pressure

σ̄(1) = |σe (1) − σ
(1)
back| − S(1) − αp p̄ Driving stress

ϕ̇ = g (ϕ∗ − ϕ) ε̇p (1), ϕ(0) = ϕi > 0 Free volume evolution

Ṡ(1) = h
(
S∗ − S(1)

)
ε̇p (1), S(1)(0) = S

(1)
i ≥ 0 Isotropic resistance

S∗ = S
(1)
i + b (ϕ∗ − ϕ) Saturation value of S(1)

g = g1 + g2ϑ

b = b1
(
ϑ2 + b2ϑ+ b3

) (
ε̇p (1)

ε̇ref

)b4

ϕ∗ = 1
2
(ϕ∗g + ϕi)− 1

2
(ϕ∗g − ϕi) tanh

(
1

∆ϑ
(ϑ− ϑg)

)

ε̇p (2) = ε̇
(2)
0 exp

{
−∆F (2)

kBϑ

} (
|σe (2)|
S(2)

)1/m(2)

Flow rule for α = 2
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Table 5.4: Summary of the the three-dimensional equations

Term Description

T = Te (1) + Te (2) Total Cauchy stress

Te (1) = J−1Re (1) Me (1) Re (1)> Cauchy stress for α = 1

Te (2) = J−1Re (2) Me (2) Re (2)> Cauchy stress for α = 2

Me(1) = 2GEe
0 +K

{
trEe − 3αth (ϑ− ϑ0)

}
1 Mandel stress for α = 1

G = 1
2
(Ggl +Gr)− 1

2
(Ggl −Gr) tanh

(
1

∆ϑ
(ϑ− ϑg)

)
+XG(ϑ− ϑg) Shear modulus

ϑg = ϑref
g +

[
C2g × log10(d/d

ref)

C1g − log10(d/d
ref)

]
Glass transition

νpoi = 1
2
(νgl + νr)− 1

2
(νgl − νr) tanh

(
1

∆ϑ
(ϑ− ϑg)

)
Poisson’s ratio

M
(1)
back = C lnA(1) Backstress for α = 1

C =

{
−XC(ϑ− ϑC) : ϑ ≤ ϑC

0 : ϑ > ϑC

Backstress modulus

Ȧ(1) = Dp(1)A(1) + A(1)Dp(1) − γA(1) lnA(1) νp (1), A(X, 0) = 1 Backstress stretch evolution

Me(2) = µR

(
1− I1 − 3

I1,max

)−1

(Ce
dis

(2))0 Mandel stress for α = 2

µR = 1
2
(µa

R + µb
R) − 1

2
(µa

R − µb
R) tanh

(
1

∆µ
(ϑ− ϑµ)

)
+Xµ(ϑ− ϑµ) Gent modulus

I1,max = 1
2
(Ia

1 + Ib
1)− 1

2
(Ia

1 − Ib
1) tanh

(
1

∆I
(ϑ− ϑI)

)
Gent parameter

νp (1) = ν∗ exp

{
−∆F (1)

kB ϑ

} [
sinh

( τ̄ (1)
e V

2kBϑ

)]1/m(1)

Flow rule for α = 1

ν∗ =


ν

(1)
0 exp

(
−∆F (1)

kBϑ

)
: ϑ < ϑg,

ν
(1)
0 exp

(
−∆F (1)

kBϑg

)
exp

(
ln 10× c∗1(ϑ− ϑg)

c∗2 + ϑ− ϑg

)
: ϑ ≥ ϑg

p̄(1) = − 1
3
trMe (1) Pressure

M
e (1)
eff = Me (1) −M

(1)
back Driving stress

τ̄ (1) = 1√
2
|(Me (1)

eff )0| Equivalent shear stress

τ̄
(1)
e = τ̄ (1) − S(1) − αp p̄

(1) Effective shear stress

ϕ̇ = g (ϕ∗ − ϕ) νp (1), ϕ(X, 0) = ϕi > 0 Free volume evolution

Ṡ(1) = h
(
S∗ − S(1)

)
νp (1), S(1)(X, 0) = S

(1)
i ≥ 0 Isotropic resistance evolution

S∗ = S
(1)
i + b (ϕ∗ − ϕ) Saturation value of S(1)

g = g1 + g2ϑ

b = b1
(
ϑ2 + b2ϑ+ b3

) (
νp (1)

νref

)b4

ϕ∗ = 1
2
(ϕ∗g + ϕi)− 1

2
(ϕ∗g − ϕi) tanh

(
1

∆ϑ
(ϑ− ϑg)

)

νp (2) = ν
(2)
0 exp

{
−∆F (2)

kB ϑ

} (
τ̄ (2)

S(2)

)1/m(2)

Flow rule for α = 2

τ̄ (2) = 1√
2
|Me (2)

0 | Equivalent shear stress



5.4 Summary of Equations and Parameters 173

Table 5.5: PMMA material parameters for one-
dimensional model

Parameter Value

ρ (kg m−3) 1200
ε̇ref (s−1) 3× 10−4

ϑref
g (K) 383
C1g 11
C2g (K) 36

Egl (MPa) 800
Er (MPa) 0.5
∆ϑ (K) 4

XE (MPa K−1)

{
27 : ϑ ≤ ϑg

0 : ϑ > ϑg

µa
R (MPa) 7.8

µb
R (MPa) 0.78

∆µ (K) 21
ϑµ (K) ϑg − 18

Xµ (kPa K−1)

