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Abstract

The problem of understanding and modeling the complicatsaips underlying the action and
response of the interfaces in typical structures undermymbpading conditions has occupied re-
searchers for many decades. This handbook presents araietgpproach to the goal of dynamic
modeling of typical jointed structures, beginning with atheanatical assessment of experimental
or simulation data, development of constitutive modelstmant for load histories to deformation,
establishment of kinematic models coupling to the contmumiodels, and application of finite el-
ement analysis leading to dynamic structural simulationaddition, formulations are discussed
to mitigate the very short simulation time steps that app@ae required in numerical simulation
for problems such as this.

This handbook satisfies the commitment to DOE 8etdia will develop the technical content
and write a Joints Handbook. The content will include: (1)tMes for characterizing the nonlin-
ear stiffness and energy dissipation for typical jointsdusemechanical systems and components.
(2) The methodology will include practical guidance on ekpents, and reduced order models
that can be used to characterize joint behavior. (3) Exasfibe typical bolted and screw joints
will be provided.
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Preface

The material presented in this monograph represents thedf many Sandians and our partners
in their institutions over approximately a decade. Manygehave cycled in and out of this effort
over the years. The technical team has included experitgatacomputational modelers, and
theoreticians. These have been Sandians, universityrobsga with whom we have had contrac-
tual relations, and many other friends in the research camitsnwho have contributed informally.
Among the academics who have worked directly with Sandidreffort are Professor Lawrence
Bergman at the University of lllinois, Professor Dane Quuithe University of Akron, and Pro-
fessor Edward Berger of the University of Virginia. Addit@lly, there have been a series of very
capable and supportive managers who managed to keep ugdoand funded.

Beyond Sandia and its academic partners, there has besdficsignwork done in the last
decade in a number of other institutions and research contieg&inTwo communities deserving
special mention are David Ewins, FRS, his colleagues, amtksts at Imperial College London,
and Lothar Gaul, and his colleagues and academic progeimg dfrtiversity of Stuttgart. Each
of these centers has collaborative relations with prontiresearchers in other institutions around
Europe. There are a number of scattered researchers aroendS who have contributed to
important recent publications on this topic, and interegshe US is gradually growing.

It is not the purpose of this monograph to provide an encyadappresentation of the literature
on joints. Instead, the content is chosen to provide theeretee minimum guidance necessary
to measure joint properties and to incorporate those ptiegento structural dynamics models.
Additionally, some guidance is provided with respect touke of evolving computational tools to
estimate joint properties on atp initio basis.

There is no intention to suggest that any of this technoledylly mature. In fact, it is only re-
cently that models have been developed that can reprode@edperties of joints from which they
are derived and calibrated. A similar statement can be miagkgt oint measurement technology.
Micro-modeling of joint mechanics is even more primitivenelsignificance of this monograph is
that these technologies are now sufficiently mature thaetiggneering community can begin to
use them in some engineering applications.

A serious effort has been made to make all elements appebmegVated, but this misrep-
resents how the work was actually done. The institutionaivaton of pursuing this issue was
clear at the beginning of this effort, but the proper formssvmich to pose technical questions
evolved over time. As in any other research effort, it way dayl digging in and exploring that the
key features of these problems and the appropriate resdaegtions began to become clear. A
discussion of appropriate future research directionsasqa near the end of this work.

Finally, the authors take the opportunity to note that thespnce of mixed units in this hand-
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book is a reflection of the end of the cold war. Old specificaiavere written in inch-pound-
second units, and much of our laboratory instrumentatiomaies calibrated in those units. Oc-
casionally, measurements have been taken in newer redaborhtories that are calibrated in the
meter-Newton-second system and experimental resultepogted in those units. We hope that
the reader will bear with us.
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Summary

Underground testing of nuclear weapons was discontinudldebynited States in 1992. Even con-
ventional testing is highly limited because of expensejrenmental considerations, and logistic
difficulty. These circumstances have motivated variousrigal and science-based campaigns
aimed at stockpile stewardship, wherein the balance betwemputational simulation and test
would be weighted increasingly on the side of simulationisThas occasioned investments both
in computational resources and in the science that undextiee processes.

One of the key barriers to predictive structural dynamicgiethanical systems is an inability
to incorporate the impact of mechanical joints on the stnadtresponse into structural dynamics
predictions. Mechanical joints are ubiquitous in suchtbud systems, including such diverse sorts
of interfaces as threaded connections, tape joints [1,r®], many configurations of bolted/lap
joints.

As illustrated by the growing literature on structural dymes of built-up systems, these issues
extend to many areas beyond nuclear weapons. Examplesaxfdhemic impact of an inability to
predict dynamics of such systems can be found in the cetidivaecertification of nuclear power
plants and the design costs of jet engine components.

The problem of understanding and modeling the complicategips underlying the action
and response of the interfaces in typical structures ungrerdic loading conditions has occupied
researchers for many decades. This handbook reports ornyadeeffort to address the problem,
presenting an integrated approach to the goal of dynamicefimadof typical jointed structures,
beginning with a mathematical assessment of experimentsinaulation data, development of
constitutive models to account for load histories to defation, establishment of kinematic models
coupling to the continuum models, and application of finiemeent analysis leading to dynamic
structural simulation. In addition, formulations are dissed to mitigate the very short simulation
time steps that appear to be required in numerical simuldétioproblems such as this.

This handbook satisfies the commitment to DOE Seatdia will develop the technical content
and write a Joints Handbook. The content will include: (1)tMes for characterizing the nonlin-
ear stiffness and energy dissipation for typical jointsdugseweapon systems and components. (2)
The methodology will include practical guidance on expenits, and reduced order models that
can be used to characterize joint behavior. (3) Examples$yjoical bolted and screw joints will be
provided.These criteria are met specifically as follows

1. Methods for characterizing the nonlinear stiffness andrgyelissipation for typical joints
used in mechanical systems and components.

The experimental characterization of lap type joints isspréed in Chapters 3 through 5.1.
Specific equations to express joint energy dissipation aimd §tiffness in terms of mea-
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sured properties are presented in Chapters 3, 5, and 11 .ukéeasnt of macroslip force is
explained and illustrated in Chapter 7.

Corresponding measurements are presented and discusaedamk AOS in Chapter 8.
. The methodology will include practical guidance on experts, and reduced order models
that can be used to characterize joint behavior.

Practical guidance to experiments is presented in expatahehapters, with special atten-
tion to shaker control in Chapter 6.

Thewhole-jointstrategy for capturing the key behavior of lap joints in lowl@&r models is
presented in Chapter 12. A specific low order joint model isifibin Chapter 12. Methods
for deducing parameters for that model are presented in AgiRE.

A strategy for representing a threaded connection withseoareshes where the region of
the threads is approximated by an anisotropic elastic mhispresented in Chapter [13.

Additional methods of structural level model reduction presented in Chapter [17.

. Examples for typical bolted and screw joints will be prowde
Example calculations are presented in Chapter 18.

The methods discussed above are illustrated in the caloulat structural response to blast
type axial loads for a mock System A, AOS. The load path paksesgh the manufacturing
joint and the nonlinearities of that joint are manifest ie firedicted response.

Linear structural response of a unclassified structureidich the threaded connection that
connects exterior aeroshell of System A mechanical syseaiculated using the equivalent
material method.
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AFM Atomic Force Microscopy, page 467

AOS Axially Oriented Subsystem, page 49

ASC Advanced Scientific Computing, page 41

BMD Big Mass Device, page 39

CMS Component Mode Synthesis, page 439

DNS Direct Numerical Simulation, page 37

EDM Electric Discharge Machining, page 71

EMF Electromagnetic Force, page 229

ESPI Electronic Speckle Pattern Interferometry, page 291
FMFE Fine Mesh Finite Element, page 473

GP Genetic Programming, page 61

HWT  Harmonic Wavelet Transform, page 293

IFT Inverse Fourier Transform, page 230

IR Inverse Impulse Response, page 230

LDV Laser Doppler Vibrometer, page 62

LOS Laterally Oriented Subsystem, page 158

LVDT Linear Voltage Displacement Transducer, page 240
MDBF Method of Discontinuous Basis Functions, page 441
MEMS Micro-Electro Mechanical Systems, page 290
MPC Multi-Point Constraint, page 296

RMS Root Mean Squared, page 410

SDOF  Single Degree of Freedom, page 39

SNL Sandia National Laboratories, page 27

SRS Shock Response Spectrum, page 227

uQ Uncertainty Quantification, page 33
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Chapter 1

Introduction

Daniel J. Segalman

1.1 The Purpose of this Monograph

The research presented here was driven by the programneaissity of relying more on com-

puter prediction and less on the massive testing prograrheopast. That predictive capability

requires far better understanding and models for joint eh#an existed at the inception of this

program. At the beginning of this effort there was a sens@mesparts of the scientific commu-

nity that computing alone could answer most of the outstanduestions. As investigation of the

important joint phenomena progressed, it became clearrmteaiid most important explorations
would have to be experimental and that experimental resaudtdd guide the modeling and simu-

lation efforts. Research presented here is the result ofyapreductive, synergistic collaboration

of experiment, modeling, and computing. Despite this pgegr the reader will see that there is
still much to be done.

A number of contributing factors have motivated the writofghis document. Among those
factors is the desire to preserve the products of a decads@dirch at Sandia National Laboratories
(SNL). Another is to provide some guidance to those who mogtley some sort of tool for
incorporation of joint physics in structural modeling witlour institution. Finally, and of probably
greater importance, is the desire to provide a reasonadofingf point to those people who might
be interested in beginning research in joints and jointactaires.

The authors realize that they are presenting only a smallgbavhat is known about exper-
imental, theoretical, and computational aspects of joiathanics and the modeling of built-up
structures. For instance, we discuss only minimally theartgmt work over the years of the team
lead by David Ewins at Imperial College London or that by tbam lead by Lothar Gaul of the
University of Stuttgart. Nor do we discuss work by many otbelleagues at the University of
Michigan, Carnegie-Mellon University, or Oxford. On thénet hand, by focusing on work that
was performed for a single integrated purpose and usinggdesintegrated strategy, we hope to
provide a more coherent - though limited - discussion of tpéct
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1.2 Qualities of Jointed Structures

There are many types of joints, but the mechanics of integfad built-up structures often most
closely resemble those of lap joints. (Figure|/1.1). Thes#igorations involve normal com-
pressive loads holding components together combined withmiic lateral (and/or normal) loads
inducing some amount of shear slip in the interface.

‘ b -

L pil

Figure 1.1. The Interface Mechanics of Built-up Structures Most
Closely Resembles That of a Simple Lap Joint.