{
190 : ϑ ≤ ϑµ

2.1 : ϑ > ϑµ

Ia
1 5.5

Ib
1 11

∆I (K) 4
ϑI (K) 395

XC (MPa K−1) 9.4
ϑC (K) 383
γ 60

V (m3) 2.11× 10−28

m(1) 0.218

ε̇
(1)
0 (s−1) 1.15× 1016

∆F (1) (kJ mol−1) 109
c∗1 13
c∗2 (K) 16
αp 0.353

ϕi 0
ϕ∗g 0.001

S
(1)
i (Pa) 0

b1 (Pa K−2) −3.16× 106

b2 (K) -562
b3 (K2) 6.62× 104

b4 0.054

g1 -8.52
g2 (K−1) 5.48× 10−2

h (s) 70

∆F (2) (kJ/mol) 109

m(2) 0.5

ε̇
(2)
0 (s−1) 2× 109

S(2) (MPa) 1.5

Table 5.6: PMMA material parameters for three-
dimensional model

Parameter Value

ρ (kg m−3) 1200
νref (s−1) 5× 10−4

ϑref
g (K) 383
C1g 11
C2g (K) 36
αgl (K−1) 7× 10−5

αr (K−1) 16× 10−5

Ggl (MPa) 296
Gr (MPa) 0.168
∆ϑ (K) 4

XG (MPa K−1)

{
10 : ϑ ≤ ϑg

0 : ϑ > ϑg

νgl 0.35
νr 0.495

µa
R (MPa) 6.7

µb
R (MPa) 0.67

∆µ (K) 21
ϑµ (K) ϑg − 18

Xµ (kPa K−1)

{
165 : ϑ ≤ ϑµ

2.1 : ϑ > ϑµ

Ia
1 5.5

Ib
1 11

∆I (K) 4
ϑI (K) 395

XC (MPa K−1) 9.4
ϑC (K) 383
γ 34.64

Vi (m3) 3.65× 10−28

m(1) 0.218

ν
(1)
0 (s−1) 2× 1016

∆F (1) (kJ mol−1) 109
c∗1 13
c∗2 (K) 16
αp 0.204

ϕi 0
ϕ∗g 0.001

S
(1)
i (Pa) 0

b1 (Pa K−2) −1.82× 106

b2 (K) -562
b3 (K2) 6.62× 104

b4 0.054

g1 -4.92
g2 (K−1) 3.16× 10−2

h (s) 40.4

∆F (2) (kJ/mol) 109

m(2) 0.5

ν
(2)
0 (s−1) 3.46× 109

S(2) (MPa) 0.866
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Chapter 6

Hot Embossing of PMMA

6.1 Introduction

Numerical simulation of micro-hot-embossing processes for amorphous polymers are in their in-
fancy. Most previously published attempts [1–17] have been hampered by a lack of suitable
thermo-mechanical constitutive model and its numerical implementation in a finite element pro-
gram. In this chapter we validate our recently developed visco-elastic-plastic, thermo-mechanically-
coupled, large-deformation theory for amorphous polymers and its numerical implementation in
Abaqus/Explicit [18] by carrying out representative hot-embossing simulations, and comparing
aspects of the results from such simulations against corresponding experimental results. Once
validated, our model and its numerical implementation should be useful for both optimizing the
hot-embossing process cycle as well as determining the mechanical properties of the final part.

A schematic of a typical force and temperature profile used in a hot embossing process cycle is
shown in Figure 6-1. The basic process proceeds as follows:
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Figure 6-1: Schematic of typical force and temperature profiles used in a hot embossing process cycle.
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1. A polymer substrate is placed on a rigid platen and is brought into physical contact with a
rigid tool from above. A slight pre-load may be applied. (t0)

2. The tool and platen are heated up to the embossing temperature ϑe and time is allowed for
thermal equilibrium to be reached. This temperature is typically above the polymer’s glass
transition temperature ϑg, however, there is also interest in embossing at lower temperatures.
(t0 → t1)

3. The embossing force fe is then gradually applied to the tool, causing its features to be
impressed on the polymer substrate. (t1 → t2)

4. The tool and platen are then cooled while still under load until the demolding temperature
ϑd is reached. This temperature is typically below the polymer’s glass transition temperature
ϑg, however, there is also interest in demolding at higher temperatures. (t2 → t3)

5. Finally, the tool is unloaded and removed from the polymer substrate. (t3 → tf )

In this chapter, we present our hot embossing experiments and simulations on PMMA. We have
conducted these experiments with tool features at two different length scales. The first tool has
millimeter sized features and we refer to this as our “macro-embossing” tool. The second tool has
micrometer sized features and we refer to it as our “micro-embossing” tool. We first present the
experimental results and comparisons to numerical simulations for the case of macro-embossing
followed by similar discussions for the case of micro-embossing.

6.2 Macro-embossing

6.2.1 Experiments

Procedures

The polymer substrate used in the macro-embossing experiments is the same grade of cast PMMA
used earlier in the compression experiments of Chapter 2. The as-received sheet stock has nominal
width and length dimensions of 12 in, and a nominal thicknesses of 3 mm. Disks were cut out
of the polymer sheet prior to annealing using a standard hole saw of nominal outside dimension
of 1.75 in, resulting in a polymer disk core of a smaller dimension. The polymer disks were then
annealed at 150 C and slow cooled to room temperature before testing. After the annealing step,
the dimensions were found to change.