Exploring the physics of joints directly is not readily ddmecause key interactions takes place
at the interface of surfaces, where instrumentation cammptaced without changing the problem.
Indirect studies are obscured by the elastic compliancep@dimens outside of the interface, of
the test apparatus, and of the fixturing attachments [3JmFa@ombination of experiments, com-
puter simulations, and reference to the few known analyéistie contact solutions, the following
qualitative joint behaviors have been identified:

As small extensional loads are applied to the specimengaioth all of the elastic response,
a further compliance arises from the development of smiglizelnes within the contact patch. At
higher loads, the extent of the slip region increases mancady with load until the initiation
of macroslip! When the direction of loading is reversed, the contact patstantaneously goes
entirely into the “stuck” mode. As the magnitude of that msedoad increases, the slip zone again
initiates and grows across the contact patch. The frictienargy dissipation that takes place in
the slip zone is responsible for the vibration dampinglaited to the joints.

The complexities of the slip process are responsible fonth@inear nature of the interfaces,
both in terms of stiffness and dissipation. The many atterapér the years to address and under-
stand the detailed physics of this process are outlinedviewearticles by Berger [4], Gaul and
Nitsche [5], and Ferri [6]. For the purposes of this intraiitue, it will be sufficient to summarize
the key phenomenological properties of such interfaces.

Because of the issues of extraneous compliance discussed,abuch experimental effort has
turned to dynamic resonance experiments. From such ex@etsnit is possible to deduce the
energy dissipation per cycle and the effective stiffnesthefjoint [7, 8]. Goodman [9] examined
several analytic solutions to elastic-frictional contambblems under oscillating shear loads and

1The nomenclature in the literature is inconsistent withpees to the terms “microslip”, “partial slip”, and
“macroslip”. Here, we use the term “partial slip” for casebese part of the interface is slipping and part is not;
we use the term “macroslip” when all of the interface slipg] &ve employ “microslip” when the slipping region is a
small fraction of the interface.)
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noted that they all manifested a power-law dependence sipdison on the amplitude of the shear
force. In each of Goodman’s cases, the power-law slope wa®aipnately 3.0. Postulating that
this was common to contacting bodies in shear, he examireddithdlin-Cattaneo [10, 11] solution
for spheres in contact and showed that the dependence wdrfiat energy dissipation on lateral
load was cubic in the limit of small load amplitudes.

Ungar [12, 13] performed a number of historic resonant eérpants in the early 1960s demon-
strating how examination of the dependence of dissipatesrcpcle on load amplitude can facili-
tate identification of the source of energy dissipation. afrghhowed that situations causing riveted
plates to dissipate energy as the square of the applied lesgldue to air pumping. Other geome-
tries (ones that looked more like lap joints) also yielded@olaw type dependence of dissipation
on applied force, but at power-law slopes greater than 2.0.

Out of the work of Ungar grew the practice of employing log-fdots of energy dissipation vs
load amplitude as a useful characterization of joint desye properties. Generally, experimental
data tends to support a power-law characterization urggds$capproach those necessary to initiate
macroslip. Linearity would require a power-law slope of etka2.0> and Goodman’s analysis
generates a slope of 3.0, but experiments on real jointsttegitld values between 2.2 and 2.8.
Heinstein and Segalman [14] suggests that the power-lgve soless than three in lap joints be-
cause the general non-symmetric nature of joint deformatioing loading violates the Goodman
hypothesis, namely, that the contact patch does not evoilvweality, bending in the joint causes
the contact patch to shrink during the tension portion oheacle, releasing shear stress in the
slip zones at the edges of the contact patch. Converselypgitive compression portion of each
cycle, bending induces growth of the contact patch andie@lpinning at lap boundaries.

The key qualitative properties of joints discussed abogeanationally presented in Figures 1.2,
1.3, and 1.4. In Figure 1.2 the dissipation attributed tooi& increases as a power-law having a
log-log slope substantially greater than 2, while lineategns necessarily have dissipation slopes
of exactly 2.0. The apparent “softening” properties of {eiare illustrated in Figure 1.3 for a
notional force-displacement curve under monotonic logdi(See also Figure 7.2 on page 242
for actual experimental data.) At very low loads, the tang#iffness is roughly that of a welded
interface and the responappeardinear. Even at this point there is some microslip and detsm.

As the load is increased, the force-displacement curvenbegibend down as increasing portions
of the interface move from a “stuck” to a “slip” state. Finalthe full interface is in slip, and
the macroslip state is manifest as zero-slope on the fasatdement curve. One of the other
outstanding features of mechanical joints is illustratedFigure 1.4, where the discrete Fourier
spectra (absolute value) of acceleration of two, nominditical, structures are shown. The fact
that a structural response has so much part-to-part vatyadentifies joints as a major source of
uncertainty in design or certification of mechanical system

2The most general linear model is that of linear viscoeligtand dissipation for such models can be shown to be
exactly quadratic in amplitude.
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Energy Dissipation vs Force

20 T T

151 7
fonn)
)
o .
3wl Nonlinear: 2.0<slope<3.0 |
— ,”
[(}] -
Q— ’¢’
C -
2 sr ’,*' J
m f’
2 -7
2] -7
@2 e il
% e Linear: slope=2.0
o e
- PR

-5+ ’1’ B

f”
T4 s =2 a4 o 1z 3 4 s
Log(Force)

Figure 1.2. Dissipation From Base Excitation or Free Vibration.

For a lap-type joint subjected to oscillatory longitudidahds, the dis-
sipation per cycle is observed to conform to a power-lawtreteship

with force amplitude over large ranges of load. For lineasms, the
dissipation is quadratic in force amplitude so a power-ldopg other
than 2.0 is an indication of nonlinearity.
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Force vs Displacement in Monotonic Pull
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Figure 1.3. Monotonic Pull of a Lap Joint.

For a lap-type joint subjected to monotonic loading, thetfirsrtion of
the force displacement curve appears linear. At larger b#uk joint
appears to “soften”, and at sufficiently high loads macrpshitiates.
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Figure 1.4. Shock Response Spectra of Nominally Identical
Structures.

The shock response spectra of identical shell structurek eannected
to a base by nominally identical joints. The vast differemcepectra
illustrates the variability in properties among even noaliy identical

joints.
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1.3 Current Emphasis on Joint Properties and Incorporation
into Structural Dynamics

Historically the analysis community has acknowledged tile of joints in structural dynamics
ambivalently. Structural nonlinearities are ascribecht piresence of joints, but nonetheless, an-
alysts persist in using linear models. Within linear modaftsalysts acknowledge the nonlinearity
by calibrating those models against experiments perforatddad amplitudes in the ranges for
which predictions are soughfitlt is argued that a lack of proper tools to model joint nordiriges

or the solution to the resulting nonlinear systems of eguatiforces the use of calibrated linear
models. However, linear structural dynamics analyses kaveral, exploitable, advantages:

e Frequency response functions can be used to predict thensspf a system tarbitrary
excitation.

e Modal truncation can be employed for model reduction.

e Comparison to experiments can be made in terms of modes soxaiece frequencies.

It is reasonable to believe that the true reason for the tahge to move away from linear
models is an expectation that the answers obtained frone boute, numerical solution of the
relevant nonlinear equations would not be as easy to irgegpras rich in intuitive meaning as the
current linear tools.

Numerous efforts to extend tools of linear structural dyieanto acknowledge the role of
joints have been made in the past. One of the more interegstititese efforts has been that of
employingdescribing functionf20] for joints and inserting these into the frequency danfarm
of the equations of motion [21, 22, 23]. In this context, disag functions are the coefficients
of Fourier series expansions of the force response of atpimtescribed harmonic displacements,
normalized so as to appear as nonlinear stiffness or dangoiefficients. These coefficients all
carry the amplitude of the driving displacement as a parameétvhen the resulting frequency
domain system model is evaluated at different load ammgudome sense of the effect of joint
nonlinearities can be obtained. The above definitions dtgaakd on harmonic (monochromatic)
excitation and harmonic response and should be interpiretbe sense of harmonic balance [24].
Additional work has been done along these lines to deduee fjocations and their describing
functions from experimental data [25, 26, 27].

There is a major development driving analysis away from dumedal analysis and toward
direct, transient, finite element analysis. That new faistdne growing prominence of massively
parallel computers and structural dynamics computer ctasscan exploit that hardware. The
analyst is now asked to perforpmedictivesimulation on the basis of finely gridded finite element
meshes and deterministic models for joints, interfaced, undary conditions. Extreme care
must be exercised at this stage especially with the inargdsicus on uncertainty quantification

3A tremendous amount of work has been done to deduce equiViakear joint properties from measured vibratory
response. Several references that indicate the generalaghes are [15], [16], [17], [18],& [19].
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(UQ) and probabilistic modeling. The most efficient meangxgloiting these new resources is
yet to be determined.

There are several outstanding topics where the economigs@hibition) of testing comple-
mented by the development of enhanced computing machiaeeylbad major research initiatives
in understanding mechanical joints and integrating themstructural dynamics. These topics are
described below.

1.3.1 Jet Engines

A very good overview on the role of joints in jet engine dynaswnd how the jet engine commu-
nity addresses these issues can be found in a discussionibg 28]. Some of his observations
are repeated here.

There are hundreds of mechanical joints in a jet engine. Syese, primarily casing joints,
must be characterized just to have reasonable resolutinatanal frequencies and vibration damp-
ing. Other joints, particularly high stress joints on rotgtcomponents, manifest strongly nonlin-
ear properties which are critical to the survival and lifegiof the engine.

Currently, the contributions of casing joints to structuesponse are accommodated by:

1. Employing conventional methods of approximating stiteresponse by linear models and
modal damping.

2. Employing nonlinear spring/damper/slider mechanisntisegjoints.

Deducing parameters for these linear or nonlinear strattaodels is an advanced art supported
by a large literature.

The issues of joints in rotating components are substantiabre difficult and substantially
more crucial. For instance, traditional compressors &brdia notched hub into which blades
are individually placed. Frictional rubbing between thadd roots and the hub is expected to
provide sufficient damping to prevent large vibration andsaguent metal fatigue. More modern
compressors employ bladed disks (blisks) machined fromglespiece of metal to achieve much
better balance than has been possible with traditionagdssiThis new technology, even with
greatly improved balance, requires the introduction dftibhal damping elements to suppress
vibration and prevent metal fatigue. The design of a dampiaghanism is so critical and testiimg
situis so expensive that a quantitative understanding that e@e geliable design adds substantial
value to the enterprise.
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1.3.2 Nuclear Weapons

Underground testing of nuclear weapons was discontinudldeoynited States in 1992. Even con-
ventional testing is highly limited because of expensejrenmental considerations, and logistic
difficulty. These circumstances have motivated variousriaal and science-based campaigns
aimed at stockpile stewardship, wherein the balance betwemputational simulation and test
would be weighted increasingly on the side of simulationisThas occasioned investments both
in computational resources and in the science that undexties processes.

The key barriers to a science-based stewardship with regpsituctural dynamics of weapons
systems are uncertainty in load and boundary conditiorsttecomplexity of structural response.
The issues with respect to structural response have to dioswith things as variability in the as-
built structure (such as whether one batch of foam has beewllzssive as the previous, where
in the structure the foam actually adheres and where it dogsa well as in-place foam density
and mean void size) and with intrinsic ignorance in modetimg material physics that underlie
structural mechanics. All the above issues must be addtées¢he mission of stockpile stew-
ardship and one of those that has particularly motivatedaret efforts in the nuclear weapons
laboratories is that of mechanical joints. These includigliverse sorts of interfaces as threaded
connections, tape joints[1, 2], and many flavors of bol&ajbints.