The axisymmetric tool used is shown in Figure 6-2. It consists of two concentric ring features
having 2 mm width and 0.5 mm height. We chose an axisymmetric design so that we can more
easily simulate the setup in a finite element program. This tool is installed in the hot embossing
assembly that was designed by Vikas Srivastava and is pictured in Figure 6-3. As in the compression
setup discussed earlier, the assembly is inserted into the Instron grips and is heated by the same
cartridge heaters and controllers. To maintain good alignment between the embossing tool and the
polymer substrate, the tool is attached to a spherical seat at the upper end and a tight clearance
is maintained between the tool shaft and its heated collar. The polymer substrate fits snugly into
the heated collar and is sandwiched between a 3 mm thick glass plate and the embossing tool.
The substrate is thus highly constrained in order to promote die filling instead of lateral expansion
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Figure 6-2: Drawing of axisymmetric embossing tool. All dimension are in inches unless otherwise noted.
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Figure 6-3: Drawing of embossing assembly designed by Vikas Srivastava.
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Figure 6-4: Load train thermal contraction for three different initial temperatures of 130 C, 150 C, 170 C. While
the relation between load train contraction and temperature change is non-linear, it appears to be independent
of initial temperature.

when the tool is impressed into it. The glass plate is used to maintain the smooth surface finish of
the back of the polymer disk. Without its use, the poor surface finish of the steel platen would be
transferred to the the polymer disk during the embossing procedure.

We followed the basic process cycle outlined earlier. Three different embossing temperatures
(130 C, 150 C, 170 C) above the glass transition of PMMA were used in combination with three
different demolding temperatures (50 C, 70 C, 90 C) below the glass transition of PMMA. Also,
as a reference, one additional part was both embossed and demolded below the glass transition
at 100 C. For each test, the system was brought up to the embossing temperature and allowed to
equilibrate for 15 min. Next, the force was ramped up at a rate of 0.04 kN/sec to the embossing
force of 5 kN (120 kN for the 100 C embossing). Once at load, the cartridge heaters were turned
off and the oven fan was used to circulate room temperature air around the setup to speed cooling.
Once at the demolding temperature, the force was quickly removed and the part was taken out of
the setup.

Displacement during the embossing experiment was recorded from the Instron actuator dis-
placement signal which is located far from the embossing setup and therefore isolated from the
larger thermal fluctuations of the embossing process. However, the thermal contraction of the en-
tire load train during the embossing cycle would be included in this displacement measurement. To
compensate for this, three tests were conducted with a flat featureless tool pressing directly against
the glass backing plate with no polymer substrate in between. The load was ramped up to the
embossing force of 5 kN and displacement was measured during cooling for the three embossing
temperatures of 130 C, 150 C, and 170 C. The results are shown in Figure 6-4. We see that the load
train thermal contraction during cooling is not linearly related with temperature change, however,
it appears to be independent of initial temperature. This thermal contraction can be used to isolate
the creep and thermal contraction of the polymer in the Instron displacement signal.
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Results

There did not appear to be any remarkable differences among the embossed parts subject to the
nine different experimental conditions which are the result of the combination of the three different
embossing temperatures (130 C, 150 C, 170 C) with the three different demolding temperatures
(50 C, 70 C, 90 C). As such, only the results for the part embossed at 170 C and demolded at 50
C will be shown along with the reference part which was embossed and demolded at 100 C.

Figure 6-5 shows the height contour of a section across the diameter of the PMMA parts. The
data is captured using a Zygo optical profilometer. As a comparison, the height contours of the
steel tool are also shown. For further clarification, the height profile of a cross-section of the part
is shown in Figure 6-6 with respect to the tool profile. The tool profile has been inverted in both
figures for ease of comparison. We see that the part embossed at 170 C and allowed to cool to
50 C before unloading has replicated the tool feature heights very well. The part embossed and
demolded at 100 C, however, shows very poor replication of the tool feature height. We attribute
this to the difference in time spent under pressure. The 170 C part pressurized for about 15 mins
during cooling, which allows the material to creep into the recesses of the tool. The 100 C part,
however, was subjected to the molding force for only a few seconds before it was unloaded and
recovered elastically.

Because the Zygo cannot capture the fine details of mold filling near the feature walls, we also
took an SEM image of the 170 C part which is shown in Figure 6-7. It is clear from this image
that the channel features are not well-filled in the PMMA part even though the feature height is
well replicated.

Figure 6-8 shows the resulting birefringence patterns in the part embossed at 170 C and de-
molded at 50 C, and the part embossed and demolded both at 100 C. To produce the birefringence
patterns, the polymer disk was sandwiched between two circular polarizing filters, each with its
quarter-wave plate on the side facing the polymer disk. The sandwich was transmissively illumi-
nated with white light and the image was captured at 4600 dpi using an Epson V100 Photo scanner.
The birefringence patterns clearly show that there is a much higher residual stress state in the part
embossed at 100 C versus the one at 170 C.
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Figure 6-5: Height contours of section across the diameter of (a) macro-embossed axisymmetric PMMA part
embossed and demolded at 100 C, (b) macro-embossed axisymmetric PMMA part embossed at 170 C and
demolded at 50 C, (c) steel tool. The tool height has been inverted to show agreement with the embossed part.
Black color in the contours indicate areas of missing data which is indicative of an area of high curvature.
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Figure 6-6: Height profiles of cross-section of macro-embossed axisymmetric PMMA parts and the steel tool.
The cross-sections are taken from the right half of the data shown in Figure 6-5. Solid lines indicate measured
data, while the dotted lines indicate areas of missing data which is indicative of an area of high curvature.
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Figure 6-7: SEM image of macro-embossed PMMA part embossed at 170 C and demolded at 50 C. The image
is from the outer most ring feature which is the feature shown on the right of Figure 6-6. Notice the region of
high curvature at the top of the feature wall that corresponds to the missing data in Figures 6-5 and 6-6. Image
courtesy of Hayden Taylor.
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Figure 6-8: Birefringence patterns in PMMA disks (top) embossed and demolded at 100 C at a force of 120 kN,
and (bottom) embossed at 170 C at a force of 5 kN and demolded at 50 C. To produce the birefringence patterns,
the polymer disks were each sandwiched between two circular polarizing filters, each with its quarter-wave plate
on the side facing the polymer disk. The sandwich was transmissively illuminated with white light and the image
was captured at 4600 dpi using an Epson V100 Photo scanner. Images courtesy of Hayden Taylor.
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Rigid Platen

Rigid Tool

PMMA

Figure 6-9: Axisymmetric finite element geometry for isothermal embossing simulations. The PMMA substrate
is constrained between the fixed rigid platen shown in red and the movable rigid tool shown in blue.

6.2.2 Axisymmetric Simulations

The schematic of the finite element setup is shown in Figure 6-9. Because the tool and PMMA part
are circular, we assume that axisymmetric conditions are satisfied. We model the tool, the heated
collar, and the lower platen as rigid parts. We assume the interface between the PMMA and both
the heated collar and lower platen are frictionless, while the interface between the PMMA and the
tool approaches no-slip by using a friction coefficient of 0.5.

For the case of the part embossed and demolded at 100 C, we use isothermal conditions in the
simulation. A comparison of the experimental part profile versus the corresponding isothermal sim-
ulation is shown in Figure 6-10. The simulation shows that areas of high curvature near the feature
walls correspond to missing data from the optical profilometer measurements of the experimental
part. Unfortunately, the simulation shows a final feature depth of approximately 0.4 mm, while
the embossed part features are closer to 0.3 mm. This indicates that the simulation did not recover
enough after the load was removed.

For the case of the part embossed at 170 C and demolded at 50 C, we conducted a complete
thermo-mechanically coupled analysis. The temperature of the rigid parts is controlled during the
simulation, and a very high conductance is assigned at the interface between the PMMA part and
the rigid parts. A comparison of the experimental part profile versus the corresponding thermo-
mechanically coupled simulation is shown in Figure 6-11. As in the 100 C embossing, areas of
high curvature near the feature walls correspond to missing data from the optical profilometer
measurements of the experimental part. Additionally, the final feature height has not been well
predicted. In this case, the simulation predicts a final feature height of about 0.41 mm, but the
embossed part features are very near the tool feature height of 0.5 mm. We believe the mismatch
in feature height is because there is too much elastic recovery during the cooling phase of the
simulation. In order to remedy this discrepancy, more work needs to be done to investigate the
response of PMMA as it cools through the glass transition under load.

Contour plots of residual stress after cooling to room temperature for both embossed parts are
shown in Figures 6-12 and 6-13. While the residual stress in the part is approximately the same for
each case, the stresses are much more uniform in the 170 C part as compared with the 100 C part.
Further conclusions and comparisons with the experimental birefringence results are inconclusive.
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Figure 6-10: Comparison of the experimental part profile versus the corresponding isothermal simulation for the
part embossed and demolded at 100 C.
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Figure 6-12: Simulation residual stresses in PMMA disk embossed and demolded at 100 C.
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Figure 6-13: Simulation residual stresses in PMMA disk embossed at 170 C and demolded at 50 C.
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6.3 Micro-embossing

6.3.1 Experiments

Procedures

The polymer substrate used in the micro-embossing experiments is the same as that used for the
macro-embossing experiments except that it has a smaller nominal thicknesses of 1.5 mm. Square
test specimens of approximately 25 mm length and width were produced by scoring the polymer
sheet and snapping the sheet along the score mark. The polymer samples were not annealed prior
to testing.

A silicon tool courtesy of Hayden Taylor was used in the micro-embossing experiments [19]. To
manufacture the tool, a 100 mm diameter (100) silicon wafer was spin-coated with a 10 µm thick
layer of AZ4620 positive photoresist (Shipley, Newton, MA). The resist was photolithographically
patterned with an array of long, parallel rectangular openings that were 65 µm wide and on a pitch
of 120 µm. The photoresist served as a mask for the subsequent deep reactive ion etching of the
underlying silicon. The silicon was etched to a depth of approximately 30 µm, using a fluorine-based
inductively coupled plasma in a machine manufactured by Surface Technology Systems of Newport,
UK. After etching, the photoresist was stripped from the wafer by exposure to an oxygen plasma
for 2 hours. SEM images of the tool are shown in Figure 6-14 along with Zygo interferometer
measurements of the feature height contours and the cross-section profile.