The properties of the joints enter into structural dynansedsulations through the flexibilities
that they introduce at their locations and through the ma@ir damping that is produced. All of
these properties - which generally are not known in the alesen structure-level experiments -
will have to be accommodated into structural dynamics datmns in order to meet the demands
of science-based stockpile stewardship.

1.3.3 Other Areas of Importance

The development of the technologies for understandingg@ind incorporating that understanding
into structural dynamics calculations typically residegigh-stakes industries. Though individual
joints are not generally a subject of scrutiny in aircrafbdsnics, they are accounted for through
ground vibration tests. As the technology of simulation oitistructure interactions matures, the
same focus is expected on the nonlinear structural respoaseoelasticity that currently exists in
the jet engine and nuclear weapons world.

1.4 The Numerical Challenge

Given the current explosion of capability in raw computirgyver, it is natural to ask why a con-
certed research effort in measuring, understanding, nmagehnd predicting joint properties is
necessary. Given that there is a need for making predictlmisaccount for nonlinear structural
response, why not just model structures with very fine meslespecially fine near interfaces -

34



and solve the resulting numerical problem to obtain stmathesponse? The answer comes in two
flavors. The first has to do with the intrinsic multi-scaleuratof mechanical interfaces, and the
second has to do with the current state of understandingeface physics.

1.4.1 Multiple Scales and Time-Step Limitations

The outstanding computational problem derives from thetipiallength and time scales of engi-
neering problems. For instance, the structures of intéoess may have characteristic length of
meters - such is the case in nuclear weapons and in jet engiegenerally want to calculate
through the duration of significant events or even out todstestiate. For the sake of discussion,
assume predictions must be made over a response period ordref seconds. The components
of these systems have dimensions on the order of centiméiteese components play a signifi-
cant role in the internal dynamics of structures and oftareheir own vibration modes within
the frequency range of interest. Were it not for the compileiof the joints, the characteristic
finite element size would be just sufficiently small to capttire kinematics of the deformations of
the components. That length scale would be on the order didres of a centimeter. Some sense
of the dimensions of components may be deduced by examinaitieigure 1.5.

Figure 1.5. Complex Built-Up Engineering Structures

The characteristic lengths of the structures of interest expressed in
meters. The characteristic lengths of components are measu cen-
timeters.

However, there are two, smaller length scales that musttesmnsidered. For bolted joints,
the contact patch of the interface will generally have disi@m on the order of a fraction of a
centimeter. At accelerations substantially lower tharséhmecessary to cause macroslip, the fric-
tional slip will occur only in the outer portions of the cont@atch. (See Figure 1.6). During each
cycle, the width of the slip annulus will grow from zero todtens of a millimeter and then shrink
back to zero. The physics in each of these length scales apteth An effort to perform direct
numerical simulation (DNS) of the full system requires saofall elements to capture the contact
mechanics correctly that the calculations become intbdeta
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Regions of Frictional Sliding
Figure 1.6. Contact Regions in a Lap Joint.

The characteristic lengths of the contact patch, R, will betlee order
of a centimeter, but the width, t, of the slip annulus may basued in
nanometers, depending on load.

This situation is illustrated by the problem of the lap joimtFigure/ 1.7. The laps are each
chosen to be one centimeter thick, the normal tractions iatelaited so that the contact patch is
two centimeters in diameter, and the magnitude of the nofareké N is set at 4 kN (about the
working load in a quarter inch bolt).

Figure 1.7. Representative Lap Joint Geometry lllustrating Solu-
tion Difficulties.

The range of longitudinal load of interest is assumed to baewrder oL € (0.05uN, 0.8uN)
whereu is the coefficient of friction. This places the load range tmmably in “normal environ-
ments” - stretching from enough to cause just a little shgpat the edges of the contact patch to
just short of enough to cause macroslip. We also assumehthatynhamic range of interest lies in
f € (100HZz 350(Hz) - also representative of structures of interest. For the sélestimation, we
further assume that the contact patch is invariant overltiaak cycle(Goodman assumption), and
that the stick slip boundary abides by the Mindlin solutionthe two-sphere problem, so that

L 113 B
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Resolution on the dissipation process requires approeimétn elements through the thick-
ness of the slip annulus. In the case of lower loads this nisahglements must be on the order of
20um. For structural materials, a representative speed of ssontt be 6000 meters/second, and
the Courant time would be less than 4 ns. To model just one ©fdtructural response at 100 Hz,
would require 2,500,000 explicit time steps. Simulatiorableast ten cycles would be necessary
for any kind of frequency resolution and the problem is vemckly seen to be intractable. If a
guasistatic contact analysis of the same fine mesh for tegface was slaved to a dynamic model
of the full structure, the problem would again be intractabécause of the number of iterations
necessary to follow the nonlinear contact process.

1.4.2 Limitations of Current Interface Models

Beyond the intractable nature of DNS of the contact domajpeatsof the dynamic problem, there
are other reservations with a direct finite element treatroéthe interface. Those reservations
have much to do with the idealizations of Coulomb frictionreal surfaces. Refining the mesh in
the contact patch pushes the credible use of the Coulontlfriassumption.

There are actually a plethora of credible interface modélsere is a very good review article
by Berger [4].) These models range from plasticity modelsewristically motivated models with
asperity interaction in mind. Most involve several parangtwhich may explain the continued
popularity of Coulomb friction as a function of its simple de form and that it employs only one
parameter.

There is no reason to expect that any particular interfacdemoparticularly the simplest
such model - would provide quantitatively correct numdnpradictions for joint behavior. Indeed
various studies, including work reported in one of thesgtdra within, have demonstrated some
of those limitations.

Coulomb friction does not yield numerical results that arargitatively consistent with exper-
imental data, and is unsuitable as a prime source of knowleflgpint mechanics. Additionally,
because of the computational time issues discussed albasémipractical for structural dynam-
ics calculations. Still, as will be shown in later chaptefdhos document, this simple friction
model can be used with fine resolution finite element codedwige some insight into interface
mechanics.

1.5 Integrated Strategy for Defining, Measuring, and Modelng
Lap-Type Joint Properties

This handbook presents an approach to dynamic modelingraépbstructures, going from mea-
sured (or estimated) properties of individual joints taustural level, computational simulation.
Specifically, this approach was taken at Sandia Nationabtatbries in order to satisfy a set of
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programmatic requirements. Given the time, material, amehfiial constraints, the approach was
one avenue that could achieve the promised deliverablakidiprocess, we introduced a number
of conceptual ingredients:

e The use of corresponding monolithic specimens to assesgetiudts of experiments on
jointed specimens. This simple notion is crucial in the dedin of joint properties.

e Mathematical constructs to interpret experimental (orusation) data on individual joints

e Constitutive models to integrate that data into a mappiomfdeformation histories to load
(or load histories to deformation)

¢ Kinematic models to couple low dimensional models of jotntsontinuum models for solid
mechanics.

e Tools within finite element analysis to perform structueaddl dynamic simulation

The above constructs, along with finite element investigetiinto joints themselves, are el-
ements of an integrated conceptual model for dynamics otstres built up through frictional,
lap-type joints, and they are milestones along the crifpedh of simulating and predicting such
structures.

This handbook is organized in a manner reflecting that afipath to basic modeling of built
up structures. Additionally, there are several sectiom@apeng to additional aspects of modeling
of real structures. These include a notional, distributiedigation approach for accommodating
structures with many frictional joints, a very basic apmtoto modeling threaded connections, and
a section on future research opportunities. In summarieomgponents of the integrated strategy
discussed above, high level overviews of elements that ismissed in much greater detail in
following chapters are described here.

1.5.1 Experimental Program

The fundamental difficulties of measuring joint propertikxectly are suggested above, and are
discussed in much greater detail in the sections on expetahmethods. They may be summa-
rized by the facts that point measurements in the interfdoeimg exercise of the joint are not
practical, and that measurements on experimental spesigwetaining joints can yield at most
indirect information about joint properties. The problesreven more difficult because the contri-
bution of joints to the force-displacement measuremenjeinfed specimens is extremely small
at loads less than those necessary to cause macroslip.

Accommodating these limitations required a means to majpecidmeasurements into prop-
erties ascribable to the joints in question. This was donpdrforming experiments where there
was a re-enforcement of data associated with the joints. ditbic, unjointed, reference speci-
mens were compared directly to the jointed configuratior;dtferences are attributable to the
properties of the interface.
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The quintessential experiment is that of the “Big Mass DeviMD) explained in the ex-
perimental section. A specimen is placed between a larggioeamass and a high force shaker.
Attachment between the specimen and the rest of the expaiahs®et up is made using types of
connections that add their own compliances, but dissipattg little energy and are highly repro-
ducible.

The shaker is driven at the resonant frequency of the systsevaral different levels of exci-
tation. Simple single degree of freedom (SDOF) analysistiiies the net energy dissipation per
cycle of the mechanical system, as well as the net compliafite specimen and its attachments.
The experiment is repeated with the joint-free specimensamdar analysis is performed. Each
experiment is performed over many cycles, both bringingsgrstem to steady state and magnify-
ing the signal to noise ratio. Analysis of this data provities properties that can be ascribed to
the joint: joint energy dissipation per cycle and effecimiat stiffness averaged over a cycle, each
as a function of load amplitude.

Another class of experiment performed on jointed specinesiasistatic tension and com-
pression. For reasons discussed earlier, meaningful-thspgacement relationships for the joint
are not expected from these experiments. By noting the faraehich the force-displacement
curves of the specimen become noticeable nonlinear, tlve foecessary to initiate macroslip is
directly observed.

The scalar parameters deduced from these experiments grabakperimental characteriza-
tion of the joint. They are only a coarse representation efidint; relating time-averaged, scalar
inputs (amplitude of applied harmonic forces) to time-aged scalar outputs (energy dissipation
per ‘cycle and effective stiffness). Further, these aresueanents taken from experiments in
which all the loads were imposed in the same axis.

The experimental chapters (approximately 1/2 of this han@&pwill discuss these and more
general classes of experiments. Obtaining meaningfulidatent related problems is notoriously
difficult and much of the experimental sections focuses chrigues that have been developed
over a decade. Employing the above described scalar datdimomonic experiments for dynamic
predictions of a full structure requires several more dgwelents.

1.5.2 Discrete Joint Models

The joint characterization that has been discussed so d&rdas just a few quantities associated
with harmonic loading and the quasistatic force which atés macroslip. How can the response
of the joint be expressed when exposed to general load orrdefmn histories? Accommodat-
ing these features requires a constitutive equation thasraebitrary inputs (histories, forces or
displacements) into the energetically conjugate quast{ilisplacements or forces).

There are at least a countably infinite number of constieuthodel forms that could repro-
duce the available experimental data to within the inheveertainty. However, there are a few
measures of merit which bias a choice of one constitutivagop over another:
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1. How well is it able to reproduce simultaneously the mogpontant qualitative nonlinear
properties of joints?