The micro-embossing was conducted using a setup in Professor Dave Hardt’s laboratory with
the aid of Matthew Dirckx [20]. The machine is capable of rapid heating and cooling as compared
to the setup used in our macro-embossing experiments. It also has better force and displacement
control in our range of interest.

We followed the basic embossing process cycle as outlined earlier and chose to emboss at 130 C
and demold at 90 C. For each test, the polymer substrate was placed on the lower machine platen
and the silicon tool was then rested on the top surface of the polymer. The platens were then
brought close together without applying pressure to the polymer while the system was brought up
to the embossing temperature. After allowing the system to equilibrate for 5 min, a displacement
ramp of 0.02 mm/sec was applied until the embossing force was reached. Seven different embossing
forces were used: 0.3 kN, 0.5 kN, 0.7 kN, 1.0 kN, 1.5 kN, 2.0 kN, and 2.5 kN. Once the desired
load was reached, it was held while the system was cooled at a rate of about 0.5 degrees/sec to the
demolding temperature. To demold, the force was quickly removed and the part was taken out of
the setup and manually separated from the tool.
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Figure 6-14: Images of Hayden Taylor’s silicon tool used for micro-embossing experiments: (a and b) SEM
images courtesy of Hayden Taylor, (c) Zygo height contour, (d) Zygo height profile. In the contour plot, black
indicates area of missing data. In the height profile, solid lines indicate measured data, while the dotted lines
indicate areas of missing data.
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Results

Results of the micro-embossing of PMMA are shown in the following figures. Figure 6-15 shows
height contours of sections of the PMMA parts for four of the different loading conditions. The data
is captured using a Zygo optical profilometer. For further clarification, height profiles of sections
of the parts and the silicon tool are shown in Figure 6-16. The tool profile has been inverted for
ease of comparison. What we see is that as the load is increased from 0.3 kN to 2.5 kN, the tool
feature is gradually filled.

One item of note is that there appears to be about a 3 µm discrepancy in the PMMA feature
height and tool feature height, even at a large force of 2.5 kN. It is unclear what the source of this
discrepancy is. Its possible that the PMMA features shrank during cooling. Also, the tool features
may not have a uniform depth across the tool, such that the features that were measured were
deeper than the ones that were actually performing the embossing.

We also took SEM images of our parts in order to look at the details near the feature walls
that cannot be envisioned with the Zygo profilometer. The images are shown in Figure 6-17 for
the various loading conditions. To capture the images, the PMMA parts were scored and snapped
in half and then sputtered with gold. The images are taken along the snapped edge, which should
be near the center of the molded part. A red line has been sketched on the SEM images to clarify
the feature profile.

A major problem encountered during the micro-embossing experiments was tool failure. For
embossing loads greater than 1 kN, it was impossible to separate the silicon tool from the PMMA
part without breaking it. Figure 6-18 shows SEM images of the broken tool embedded in a PMMA
part that was embossed at 2 kN. It is clear that better tooling needs to be developed in order to
continue similar experimental endeavors.
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Figure 6-15: Zygo interferometer height contours of selected micro-embossed PMMA parts for different em-
bossing forces: (a) 0.3 kN, (b) 0.5 kN, (c) 1.0 kN, (d) 2.5 kN. Black indicates areas of missing data which is
indicative of an area of high curvature.



6.3 Micro-embossing 193

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

30

35

Part Width, mm

Fe
at

ur
e

H
ei
gh

t,
m

m

2.5 kN
1.0 kN
0.5 kN
0.3 kN
Silicon

Figure 6-16: Zygo interferometer height profiles of selected micro-embossed PMMA part features for different
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Figure 6-17: SEM images of micro-embossed PMMA parts for different embossing forces: (a) 0.3 kN, (b) 0.5
kN, (c) 0.7 kN, (d) 1.0 kN, (e) 1.5 kN, (f) 2.0 kN, (g) 2.5 kN. Images courtesy of Hayden Taylor.
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Figure 6-18: SEM images of failed silicon tool embedded in PMMA part for a micro-embossing load of 2.0 kN.
Images and tool courtesy of Hayden Taylor.
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6.3.2 Isothermal Plane-Strain Simulations

The schematic of the isothermal finite element setup is shown in Figure 6-19. We choose to model
only a half-symmetric slice of the actual problem and assume that plane-strain conditions are
satisfied. Further, because the tool features are on a pitch of 120 µm, we assume that approximately
200 features make contact with the PMMA substrate in the experiment, thus the embossing load
used in the experiments will be 400 times greater than the embossing load used in the simulated
half-symmetric slice.

Comparisons of SEM images from the experiments with the isothermal plane-strain micro-
embossing simulations at various embossing loads are shown in Figure 6-20. The simulation images
have been mirrored and repeated during post-processing to ease comparison with the experimental
results. For the five embossing loads pictured, the filling pattern observed in the experiments and
simulations are in excellent agreement.
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Figure 6-19: Finite element geometry for isothermal plane-strain micro-embossing simulation.
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Figure 6-20: Comparisons of SEM images from experiments with isothermal plane-strain micro-embossing sim-
ulations for various embossing loads: (a) 0.3 kN, (b) 0.5 kN, (c) 0.7 kN, (d) 1.0 kN, and (e) 2.5 kN.
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Chapter 7

Conclusions

Significant contributions to the fields of polymer-mechanics and numerical simulation of the micro-
hot-embossing process for amorphous polymers have been made during the course of this study.
Specifically:

1. A relatively complete experimental data set has been generated for PMMA covering a tem-
perature range spanning room temperature to ≈ 60 C above the glass transition temperature
ϑg ≈ 110 C of the material, in a strain-rate range of ≈ 10−4/s to 10−1/s, and under compres-
sive stress states in which this material does not exhibit crazing.