2. Is the numerical evaluation of the constitutive equaséfficient and stable?

3. How many parameters must be deduced from experiments2rhigwetter; it is highly
desirable that those parameters should be deduced fromlanemmder of experiments so
that there remains other data with which to compare modeligiiens.

4. Is there a well-conditioned process for deducing the rhpaemeters from limited experi-
mental data? This last feature requires that a unique péeaset be deduced from a set of
data.

Only one class of constitutive model (the Bauschinger[P8ndtl [30], Ishlinskii [31], lwan
[32, 33] model) is explored to any depth in this this handboidkis constitutive model, discussed
primarily in Chapter 12, satisfies all the above conditicesonably well and additionally lends
itself to mathematical analysis. Certainly other researshwill find other models just as good
as the one presented in this handbook, but the value of thoselsmcan be demonstrated only
after thorough testing against experiment. The editorjriggexperience in constitutive modeling
of several flavors, asserts that the community does not neee constitutive equations; it needs
betterconstitutive equations.

1.5.3 Kinematic Simplifications

After performing a sufficient number of experiments to clotgeze the joints of interest, selecting
a constitutive form, and deducing parameters that repmthe data, the constitutive model must
still be integrated into a structural dynamics model.

The challenge is the connection of a one-dimensional eguatith the finite element kinemat-
ics - an essentially three-dimensional world. This is thees@aroblem that is encountered regularly
in connecting spring elements to plates, shells, and solidalogously, this problem is regularly
addressed by analysts connecting plates and shells tedhmemsional element blocks.

The mathematics of this problem are still challenging adtear twenty years of concerted effort
in the mathematics and applied mechanics worlds. The issussn-physical stress singularities
and retarded mesh convergence appear important to thoseuwaities more for philosophical
than practical reasons. Typically, because the singidarére integrable, and the uncertainty in
loads and boundary conditions and the intrinsic varigbifitjoint response dwarf discretization
error, engineering analysts do not mind living with a few heshatical anomalies, if they notice
them at all.

The approach employed in this handbook for coupling onesdsional joint models with three
dimensional finite element component models is comfortalitlyin the class of tools used by the
general analysis community, though care must be taken tohesapproach consistently. These
issues are discussed in detail in Chapter 11 of this handbook
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1.5.4 Application in Finite Elements

Finally, all of the preceding numerical constructions mestncorporated into finite element mod-
eling of structures. At a minimum, this includes: coding toastitutive equations into the struc-
tures code, conveying to the code the surfaces to be treatiediag in contact, and instantiating
the model parameters.

This process has been demonstrated with the Salinas [8#}stal dynamics code. Salinas is
one of theCodes for the ComplexXeveloped under the ASC Program of the US National Nuclear
Security Agency. It is generally quite robust and is strustiuso that adding new features is not
prohibitively difficult.

Salinas is a parallelized code and can take advantage ofvelggsarallel computers. Addi-
tionally, Salinas reads from and writes to the publicly dedirExodus database format, and can
leverage the preprocessing and post processing tooldduitxodus.

The process of posing a joints-related problem for Salisgsrésented in Chapter |15. This
chapter also presents some numerical results for a reatsteu Numerical artifacts are unavoid-
ably introduced into the dynamics calculations. The chamtevides a discussion of the origin of
these artifacts and their mitigation.

1.6 Other Important Joints Issues Covered in this Handbook

There are other research elements that are important toytinendcs of jointed structures that
do not conveniently fit into the above critical path. Somehafse elements have been addressed
recently and have a place in this handbook.

1.6.1 Analysis of Finely Meshed Joint Models

The nature of the contact problem causes DNS of the joint ar@ch as part of the dynamics

analysis to be impractical. Additionally, the friction meldcommonly available in finite element

code does not quantitatively reproduce experimental diaimexpected, however, that quasistatic
DNS of mechanical joints can provide some insight into tHewant mechanics. For instance,
can the huge variability in joint response be explained lopiporating relevant factors into finite

element analysis?

If there is a mechanical joint for which therens experimental data, it may be necessary to
use guasistatic DNS of the joint to numerically perform tlxperiments that ordinarily are run
in a laboratory to deduce joint constitutive parametersesehjoint parameters will undoubtedly
differ from those obtained from physical experiment, baiytivill be a starting point for structural
dynamics calculations.
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This problem is still very much a research issue, but someatédé lessons have been learned
and some insights achieved already. Among the lessonselgéare: many well known finite
element codes will not converge on some physically reademddistic-frictional-contact problems,
and some codes will regularly converge on incorrect answé&te Sandia team has adopted a
policy that before a finite element code is used to model aimy, jit must first be tested against a
suite of verification problems developed for the purpose.

The verification suite and some of the results of testing arfeminear quasistatic finite el-
ement codes on those problems are presented in Chapterrafegits for DNS of joints, some
representative Adagio results, and a few resulting insighe presented in Chapters 15 and 16.

1.6.2 Spatially Distributed Joints

The majority of this handbook addresses models for joirds ssemble a class of lap joints (this
includes actual lap joints, flange joints, and some thregaiats). There are frequently instances
where there are far too many joints distributed about thectire to incorporate them all individu-

ally into a structural model. Is there a way to model thatcdtrte so as to reproduce the “joint-like”

dissipation and the softening effects found experimeyfall

An approach to modeling such structures involves emplothiegyross modal kinematics of a
reference elastic structure and nonlinear evolution eguosfor the modal coordinates is presented
in a chapter of its own. This is a very new research effort aetiminary results are presented both
to demonstrate that there are modeling approaches suttabidy built-up, complex structures,
and to encourage further research.

1.6.3 Threaded Connections

A class of joint that does not fit into the theoretical framekvdeveloped for lap-type joints is
that of threaded connections. The focus of the work predaent€hapter 183 is that of predicting
the effective stiffness of a threaded connection. Suchliteeate required by analysts attempting
to capture the effects of threaded connections on strdaesponse without having to employ a
micro-model in the dynamics calculations.

The technique presented here is very much in the theme afitreal multi-scale modeling.
Very fine mesh analysis is performed on a unit cell and an etgm¢ material is defined for use
in a coarse mesh model for the full dynamic structure. Theveeit development is discussed in
Appendix C.

There is much about threaded connections that is not pexsénthis handbook. One particu-
larly relevant piece of work is that of Doebling et al. [35] @rk transient DNS was performed on
a significantly detailed model to predict the response ofsthécture to an explosive shock. It is
worth noting that the application of DNS was particularlysgpriate since the calculations were
designed to predict structural response over a short timedge
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1.7 A Call To Action

Considerable effort has been made to achieve coherencesihahdbook and to make the docu-
ment readable. Several compromises were made: the litenaview is extensive but incomplete.
Only that work that fits into the thread of the presentatios imaluded, and many important topics
have been touched on only lightly.

On the other hand, the reader has numerous clues throudii®dotument of significant work
yet to be done. Not only is there a chapter specifically sugggesopics fertile for investigation,
but, hopefully, the informed reader will be stimulated by ahuwf the work presented here to
explore other - more practical and more elegant - methodddceas these problems.
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Chapter 2

Introduction to Experimental Program

Danny L. Gregory and Brian R. Resor

2.1 Motivation

A fundamental challenge in a research program aimed at staaeling and modeling the behavior
of bolted joints is the sheer magnitude of the parameterespasociated with the simple bolted
joint. An example illustrating a simple shear, lap jointhvit single bolt is featured in Figure 2.1 .

-
F(t)
—-
Nomal force
2> Friction foros

Figure 2.1. Simple Bolted Shear Connection.

There are four slip interfaces associated with a single, it and washer. Each interface
potentially involves different surface tractions, maaétypes, surface properties, and contact areas.
The parameters associated with the jointinclude: prelioéelface geometry, interface material(s),
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surface finish(s), lubrication, bolt material, bolt typeasher material, washer geometry, loading
configuration, loading type (static, dynamic, vibratajyload direction, etc.
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Figure 2.2. Jointed Interface Damping Effects on Decay Rate of
a Structure.

Response waveforms and instantaneous damping are showatfoa
monolithic and a jointed specimen with transient loadinguh Ac-
celeration amplitude is shown on the left and instantandrmaggion of
critical damping is shown on the right. All curves originateexperi-
mental data.

Figure 2.2 illustrates the large effect that joint dampiag bave on the response of a structure.
Shown are response waveforms and instantaneous dampuesval a structure that was excited
by the same transient impact. The red curves illustrategbpanse of a linear system containing
only material damping. The blue curves illustrate the respoof a system with the same exact
geometry, but also with a jointed interface. Not only does dkerall level of damping increase,
but the damping is dependent on amplitude. A goal of this expantal effort is to understand the
contributing factors to the unique behavior of this problem

2.2 Review of Experimental Literature

Understanding that jointed interfaces produce large amsoafrenergy dissipation in structures is

not new. The effort to understand the specific mechanismstefface damping dates back to the
1960s. Additionally, efforts to quantify and then model thierface behavior have been attempted
ever since there have been experimental observations betievior.

This chapter in the Handbook is dedicated to discussion pé/xental techniques and prac-
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tices that can be used to understand behavior of nonlireearefl interfaces. Following is a review
of some of the literature addressing experimental efforts.

In the 1960s, Ungar [12] set out to understand several diffetypes of aerospace joints. He
studied point connections as well as certain distributegheotions. Examples include rivets,
bolts or screws, spot welds, and continuous welds, in aifdit riveted and bolted panels. The
experiment consisted of a suspended plate with variousheitasmall beams, with the apparatus
being driven by a single exciter. Damping was determined kysuring the decay rate of the
structural response after turning off the input. He studiadation of bolt torque, bolt spacing,
hardware geometry, materials, surface finish, atmosppeegsure and lubricants. He concluded
that the dominant damping mechanism for motions normaldariterface was gas pumping, while
the damping mechanism for motions parallel to the interf@es likely interface slip. Ungar
developed the power dissipation plot that was first usedustibte and distinguish the behavior
of different joints.

For the most part, experiments have focused on shear loalis iints, with the exception
of early work by Ungar [12], which focused on gas-pumping.sdlMaidanik [36] performed
experiments to demonstrate effects of gas-pumping on @@ntping. His experiments at low at-
mospheric pressure showed that gas-pumping helps to adoo@mergy dissipation of structures
consisting of beams riveted to plates.

Most experimentalists have used the concept of the loaglasive-deformation hysteresis
curve to calculate energy dissipation of their experimlesiiaictures. The concept was shown
by Metherell [37], who in the same work introduced the concd@ffective joint stiffness, which
is dependent on the amplitude of load in the interface.