2. A new thermo-mechanically-coupled, large-deformation constitutive theory for amorphous
polymers has been formulated. The theory has been specialized for modeling the response of
amorphous polymers in a temperature range below the glass transition, and also continuously
through the glass transition temperature of these materials.

3. The material parameters/functions appearing in the theory have been determined from ex-
perimental data for PMMA, and a rigorous calibration procedure for determining the material
parameters has been documented.

4. The theory has been implemented in a finite element package Abaqus/Explicit [1] for the
simulation and design of hot processing of amorphous polymers in the solid state.

5. A preliminary set of embossing experiments to validate the numerical simulation capability
have been conducted at both the millimeter and micrometer length-scales. The flow patterns
predicted by the simulations are in very good agreement with the experimental results.

While much has been accomplished, much more still remains to be done. Some outstanding
issues include:

1. The material parameters/functions in the theory need to be calibrated for other amorphous
thermoplastic-polymers, especially those of interest to the microfluidic community, such as
the cyclic olefin copolymers (COC) and cyclic olefin polymers (COP). If the need arises, the
theory needs to be modified to account for the peculiarities of these materials.
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2. Fully thermo-mechanically coupled simulations that model the entire hot-embossing process
from heatup to demold need to be conducted and verified with experimental data for all
polymers of interest.

3. Silicon, because of its brittle nature, is not a good die material for micro-embossing of poly-
mers. Better tooling materials need to be investigated.

Work is currently underway in our research group to address all of these issues.
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Appendix A

Experimental Procedure Details

A.1 Introduction

This appendix covers the stress/strain experiment procedures which were conducted on poly(methyl
methacrylate) (PMMA) in more detail than what was described in Chapter 2.

A.2 Procedures

Because PMMA crazes in tension and is known to undergo deformation by shear-yielding in com-
pression, compression is the optimum mode of deformation to extract properties for our large-
deformation model which does not account for crazing.

The material used in these experiments was purchased from McMaster-Carr (a commercial
vendor) in the form of 0.5” diameter cast rods which were cut into 0.5” tall specimens. Specimens
were annealed before and after machining by heating in a furnace to slightly above the glass
transition temperature of 110 C and holding at that temperature for two hours. The specimens
were then allowed to slowly cool in the furnace to room temperature over a period of several hours.
Before a given experiment, the specimen was allowed to anneal at the testing temperature for one
hour prior to testing.

To reduce friction at the platen/specimen interface, the platens were polished and thin Teflon
(PTFE) films were placed between the specimen and the platens. Oils and greases are not used as
lubricants because they may attack or dissolve the PMMA specimens, or cause them to craze.

All experiments were conducted using a biaxial servo-hydraulic Instron testing machine having
a normal load capacity of 220 kN over an axial travel of 100 mm and a torque capacity of 2.2 kN-m
over a rotational travel of 95◦. All strains were measured using an extensometer with a 12.7 mm
gauge section and ± 5.08 mm travel.

Data acquisition was performed on a desktop PC. LabVIEW 6, a customizable data acquisition
software package, interfaces with the Instron through a National Instruments PCI card1 installed
in the PC. Raw data was sampled at 1 kHz, however, LabVIEW performed real time averaging

1National Instruments PCI Multifunction Data Acquisition Card, Model AT-MIO-16E-10. Analog In: 12bit, 100
kS/s, ranges: ±10V, ±5V, ±2.5V, ±1V, ±500mV, ±250mV, ±100mV, ±50mV; Analog Out: 12bit, 100kS/s, ±10V

203



204 A Experimental Procedure Details

before recording data, resulting in a smoothed output with an artificial sampling rate ranging from
5 Hz to 100 Hz depending on the speed of the test.

A.2.1 Strain Control

All compression tests were carried out using constant true strain-rates. Our Instron is not capable
of achieving true strain-rates to large final strains without the aid of software. So, to achieve
the true strain-rate control LabVIEW was setup to send a displacement command signal to the
Instron’s actuator that approximates a true strain-rate. LabVIEW updates the command signal
incrementally at a rate of about 1 kHz. The command signal increment for the n-th increment is
given by

∆Vcom =
[
l0 exp

(
εn−1

)
ε̇∆tn−1

com

] 1
Kmm/V

(A.1)

=
[
l0 exp

(
l0 + δn−1

ext

l0

)
ε̇∆tn−1

com

]
1

Kmm/V
(A.2)

where l0 is the original specimen height, ε is the current specimen true strain measured at the
start of the increment, ε̇ is the desired true strain-rate, ∆tn−1

com is the time increment of the previous
increment, Kmm/V is the Instron conversion factor for the command signal, and δn−1

ext is the current
total displacement measured by the extensometer at the beginning of the increment. The total
command signal at increment n− 1 is

V n−1
com =

[
l0 + δn−1

ext

] 1
Kmm/V

(A.3)

so that the total command signal at increment n is then

V n
com = ∆Vcom + V n−1

com (A.4)

=
{
δn−1
ext + l0

[
1 + exp

(
l0 + δn−1

ext

l0

)
ε̇∆tn−1

com

]}
1

Kmm/V
(A.5)

The Instron follows this LabVIEW command signal fairly well so that a closed loop strain control
setup is not necessary.