Ungar [13] summarized the current state of jointed intexfdamping at the time. Applicable
efforts had focused primarily on damping of built-up beamsd akin-stringer structures, or in
other words, aircraft construction. Relevant publishedkappearing later began to explore how
an experimentalist can measure the more intricate dethiiseojointed interface so that better
descriptions, or models, of their behavior could be created

A special experimental setup described by Rogers [38] waalda of measuring the necessary
parameters for construction of accurate load hysteresi@swuring shear loading of metal inter-
faces. He used the experiment to study frictional inteomadf various metals at cyclical speeds up
to 200 Hz. Rogers was perhaps the first to mention the presgracéme-history, or breaking-in
effect characterizing the energy dissipation occurrintinithe first several loading cycles. Craw-
ley [39] introduced the concept of experimental determamadf the force-state mapping of joints
behavior. Other published works mentioning interestingjaseful experimental apparatus include
Gaul [40], Padmanabhan [41] and Ren [42, 43].

Perhaps one of the most important ideas that has been impiledhim all Sandia joints ex-
periments is the concept of the monolithic joint specimerruly serves as a deceptively simple
control specimen because its response is directly relatdtht of the jointed hardware. This idea
was utilized by Moloney [44] in his work that compared theustural dynamic response behavior
of simple, jointed-beam specimens to monolithic specinoéndentical geometry. Moloney also
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approached the calculation of amplitude-dependent dagrpia similar manner to experimental
techniques adopted by Sandia in that he analyzed the emvelojhe transient decay of certain
dynamic resonances of the specimens. A similar approachdaydrate analysis was also used by

Feeny [45].

The authors believe that one of the best ways to make accumdieect measurements of the
motions occurring within an interface during microslip @sfind a way to utilize a structural dy-
namic resonance of the system. The work of Moloney [44] wasaaly example of the concept.
Gaul [7] proposed an experiment that truly has all the fladhe experiments that are utilized
currently by Sandia experimentalists. His experiment te®f a “longitudinal resonator” that
is driven harmonically by an exciter. The frequency of eatiitn can be tuned so that the motion
in the resonator, or dumbbell, exerts cyclic shear forcé@joint specimen. Measured parame-
ters include force input, specimen acceleration, and masaexation. The hysteresis curves are
plotted using the measured data, and energy dissipatiolevaan be calculated by finding the
area under the curves. The forcing levels in the experimembe high enough for observation of
macroslip effects in the joint. Similarly, a novel experima structure developed by Sandia has
demonstrated an ability to excite the torsional respongkeojoint specimens in a way that lends
itself to reliable measurement.

2.3 Sandia National Laboratories Experimental Efforts

Sandia initiated and supported a lengthy experimentalrarodo develop understanding and in-
sight into the underlying physics associated with energgigation of bolted joints. As discussed
previously, the inherent limitation of predictive struldynamic models is the inability to model
the nonlinear energy dissipation (damping) of bolted fiats in assembled structures.

Early experimental work in bolted joints was done largelyg#in basic understanding to aid
the development of a suitable modeling approach. The eastk vesulted in implementation of
sound experimental techniques and then focused on comiehneof the basic parameters of
interest in the nonlinear interface. Experiments firstizad differencing of acceleration signals
and measurement of input forces to calculate hysteresigs@irom which information describing
the interface nonlinearity could be gathered [8], [46]. Sadter, better techniques to measure
response were developed utilizing the measurements mak¢hsisystem at resonance [47].

Early investigations at Sandia focused on microslip in therface and one-dimensional load-
ing directly along the axis of the joint element, or sheaidiog. The two major measurement
characteristics that were the focus of these studies wererthrgy dissipation and the nonlinear
stiffness. An example of the first finely-meshed finite eletmeadeling of an interface was pub-
lished by Lobitz [48]. Early work at Sandia also revealed ldrge amount of inherent response
variability that occurs due to randomness associated Wwélinterfaces.

With sound experimental techniques as a basis, Sandiaimgrgers next undertook accurate
measurements for calibration and validation activitiesogwning new joint models. At first, ana-
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lytical models were simulations of very basic, jointed ifdees. Soon after began the application
of the techniques to very specific hardware configuratiomsh s System A-0 and System A-1
Axially Oriented Subsystem (AOS) bolted joints [49]. Thesd€or more experimental data to
support various levels of model validation efforts alsoti@the development of additional exper-
imental configurations. After completion of a major caliiova and validation effort, the basic
experimental techniques outlined in this section becarbestoand reliable, involving several lev-
els of hardware and model complexity. (See [50] and SectiohtBis document).

The most recent investigations of jointed interfaces havealed that the character and dis-
tribution of interface contact pressure is much more comilan would be predicted by simple
theory. The primary source of the discrepancy stems fronerfeptions present in interfaces due
to the manufacturing processes [51]. Laboratory investiganto this issue will help to explain
much of the unexpected behavior of joint interfaces. In arlahapter, computational investiga-
tions also shed light on this phenomenon.

Sandia experimentalists feel that there are now some vezfuluseliable and well under-
stood techniques available for basic characterizatioroofinear joint interfaces. Current research
thrusts are aiming to understand more concepts, such assaffenacroslip and combined loading
in interfaces. Not all of the newest work is published in tresidbook because the experiments are
still being perfected and techniques for meaningful datyais have yet to be explored. These
guestions, and others, are still under investigation aediong the topics in need of more detailed
study in the future.

2.4 Introduction to the Sandia Experimental Apparatuses

Experimentalists realized early on that the key to a robuost@curate experimental setup for
jointed interfaces was to maintain simplicity in the setBpundary conditions of the experiment
are extremely important and need to be both controlled anlénstood. Also important, as with

any study of the basic behavior of nonlinear phenomena, iaslésign of experiments with

behavior that could be understood by engineering analysis.

For this reason, the first and perhaps most successfullgadilexperiment was designed to
behave very much like a simple, fixed-base, SDOF systenudirgd) a large, rigid mass. Nonlinear
elements would represent the stiffness and damping of thegpecimens that are incorporated
into the experiment. Relatively simple equations of motionld be used to describe the behavior
of this system.

The system is exposed to controlled, sinusoidal excitagon all input loads and responses
measured. Useful information can be gathered by takinguanneasurements at the resonance of
the system. Energy dissipation can be determined at vairpus levels. Also, time histories can
be recorded and analyzed to arrive at useful hysteresigstimat illustrate details of the interface
nonlinearities as well as offer additional means to meash@eesired parameters.

An extension of the SDOF base-excited experiment is a psrbapn simpler and cleaner
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Figure 2.3. Photo of SDOF Device and Schematic of Relevant
Dynamics.

setup utilizing a simple dumbbell configuration. The jothgpecimens are installed between the
two dumbbell masses. The whole assembly is suspended blgwsajees. Excitation is provided
via a single sided input pulse to the end of one of the masdes.eXcitation is designed in such
a manner to excite primarily the first axial mode of the systdrhe transient ring-down of the
system is analyzed to quantify the parameters of interest.

Tests have also been performed in quasistatic load fram@sirded specimens (Figure 2.5).
These tests are used to make load vs force measurementdy besafor having another means
to quantify stiffness of the joint element. The quasistatiperiments were also useful in gaining
initial understanding of the macroslip phenomenon.

2.5 Foreword to Experimental Chapters

As will be discussed throughout the experimental portiotheds handbook the design of exper-
iments to isolate and measure the energy dissipation oédbatfiterfaces requires an integrated
approach of experiment design and measurement technajleed to the type of experiment be-
ing conducted. Quantification of all mechanisms of energgigation, such as might be found in
the boundary condition of the experiment, must always becsded.

One of the main challenges in bolted joint experiment desiga measure the response of the
simple bolted connection without the ability to directlysatove the microslip which is occurring
in the interface. The experimental techniques discussdtisnhandbook can be described as
indirect techniques where the total energy dissipatiomefoint is calculated by measuring some
characteristic of the response of the system to an applred to infer the energy dissipation.
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Figure 2.4. Photo of Basic Dumbbell Experimental Setup.

A number of experimental approaches will be described irfahewing sections along with
measurement and data analysis techniques for isolating@nguting the energy dissipation of
bolted interfaces.

The parameter space must be reduced to pose a tractablechepezgram using information
about the intended applications of the bolted joints untietys Without some amount of specific
focus it becomes prohibitive to try to study every combimatof parameters associated with a
generic bolted joint.

Following are some of the aspects of joint interface belhrathat have been studied in the
Sandia experimental program and are included in this hasidbo
e Calculation of energy dissipation

— Hysteresis curve area
— Power supplied to an experimental apparatus
— Utilizing Q at resonance

e Designing experiments with emphasis on simplicity, patady the ability to be modeled
by simple and well-known equations of motion.

— Harmonic excitation
— Transient excitation

e Signal processing techniques that enable the experinentialdetermine final response
measures from a variety of data.
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Figure 2.5. Quasistatic Experimental Setup

52



Designing appropriate inputs to apply to the experimerttattures.

Experiments on hardware that contain more than one jointem.

Understanding the effects that various joint interfaceapaaters (preload, distribution, ma-
terials, surface finishes, etc) can have on the overall respof the structures.

Suggested methods to obtain a rough idea of the real digsttbof contact pressure in actual
interface hardware.

It should be noted that these experimental approaches a@ogans the only way to approach
this problem but should only serve as a starting point farreitesearchers in this challenging, but
important research effort.
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Chapter 3

Dynamic Sinusoidal Excitation Experiments

Danny L. Gregory and Brian R. Resor

Bolted joint experiments may utilize a variety of load teiciues including sinusoidal, random,
transient, and quasistatic loading. Each excitation tygseddvantages and disadvantages depend-
ing upon the type of bolted joint and the objective of the expent. Sinusoidal excitation has
proven to be a very useful excitation source and providesraéwmeasures of joint response and
guantification of the joint nonlinearities.

Throughout this chapter, the behavior of a structure atv@sce can yield valuable information
about the energy dissipation and stiffness of the structreseful configuration is to design an
experiment with a bolted joint (or multiple bolted joint$jat can be approximated as an SDOF
system. A simplified representation of an SDOF system witbl&d joint is shown in Figure 3.1.
The inertial mass is the magsg, and the base is driven by the forde, A linear spring k, and a
linear damping element, represent the linear part of the system. The nonlineaoniagtforce
of the joint is lumped intdR, and will include any stiffness or damping mechanisms. Tiergy
dissipation due to microslip is a nonlinear mechanism, hecffective stiffness of the joint is also
nonlinear. The response of the mass to base excitation yssegisitive to changes in the bolted
interface such as preload, geometry, contact, lubricagitm

At the mechanical resonance of the SDOF system the inetigt#ffness forces are balanced.
During this condition, the energy dissipation is equal ®e¢hergy supplied to the system to main-
tain steady response of the system.

Measurements of the input and response of the simple sysl@macalculation of the energy
dissipation per cycle. The energy dissipation can be coetpint a number of ways, several of
which are discussed in the sections that follow. Examplepériments configured to realize the
SDOF approximation are discussed in Sections 4.1 and 4ng alith experimentally measured
data.
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3.0.1 Measuring Energy Dissipation Per Cycle

3.0.1.1 Measuring the energy dissipation per cycle by findothe area within the force/relative-
displacement hysteresis loop

In the literature on frictional joints, the traditional weymeasure energy loss for harmonic motion
is to measure the area within the closed plot (hysteresi¥ @idorce vs relative displacement. An
example is shown in Figure 3.2.

The relative displacement between the mass and the baseyiswall and are difficult to
resolve in the presence of instrumentation noise and nealeaund-off errors. This is particularly
true if measurements are taken at frequencies different the resonant frequency of the system.
At resonance, the maximum relative motions are realizecham@ accurate hysteresis curves can
be generated for calculation of the traditional, relatiysthresis curves.

3.0.1.2 Measuring the energy loss by looking at the power spfied at the base

The energy dissipated during steady-state response iglesirput, passive system must be equal
to the energy supplied at the input to the system to sustaistdady-state response. For a simple
harmonic input the input energy is

D =FXsing (3.1)

where F is the magnitude of the force input,
X is the magnitude of the base displacement,
and @ is phase angle between the force and displacement.

The relationship between the magnitude of the acceleratioithe magnitude of the displace-
ment is simply

A= —w’X. (3.2)

Only the component of displacement out of phase with theefovdl dissipate energy. At
resonance, sip = 1. The orthogonality of sine and cosine functions shown indfigpn (3.3)
assure that if either the force or acceleration is a puressiil sinf, then harmonic distortion,
sinn@, in the other measure will not dissipate energy.

2m
[ sinn@sinmOdé =0 forn# m
0

2mn
J cosnBcosmBdl =0 forn# m
0

(3.3)
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Only the fundamental component will dissipate energy. Hfhbihve force and displacement
of the base are distorted, then the harmonics can dissipatgye At resonance, almost all the
harmonic distortion observed in our experiments was in #sebacceleration waveform. The
inertial mass acceleration waveform is nearly a scaledaers the base input forcéy, = F /M.

At resonance, the inertia and stiffness forces are balanideel motion required at the base to
maintain a steady state response with a prescribed forayswmall for a lightly damped system.
To estimate the small base motion in the presence of backdrshiaker and instrumentation noise,
additional knowledge about the response of the system tsgidal excitation was leveraged. If
a linear system is excited by a sinusoidal force at frequenape response will occur at exactly
that same frequency. If the excited system is nonlineahdrigarmonics may be evoked, but the
orthogonality discussed above assures that all of the gveigreside in the first harmonic. If
the excitation is at a fundamental frequency and severasdfarmonics, the dissipation consists
of components associated with motions at the fundamentbakiharmonics common to both the
force and the motion.

This knowledge can be applied by fitting a best least-squiirés the measured base and
inertial mass motions (typically accelerations) with a sefrphase-shifted sinusoids at the funda-
mental frequency and higher harmonics. In other words, theiér coefficients of the base and
mass motions are calculated. This signal processing tgoarselectively filters the response at
only the fundamental frequency and its harmonics, elinmigeall other portions of the measured
signals due to noise (assuming that power line frequencyhanaonics do not coincide with the
resonant frequency and harmonics). The number of harmoadpsred to reconstruct the base
and mass motion will be determined by the type of nonlinganithe bolted connection. Many
of the experiments discussed later utilize the fundamémgliency and the first seven harmonics,
though only the first harmonic is necessary to calculategyndissipation. Users of this technique
should experiment with the number of harmonics requiredrawvige a good reconstruction by
adding harmonics until additional harmonics no longer ¢geathe character of the reconstruction.

3.0.1.3 Measuring the Energy Loss per cycld), by Measuring Q

The energy dissipation of an SDOF system can also be computegasuring the transmissibility
function at the resonant frequency. From Thomson [52] thesimissibility of a viscous, damped,
base-excited, SDOF system is given by the well known eguatio

- \/ 1+ (20 w/an)? 3.4
(1— w?/w)? + (20 w/wn)? '

where w is the driving frequency,
wh is the resonant frequency of the system,
and { is the damping factor (fraction of critical damping).
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At the undamped resonant frequenay, w/w, = 1 and for{ << 1 the transmissibility is
approximately

T~1/27 (3.5)

The motion measures of interest are the accelerations ditbe and the mass. For this system
the force at the base is simply the product of mass and aeatieler Therefore, the driving point
accelerance (ratio of base acceleration to base forceg iethprocal of the transmissibility scaled
by the mass.

The transmissibility at resonance is called the amplificafactor or quality factoQ of the
system, where

Q=T (wn) =1/2¢ (3.6)

The viscous damping coefficient of the correspondmg, k second-order equation is related to
the damping factor by

¢ =2md an (3.7)

For forced harmonic motion, Thomson [52] defines an equitaliscous damping for systems
with other types of damping on the basis of an equivalentggneissipated per cycle, as

D= 7Tceqwx2 (3.8)
which gives
A, ”'“Q'%
D= = 3.9

where Ap is the acceleration of the mass,
Ay, is the acceleration of the base,
Q= Am/A is the Quality Factor,
Am>> Ay,
and  An= w?Y whereY is the displacement amplitude.

The logarithm of this equation gives

logQ +logD = log (7m/ wf) + 210gAn (3.10)
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Therefore, for the linear case whepas a constant independent of input amplitude, the slope
on a log-log plot ofQ vs A (eitherAy, or Ay) is zero, and foD vs A is two.

d(logD)
d(logA)

-2 (3.11)

Now consider the nonlinear case where a log-log pld@efk A is still a straight line, but with
a slope,—n, in which case

Q=KA™ (3.12)

Note that for a positive, Q decreases with amplitude and the corresponding dampiigy fdc=
1/Q) increases accordingly.

Taking the log of both sides of Equation (3.12) gives

logQ =logK —nlogA (3.13)
or
d(logQ)
d(iogA) ~ n (3.14)

If the equivalent viscous damping is used instea@gthe results are

d(logd)
d(logA)

=n (3.15)

Combining Equations (3.10) and (3.14), and differentmtiives

d(logD)
d(logA)

=2+4n (3.16)

For example, if the slope @ vs A on a log-log plot is +1.0, the slope of the energy dissipatxd p
cycle will have a slope of +3.0.

3.0.1.4 Summary of Energy Dissipation Measurements

Experimentalists at Sandia National Laboratories havd ab¢éhree methods previously discussed
to measure energy dissipation. When properly appliedhedlet give essentially the same result.
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For ease of use, and versatility, almost all of the expertalatata reported in this document are
determined by measurir@in some manner.

3.0.2 The Damping Force

Thomson jbid Sec 3.7] shows that for a linear SDOF system, a plot of foraehedive displace-
ment,z, will plot as an ellipse. The major axis will fall along th@é of linear stiffness. The input
force, f, is the same force that drives the mass|f the force is a sinusoid, the force and the accel-
eration of the mass will be in phase. The force and displaneofeéhe massn, will be 180 out of
phase. The relative displacement will consist of three camepts: a coincident component (either
0° or 180°), a quadrature component (96r 270°), and the harmonic distortion. The quadrature
component will be represented by the quadrature comporighedundamental part of the base
motion. Generally, for linear and lightly damped systeneslthear stiffness ternk, dominates,
and the hysteresis curve of force vs relative displacensestiaped like a narrow ellipse with the
major axis on the linear stiffness line as shown in Figureaba@ve.

The hysteresis curve is distorted from an ellipse for a maalr system. Integration of this curve
to derive the energy loss is difficult because small errogghiase between the force and relative
displacement result in large errors in the energy loss. dfdystem is driven at the fixed-base
resonant frequency, the phase between the fundamentalc@mipof the base displacement and
the force or mass displacement is’9the linear elastic term vanishes. The base displacement th
represents the dissipative fraction of the motion. If omlg fundamental component of the base
motion is plotted, the hysteresis curve represents thevalguit viscous damping. For a sinusoidal
force the harmonic terms of the base displacement do napdissenergy.

The system can also be viewed as a passive system being thaverihe base. The energy
dissipated in the joint (the only significant energy losdi@a éxperiment) must be supplied through
the base motion. When the input force is plotted as a functidsase displacement, the area within
the curve represents the input energy. The area within thees\fforce vs relative displacement,
force vs base motion, force vs fundamental ) are all the same.

Examples of base motion vs force hysteresis curves at raserae shown and discussed
below. For a linear system, the hysteresis curve is an elligs a given amplitude, nonlinear
systems are often described by a linear system defined byijatical hysteresis curve having the
same area and secant (stiffness) as does the actual hissteme®. The nature of the nonlinearity
is often explored through examinations of the higher haio®of the hysteresis.

3.1 Computation of the Nonlinear Restoring Force

Proper processing of the experimental data for a sinuseidalation of a bolted joint configured
into an SDOF experiment can yield a technique for isolatirgrionlinear restoring force for the
microslip in a bolted joint.
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The equation that describes the motion of a base-excitedFS§6Stem shown in Figure 3.1
subjected to a known oscillatory input force is

mX = —kz—cz—R(z,2) (3.17)

where mis the mass of the SDOF system,
x is the absolute displacement of the mass,
and  zis the relative displacement between the base and the mass.

The coefficient& andc are the linear spring and damping constants of the systepecévely,
andR(z 2) is the unknown nonlinear restoring force generated by tteeasiip phenomenon that
we seek to isolate and quantify in our experiments.

Using the least-squares technique described earlier airotite Fourier coefficients for the
periodic motions of the mass and the base (typically acoeleter measurements) will allow the
broadband shaker/instrumentation and line frequencyertoibe eliminated. The relative displace-
ment,z, and the relative velocity, are computed by integrating the fitted acceleration data.

The “linear” portion of the restoring force,—kz— cz), is estimated by performing a least
squares analysis of the fitted data to solve for the lineffnetis and damping constarksand
c. The nonlinear component of the restoring forBez,z), is then obtained by subtracting the
linear portion of the restoring force from the response efrttass

R(z,2) = —mX—kz—cz (3.18)

This derived, nonlinear, restoring force can be a powedol for subsequent analyses to gain
insight and understanding of the nonlinear behavior of tited joint.

Gregory [53] utilized the derived, nonlinear, restoringci®in a simple lap joint for the identifi-
cation of a functional form for microslip damping using dited genetic programming (GP). Both
a three-term and a four-term expression for the nonlinestorig force provided an adequate fit
to the restoring force. An example of the experimentallyedeined restoring forceR, and the
GP-resultant, four-term expression are shown in Figure 3.5

Four-Term GP fit:
R(z,2)gps = 5.0|12*sign(2) |71 4 3.7|7*1 — 3.8|7*3 — 1.2sign(2) |2 "8
errgps = 0.1336

where

erGpi = Std(R(27 z)ex_ R(Z7 2>GPi) /Std(R(Z7 Z)ex) I = 37 4
and std is the standard deviation.
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3.2 Sine Wave Excitation and Control Utilizing Shakers

The sine wave excitation is typically provided with the ugestectrodynamic shaker systems.
These shaker systems can range from a few pounds of force twisands of pounds. The
electrodynamic shakers are typically linear systems taatprovide very clean, sinusoidal, force
and acceleration inputs to the experimental system. Fopuhgoses of bolted joint research the
shaker system must be sized to provide the required amotoroeffor the type of bolted joint that
is being investigated. Most shakers are single-axis de\designed to provide minimum motions
in the cross-axis directions, but do have their own dynanasoccur at certain frequencies. At
low frequencies<{ 10 Hz), there are typically modes that are related to theesuspn system for
the moving element. At higher frequencies2000 Hz), modes of the moving element become
active, including the axial armature resonance. Care shoeitaken to understand the modes of
the shakers and to design the bolted joint experiments tiol &rese troublesome frequencies. An
excellent discussion of vibration shakers is provided byaBmood in Chapter 25 of [54].