This discretization of the voltage command signal imposes an upper and lower bound on the
strain-rate that can be achieved with a given set of electronics. The factors that establish the lower
bound on the strain-rate are:

• the resolution of the DAQ analog output channel ∆Vmin,
• the command signal conversion factor Kmm/V ,
• the original specimen height l0, and
• the maximum strain of the test εmax.

and they are related through equation (A.1)

ε̇ =
∆VminKmm/V

l0 exp (εmax) ∆t
(A.6)
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To minimize ε̇, Kmm/V should be minimized according to

Kmm/V =
lf − l0
Vmax

= l0

[
exp(εmax)− 1

Vmax

]
(A.7)

where Vmax is the maximum voltage sent by the analog out channel to the Instron. This is con-
strained by the Instron and the analog out channel to fall in the range ± 10 V, so we assume Vmax

= 10 V. Then, by (A.6) and (A.7) ε̇ is

ε̇ = [1− exp(−εmax)]
∆Vmin

10 ∆t
(A.8)

And because the resolution of the 12-bit analog out channel of the data acquisition card is fixed at
∆Vmin = 10 V / 212 = 2.44 mV, and all of our tests were conducted to a maximum strain of εmax

= -1, the strain-rate can now be directly related to the discretization time-increment

ε̇ =
−4.2× 10−4

∆t
(A.9)

Therefore, in order to minimize ε̇, we must maximize the value of ∆tmax, however, the time incre-
ment must be minimized so that the material will not noticeably relax during the time increment.
For a given strain-rate, one can then calculate the time increment and determine if it is acceptable
for the material being tested. In our case, for PMMA, we have capped ∆tmax = 1.4 s which gives
us a lowerbound on the strain rate

ε̇ ≥ −3× 10−4 s (A.10)

If a lower strain rate is desired, it is recommended to use a data acquisition card with 16-bit analog
output, instead of 12-bit.

Following a similar procedure, we can determine the upper bound on the strain-rate. The
factors that establish the strain-rate upper bound are:

• the sampling rate of the DAQ analog output channel ∆tmin,
• the command signal conversion factor Kmm/V ,
• the original specimen height l0, and
• the maximum strain of the test εmax.

and returning to (A.1), these factors are related by

ε̇ =
∆V Kmm/V

l0 exp (εmax) ∆tmin
(A.11)

and using (A.7) gives

ε̇ = [1− exp(−εmax)]
∆V

Vmax ∆tmin
(A.12)

The sampling rate of the LabVIEW loop is set at ∆tmin = 1 / 1kHz = 1 ms, and assuming εmax =
-1, the strain-rate becomes

ε̇ = −1.7× 104

(
∆V
Vmax

)
(A.13)
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In order to maximize ε̇, we must maximize the ratio ∆V/Vmax, yet this ratio describes the dis-
cretization of the voltage signal and if it becomes too large, then the actuator velocity profile will
not be well discretized. In order to maintain a smooth profile we choose ∆V such that that are at
least 5000 increments

∆V = Vmax/5000 = 0.002Vmax (A.14)

which then gives us an upperbound on the strain rate

ε̇ ≤ −3.4× 10−1 s (A.15)

In order to obtain a higher strain-rate, the time increment can be reduced by increasing the scan
rate, but the data acquisition system may not be able to handle the increased scanning rate.
Additionally, the Instron may not necessarily be able to follow the command signal at higher rates.

In conclusion, for a 0.5” tall PMMA specimen being compressed to a final strain of -1, the
strain-rate must fall in the range

− 3× 10−4 ≤ ε̇ ≤ −3.4× 10−1 s (A.16)

and the Instron conversion factor should be

Kmm/V = −8.02 mm/10 V (A.17)

These numbers will change for different specimen heights and different final strains.

A.2.2 Load Cells

Two different load cells were used to measure forces during testing. For temperatures below the glass
transition, the 250 kN Instron load cell and accompanying electronics supplied suitable resolution.
For lower load tests, a 8.9 kN load cell was used. The smaller load cell was purchased from the
Sensotec Sensors division of Honeywell2,3. The load cell is temperature compensated in the range
21 C to 121 C. It provides an output of 2.993 mV/V, which for an excitation of 10 V4 provides
an output of 29.93 mV at full scale. Using the 12-bit National Instruments data acquisition card
mentioned earlier along with software data averaging at a 100 mV input range, we are able to
achieve a load resolution of 1.8 N over the 8.9 kN range.