The best technique for control of the sine wave excitatiowite a digital, vibration control
system with real-time, closed-loop control. The contrateyn can be configured to perform var-
ious types of sinusoidal inputs. It can perform sinusois@eyps at selectable sweep rates (linear
or logarithmic) between defined beginning and ending fraqigs. The use of slow sine sweeps
proved to be very useful in our experiments. Each realinatioca bolted joint will have an effec-
tive stiffness, and the resonant frequency can vary front joi joint (and even after a reassembly
of the same joint). A sweep over a selected range will allogvtthnsmissibility function to be
fully defined without trial and error to locate the peak. Tasaarcher should adjust the sweep rate
to allow the system to reach it full amplification fact@, The systems can also be programmed
to perform sinusoidal dwells at selected frequencies ahdséo perform phase-lock control to
adjust the drive frequency to maintain the input at the rasbfrequency. An excellent discussion
of digital vibration control techniques is provided by Umdeod in Chapter 27 of [54].

3.3 Instrumentation for Sine Vibration Experiments

A variety of transducers is available for making measurdmehthe input and response of an
SDOF system subjected to sinusoidal excitations. A piexbet force transducer inserted in the
load path between the shaker and the bolted joint can be as#icettly measure the input force
level. Piezoelectric accelerometers provide a means afrately measuring the absolute acceler-
ations of the base and the mass. Other motion transducetsasua Laser Doppler Vibrometer
(LDV), can also be employed, but some experiments are difficiconfigure so that line of sight
for the laser beam is available in the direction of the input.

At the fixed-base resonance of the system, the base acaaiebacomes very small to main-
tain a given force level in the joint (motion of the mass isajie amplified at resonance). Very
small contributions of modes far removed from the drivingginency can have large effects on
the measurements of the base acceleration, causing erribies calculation of the transmissibility
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functions. It is recommended that the base accelerometeolb®ated with the force gage on

the centerline of the excitation to minimize contributiamfsother modes. The accelerometer on
the mass should also be located near the centerline of tlegimgnt to reduce the contribution of

unwanted bending and rocking modes.

The relative motion between the base and the mass is debinethe direct differencing of
raw accelerometer signals can prove very difficult due térimsentation and shaker noise. As
discussed in previous sections, fitting the individual algrutilizing the Fourier coefficients prior
to differencing appears to yield much improved results.

3.4 Boundary Condition Quantification for Sine Wave Experi-
ments

In any experimental configuration for investigating boljeits, including sine wave testing with
vibration shakers, the boundary conditions need to beiitkshtand quantified. The contributions
to the energy dissipation due to loss mechanisms other Hejoint in the experiment must be
quantified. Similarly, it is required to measure compliacethe experiment other than the joint
to allow the effective compliance of the joint to be deteretn

A very useful technique to accomplish this result is to fednie a geometrically identical, mono-
lithic test specimen without the interface. This methochps the loss mechanisms in the exper-
iment to be quantified and allows the energy dissipation cig to the joint to be identified
utilizing techniques described in previous sections. Tieceve compliance of the joint can be
calculated by measuring the frequency difference betwieemtonolithic and jointed test speci-
men. The effective joint compliance can be solved by knowiregmass and using the frequency

equation for an SDOF system= \/%

The use of the solid equivalent structure to quantify thenolauy conditions and isolate the
physics of the joint will be discussed in several other s&sj as this proved to be an invaluable
tool in our research efforts.

3.5 Introduction to Load History Effects

During initial sine wave experiments it was noted that the#fimation factor would change (in-
crease) if additional sine sweeps (load cycles) were madegiven joint configuration. The most
discouraging aspect of this effect was that after a highel lerce test was performed, the results
at a lower level could never be repeated; @heas always higher (less damping) than for the initial
sweep at the lower level. The decrease in damping was alsorganied by a slight increase in
the resonant frequency, indicating an increase in thenssf joint. For a given input force level
the behavior would asymptotically reach a steady stateevaeditional sweeps did not change the
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results. This feature is illustrated in Figure 3.6 from dateen in one of the experiments that will
be discussed in the next section. We found that if we disdsleehthe joint and repeated the sine
sweeps, then we could achieve repeatable results for tte sweep and the subsequent sweeps
would demonstrate the same trend of decreasing dampingharehsing joint stiffness.

This load history (time-dependence) effect has been obdémall the bolted joint experiments
we have performed, including the transient dumbbell tgstiiscussed in later sections. Upon
further examination of the literature, this same phenomenmas reported by other authors [38, 41]
for their experiments. The authors also noted just as welleadid that even after many cycles of
vibration the surfaces could be reestablished and sinakarlts achieved.

This phenomenon has the appearance of a hardening effex Wiegoint becomes stiffer and
dissipates less energy after a number of loading cycles.effaet can be significant with values
of energy dissipation changing by a factor of four betweenfitst load cycle and the asymptotic
state.

It is postulated that the phenomenon is due to surface éiggdocking up after the interface
is loaded with an oscillatory input. When the joint is reasbked the process begins again.

Models to explain this effect have been developed by Gddbaitid Popova [55] by postulating
that the locking mechanism is due to the tendency of thefaterto adapt its contact micro-
structure to the loading conditions.

Regardless of the physics of this load-history phenomengmesents a challenge to the re-
searcher to decide how the effect will be dealt with. Theeeatrleast two possible approaches
available. The first is to use the first sine sweep at each iiopce level as the data set for com-
parison. The second is to use a data set at each level aftgitihdras reached its asymptotic
state. Possibly the actual use environment for the streiatith the joint of interest will suggest
the answer. If the joint will see substantial vibration befthe event to be modeled occurs, then
the asymptotic state may be desired. An example of this cag® lve a staging shock in a missile
after launch vibration. On the other hand, if the structgrassembled and then sees a substan-
tial environment without any vibration preconditioningtbg joint, then the initial results may be
desired. An example of this case might be the launch enviemniof a missile.

3.6 Summary of Sine Wave Excitation

Experiments utilizing sine wave excitation can provideesal/important measures of response of
the bolted joint. The careful processing of the input angpeese of an experiment configured to
approximate an SDOF system can estimate the nonlinearirgsforce of a particular bolted joint
configuration. Results from the sine wave testing can asslsblted joint constitutive modeling
development, calibration, and validation. Care must bertdk quantify the boundary conditions
to isolate the physics of the bolted joint. The use of a setidivalent bolted joint provides a
valuable tool for accomplishing this requirement.
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Figure 3.1. Base-Excited SDOF System.

Flat Steel, Relative Displacement vs Input Force
1200 Ib Normal Force, 320 Ib Input
400,

300

200

100

Force (Ib)
o

-100)

-200

-300

-400

-1 0.5 0 0.5 1 1.5
Relative Displacement (in) x 104
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Flat Steel, Input Force vs Base Displacement
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Figure 3.3. Base Motion Hysteresis Curves at Resonance.
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Chapter 4

The Big Mass Device and Related
Experiments

Danny L. Gregory and Brian R. Resor

4.1 Big Mass Device Dynamic Sinusoidal Experiments with Rigrs

Investigation of the underlying mechanisms involved in ithteractions of members of a bolted
joint required devising an experimental configuration [#&t would simplify the activity in a
simulated joint by removing the bolt from the joint. Refagito Figure 2.1 on page 45, for a single
bolt there are four slip interfaces that potentially intlifferent surface tractions, material types,
surface properties, and contact areas. Experimental a@#t@rgd for a bolted joint in shear can
only measure the resultant energy dissipation, and thelactitributions for each slip interface
are unknown. This complexity was the motivation to devisegperiment where the number of
slip interfaces could be reduced to one such that the phgsiglsl be more easily isolated. A
number of concepts were explored to eliminate the preseheebolt in a preloaded interface;
each had advantages and disadvantages. A basic concegitithately evolved out of the studies
is shown in Figure 41 and has become known as the Big Mass®evi

The concept utilizes rollers above and below a simple shoar jo apply a normal load and
allow small translations between the members. The rollpptyaa line load across the width of
the members that reduces the problem to two dimensions.olleesrideally roll without slipping
such that the losses will be small compared with the losseddaliriction in the slip interface of
interest. This concept has been used in the design of eliyctamic shaker systems in the past to
constrain the armature motion to be along the axis of the mmaaT his roller concept worked well
for this application in shakers, generating very little iggydoss and introducing small waveform
distortion.

The input forceF ,is measured with a force transducer attached between titatgon source
and the drive member. A concept to apply the normal load ahéhahe alignment of the rollers
through the use of steel cables attached to a top half “fadled a bottom roller with tensioning
cables linked through force gages, as shown in Figure 4.4 deaeloped.
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Figure 4.1. Basic Concept for a Single Friction Interface.

A slot machined into the rollers keeps them aligned and aoccodates the cables. The slot
width in the rollers is slightly larger than the cable diaardb prevent any rubbing and potential
friction losses. Cable tension is adjustable from 0 to 2 J@0Brough a load-adjusting screw and
nut assembly incorporating force transducers to measosete The range of tension was selected
to provide the range of preload typical for bolts up to 3/&iameter. The cable is anchored near
the center of rotation of the top half roller so that for theyvemall linear motions the change in
tension in the cables is very small for a load cycle. The serfand material characteristics of the
specimens can be varied to investigate their influence orethdtant energy dissipation.

4.1.1 Installation and Alignment of Specimens

One of the critical design issues is the alignment of the axinsurfaces of the specimens. It
was originally envisioned that the block would be attacheed tigid foundation, but this concept
did not allow for fine adjustment to align the contact surfack address the alignment issues, we
decided to softly support the experimental apparatus amthasnertial mass of the system to react
the input forces. The total weight of the inertial block i52B. The soft supports are springs with
the stiffness selected to give a natural suspension fregusrapproximately 2 Hz. The selection
of a low suspension frequency allows the suspension resesdn be well below the desired test
frequency range of 10-3,000 Hz. The soft supports allow kmedalignments between the two
specimens to be accommodated, as shown in Figure 4.2.

70



One of the pieces of each specimen pair is designed to atbaitte texciter through a force
transducer. The second piece is attached to the inertiad maa centering slot with a bolt to
preload the specimen. The inertial block is lowered ovesfiecimen attached to the exciter, and
small adjustments for alignment are performed with fountwickles between the springs and top
attachment plate. The position of the top attachment ptateljusted with the use of four set-
screws. When the desired position is achieved, the tophattent plate is secured with a clamping
plate. The roller and cable assemblies are then instaltedi{lae tension in each cable is set by
monitoring the force gage for each cable. The tensioning@tables is performed incrementally
while alternating between cables up to the desired loacevalte tension in the cables was very
stable and very little drift was noted even after a load cy@s performed with the system.