A.2.3 Specimen Heating

A robust and easy to control heating system was designed for the experimental setup. A custom
sized oven was manufactured by ATS5. It is shown pictured in Figure A-1 along with the heated
load train. There are two configurations of the load train available as shown in Figure A-2: one
with the Sensotec load cell in place and one without. The platens are manufactured from H13

2Sensotec Load Cell, Model AL111DL,1F. 8.9kN; Compression calibrated; Temperature compensated 21C - 121C;
Output 2.993mV/V; Excitation 10V

3Sensotec Load Cell Cable, Model AA113. PTO6A-10-6S mating connector with 15 ft of 4 conductor cable
4HP/Agilent DC Power Supply, Model E3610A. 30W; 8V/3A or 15V/2A
5ATS Box Oven, Model 3710 Custom. Max 425C; K-type Thermocouple; Internal: 18.5”W x 18.5”D x 10.5”H;

External: 23.75”W x 30.5”D x 15”H; 4” x 6” viewport; 2208W; 10.6A; 208VAC, single-phase, 60Hz; Cooling option
installed
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Extensometer Specimen
Cartridge Heaters

Steel Platen Thermocouple Instron GripOven

(a) (b)

Figure A-1: Images of the experimental setup used for the heated compression experiments on PMMA. (a)
Close up of setup showing the cylindrical PMMA specimen between the two heated platens. The extensometer is
mounted on the left side. Cartridge heaters and thermocouples for temperature control are shown on the right.
(b) Larger view of setup showing enclosing temperature-controlled oven and Instron grips.

tool steel6, which provides decent heat conduction, but it is also very durable. There is a spherical
seat integrated into the top platen to help minimize misalignment. The spherical seat is suspended
from the steel connecting rod with metal springs. Additionally, the platens have an extensometer
mount. Engineering drawings for the parts are shown in Figures A-3, A-4, A-5, A-6, A-7, A-8, A-9,
A-10, and A-11.

6Carpenter Powder Products H13 Tool Stell, Model 2101308-0000. 2” dia x 24” long stock
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(a) (b)

Top Steel Connector 1 Top Steel Connector 2

Bottom Steel Connector

Top Steel Platen

Extensometer Mounts

Bottom Steel Platen

Threaded Rod

Load Cell

Adapter 1

Figure A-2: Drawing of the complete second generation load train using the heated steel platens. Two versions
are shown: (a) includes the Sensotec load cell in the load train; (b) without the Sensotec load cell.
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Figure A-3: Drawing of the second generation top steel heated platen. Dimensions in inches unless otherwise
noted.
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Figure A-4: Drawing of the second generation top platen connector used with the Sensotec load cell and threaded
rod. Dimensions in inches unless otherwise noted.
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Figure A-5: Drawing of the second generation top platen connector used to connect the load train to the Instron
grip when the Sensotec load cell is not used. Dimensions in inches unless otherwise noted.
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Figure A-6: Drawing of the second generation bottom steel heated platen. Uses pins to connect to bottom
connector. Dimensions in inches unless otherwise noted.
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Figure A-7: Drawing of the second generation bottom platen connector used to connect the load train to the
Instron grip. Dimensions in inches unless otherwise noted.
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Figure A-8: Drawing of the extensometer mount. Dimensions in inches unless otherwise noted.
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Figure A-9: Drawing of the extensometer standoff. Dimensions in inches unless otherwise noted.
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Figure A-10: Drawing of the aluminum adapter used to connect the Sensotec load cell to the Instron grip.
Dimension in inches unless otherwise noted.
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Figure A-11: Drawing of the threaded steel connecting rod used in the heated platen load train. Dimension in
inches unless otherwise noted.
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Thermocouple 1

Thermocouple 2

Thermocouple 3

Thermocouple 4

Specimen

Figure A-12: Schematic drawing of the dummy cylindrical specimen with four thermocouples inserted into it to
measure temperature along the specimen axis.

A.2.4 Temperature Measurement and Compensation

To verify that the PMMA compression specimens were being heated uniformly by the chamber and
platens, a dummy specimen was made and four thermocouples were inserted into it as shown in
Figure A-12 to measure temperature along the specimen axis.

The thermocouples were monitored using a second National Instruments data acquisition card7

along with a LabVIEW program. The thermocouples are attached to thermocouple extension
cables8,9 connected to a National Instruments SCB-68 terminal block10. The terminal block was
setup to use a differential measurement for each thermocouple. A resistor was used to create a
bias current return path between each of the thermocouple’s negative input and the terminal block
ground. The SCB-68 has a cold junction channel which the software drivers use to convert the
thermocouple measurement into a temperature reading.

It was found that the thermocouples used in the oven controller, platen controllers, and the
SCB-68 did not all report the same value for a given ambient temperature. To correct for this, the
dummy specimen was placed in contact between the platens, and the temperature of the oven and
both platens was then adjusted until the four thermocouples in the dummy specimen varied by less
than 0.5 C. The platen and oven controllers often reported temperatures up to 3 C different from
the dummy specimen thermocouples. The test temperature reported in the experimental results is
the temperature of the dummy specimen, not the setting of the oven or the platens. This procedure
was performed at each temperature setting.

The extensometer used for strain measurement was positioned inside the chamber near the
platens for each test. To correct strain measurements at elevated temperatures, the extensometer
was placed at its zero position and allowed to heat up for approximately 20 minutes inside the
heated chamber. The auto calibration procedure was then executed from the Instron controller.
This procedure was performed at each new temperature setting.

7National Instruments PCI Multifunction Data Acquisition Card, Model PCI-6035E. Analog In: 16bit, 200 kS/s,
ranges: ±10V, ±5V, ±500mV, ±50mV; Analog Out: 12bit, 1kHz, ±10V

8Omega J-Type Extension Wire, Model EXTT-J-24-25. Max 200C; 24 Awg; Neoflon PFA insulation
9Omega J-Type Female Connector, Model OST-J-F. Thermocouple connector

10National Instruments Shielded I/O Connector Block, Model SCB-68. 68-pin; IC sensor for CJ compensation;
±1.0C accuracy; Input: 7 thermocouples + CJ channel
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