Alignment and
Clamp Plates

Springs and
Turnbuckles

Shaker

Figure 4.2. Overview of Setup with Soft Supports.

The rollers are made of AISI 4340 steel, heat treated to awReltkardness of 53. Extremely
tight tolerances were specified for the rolling surfaceshef tockers, which had a 32in rms
surface finish. Solid geometry images of the rockers are slwwWwigures 4.3 and 4.4. These pieces
were made using the EDM (Electric Discharge Machining) méglie to maintain the required
tolerances with hardened steel. The rollers are desigrmed t;m the specimen surface to minimize
losses at the roller specimen interface. The bottom rolks also machined with a large radius
along the axis of the applied load to generate essentiallyira ppad between the roller and the
inertial mass. This feature was necessary to correct foabgryment problems between the inertial
mass and the fixed portion of the test specimen. Upon temgjdhie rollers, a line load will be
applied to the external side of each of the two pieces of tslesfgecimen.
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Figure 4.3. Bottom Roller.

Figure 4.4. Top Roller.
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4.1.2 Quantification of Roller Properties

Experiments to obtain an estimate of the magnitude of thee®required to move the rollers by
measuring the force required to move a solid bar clampedemndhers at various preloads were
performed. This test configuration is shown in Figure 4.5célerometers were mounted in-axis
with the excitation on the solid bar and on each of the roll@ise solid bar and accelerometer
were weighed to establish the total moving weight abovedheefgage. The accelerometer on the
end of the bar was used with a digital vibration control syste control the input motion of the
bar. The force to acceleration transfer function is cakewlaand yields the dynamic mass of the
system.

Figure 4.5. Roller Dynamics Investigation.

The total dynamic weight of the calibration bar and rollershown in Figure 4|6 for a single
pair of rollers with a cable preload of 800 Ib per cable atehrgut levels of random vibration.
There is a small resonance of the top roller at frequencilesvegpproximately 250 Hz, depending
on the cable preload. As the preload increases, the fregusnthe resonance also increases.
This resonance exists because the top roller is not consttain both sides, unlike the bottom
roller. The dynamic weight associated with this resonascamall, (less than 20 Ib), and can be
eliminated from the total force by using the calibrationvairAbove this frequency the dynamic
weight approaches a constant of approximately 2.0 Ib perhichwis independent of the cable
preload. The results show that the dynamic mass is very t@pleais not sensitive to the changes
in input level, and can be accounted for with a single calibrecurve. The dynamic weight was
also measured as a function of preload and found to be veensitsve to changes in preload.
These results are very encouraging because ultimatelynigye loss factor associated with the
rollers will not have amplitude dependence on either thenabforce or input force.

The static weight of the calibration bar and accelerometeded 1.582 Ib. Subtracting this
value from the dynamic weight of 2.0 Ib yields the very smaihamic weight of the rollers of
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Figure 4.6. Dynamic Mass Measurement of Rollers.

0.418 Ib. This amount represents the total force requireddee both rollers with a rigid bar and
can be subtracted from the total input force to solve for tieién force, which includes both
the inertia of the rollers, rolling resistance forces, ang eable interaction forces. For practical
purposes, this force could be neglected as it representsaordry small portion of the total force
for an actual friction experiment. For simplicity, expednis should be configured at frequencies
in the bandwidth of constant roller force. Otherwise, atdofrequencies where the dynamic
weight is not constant, the roller force can still be accedrior, if necessary, by using a calibration
curve that can be established for each setup.
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4.2 Experiments with the Big Mass Device

The BMD has proven to be a very useful means of investigatimmgaslip in a simple interface.
The test specimens can be manufactured to vary a number efiedgiarameters found in real
bolted joints. These parameters include material typetaseiroughness, surface hardness, and
surface lubrication. The contact pressure distributiamlma modified by changing the geometry
of the two halves of the test specimens. Examples of diftegenmetries are shown in Figures
4.7 -/4.9. Three basic configurations were investigated ati@aNational Laboratories. These
included a “flat” specimen with both sides of the interfacechnaed flat to provide a continuous
contact pressure distribution with moderate edge effécsecond configuration was the “stepped”
specimen that provided a localized contact with strong edfgets. The third configuration was
the “curved” specimen, which consisted of one half of theespen machined with a 10-in radius
while the other half was kept flat, allowing a localized cantaondition with minimal edge effects.
Drawings for the test specimens are included in Appendix A.

Flat — Moderate Edge Effects

Figure 4.7.Flat Specimens.
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Stepped — Strong Edge Effects

Figure 4.8. Stepped Specimens.

ge Effect
/

Figure 4.9. Curved Test Specimens.

Curved — Minimal Ed
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A typical setup including the rollers and the flat, stepped eurved test specimens is shown
in Figures 4.10 + 4.12. The BMD, coupled to an electrodynashiaker, provides a very good
approximation to a base-driven SDOF system at the first agsnance, and all of the analysis
tools for sinusoidal vibration described in the previousties are applicable.

Figure 4.10. Setup with Flat Test Specimens.
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Figure 4.11.Curved Specimen Setup.

Figure 4.12. Stepped Specimen Setup.
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4.2.1 Flat Lap Joint Experiments

The initial experiments [47] with the BMD and rollers wererfoemed on flat test specimens to
measure the energy loss per cycle for a sinusoidal inpuéfover a range of loads of 60-, 120-,
180-, 240-, and 320-lb peak, and with a range of normal foo£&880-, 1200-, 1600-, and 2000-Ib.
The experimental apparatus was configured on an Unholtzi®icL000, electrodynamic shaker
system. A Spectral Dynamics 2560, vibration control system used to control the input for the
experiments. The overall setup of the BMD on the shaker sy&ehown in Figure 4.13.

Figure 4.13.Overall Test Setup of BMD.

The specimens were machined out of AlSI 4340 steel with asanfoughness of about 3@n
rms. Data were also collected for a geometrically idenscdid bar with no frictional interface to
establish a lower limit for the unaccounted loss mechaniartige setup. The energy loss per cycle
was experimentally determined by first performing a sineegnedntrolling the force at a constant
value over a frequency bandwidth encompassing the fixed-tEsnance of the test apparatus,
which ranged from 330- to 340-Hz depending on the normal plagiload and excitation level.
The amplitude ratio (transmissibility) of the accelerataf the mass and the acceleration of the
base was then calculated to determine the amplificatiomifd@). A constant bandwidth (10
Hz), digital tracking filter was used with a linear sweep rat@®.50 Hz/s in the signal processing
to computeQ. The amplification factor was established at the frequenbgres the phase was
measured to be 90

As discussed in Section 3, the experiments revealed a listolh effect where the amplifica-
tion factor would change with subsequent sweeps. A testatedeat a lower force level always
indicated aQ much higher than for the first test at that level. We chose ®othe initial sine
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sweep after reestablishing the surfaces for the primary. debhe surfaces were initially cleaned
with alcohol and compressed air during each reset of thacesf

A special assembly fixture, shown in Figure 4.14, was desigmassist in aligning the rollers
with the test specimen and inertial mass. By inserting lagatods through the assembly fixture
and inertial mass, the correct alignment could be achiefxeghge block was machined to set the
longitudinal gap between the test specimens.

Figure 4.14. Assembly Fixture for Rollers.

The amplification factors were measured for each load segufar a given normal force,
which was established by tensioning the cables while obsgihe load in each cable by means
of force transducers. Amplification factors were used to got@a the equivalent viscous damping
ratios, and the results are shown in Figure 4.15, plottedfanaion of the input force. The data
plotted on a log-log scale approaches a straight line, amdltpe of a straight-line fit, denoted by
“s” on the plot legends, was computed, with variation raggnem 0.59 to 0.83. The slope of the
solid-bar damping ratio is essentially zero, indicatingnaar system response over the measured
force ranges.

The amplification factorsQ, are next used in Equatian (3.9) in Section 3 to compute theggn
loss per cycle, and the results are shown in Figure 4.16., terelata show the anticipated straight
line on a log-log plot, indicating a power-law relationshigtween the energy loss per cycle and
the input force for a given normal forc® = kF". The data are fit with straight lines, and the
slopes vary from 2.56 to 2.86. Note that the slope of the di@iddata is almost exactly 2.0, which
is what is expected for a linear system. As a side note, thd bal data support the hypothesis
that bolted interfaces under tension and compressionrgadiissipate very little energy, so the
damping can be modeled as linear, an important outcome.

The data for the energy dissipation are also shown plotted mear scale in Figure 4.17,
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which emphasizes the relative amplitudes of the energydessycle as a function of input force
level. In addition, they show the dramatic increase in enéwgs created by the presence of the
friction interface when compared to the solid bar data. Th& dre also plotted in Figure 4.18
as a function of the nondimensional forée/N, obtained by dividing the input shear force by the
normal force. The data lie within a band, but do not collajpsa $ingle curve, indicating that the
data are not simply a function of the nondimensional forae that other parameters are required
in the relationship between the input force, normal forcel @nergy loss per cycle. It is desirable
to gain more understanding of this relationship with furtsteidy in the future.
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Figure 4.17. Energy Dissipation per Cycle vs Force on a Linear
Scale.
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Time history data were also collected for sinusoidal dwatleesonance. Waveform data were
used to compute the energy loss per cycle through recotistnaf the classical hysteresis curves.
Using techniques discussed earlier in Section 3, the acecetter data were fit with the funda-
mental and seven harmonics. The reconstructed waveformnieggated to obtain the velocity
and displacement. Figure 4.19 shows the traditional hgsigrcurve of force vs relative displace-
ment for 1200-Ib normal force and an input force of 320-lbeTiysteresis curve shows most of
the dissipation occurs near the center of the curve whiletits are very compressed, indicating
small dissipation in these regions. Integration of this/euyrields an energy loss of almost exactly
the same value obtained using the amplification factor inefign (3.9) in Section 3.

Flat Steel, Relative Displacement vs Input Force

1200 Ib Normal Force, 320 Ib Input
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Figure 4.19. Relative Displacement Hysteresis Curve at Reso-
nance.

For the base excited system, another hysteresis curve caam&ucted by plotting the force
vs the absolute motion of the base. As discussed earlishyisiieresis curve should yield the same
energy loss per cycle as the hysteresis curve generatduefoelative motion, because the motion
of the mass is in phase with the force and the only out-of-@hesponse is the base motion. The
energy dissipation per cycle calculations by the three oustlshow very close agreement, as Table
4.1 clearly indicates.

At the fixed-base resonance, the motion of the base to maiatsieady state response with a
prescribed force is very small for a lightly damped systenth@dt an analytical fit of the experi-
mental data, the hysteresis could not be constructed digrtal¢o-noise challenges. Utilizing the
analytical fit, the force vs base motion hysteresis curdesya in Figure 4.20, demonstrate some
intriguing qualities. As discussed earlier, a linear resmowould exhibit an ellipse. However, as
seen in the plot the curves deviate significantly from theeetgd ellipses. The deviation from
a linear response is shown in Figure 4.21, where the data2@d-lb normal force and an input
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Table 4.1. Energy Dissipation per Cycle as a Function of the
Non-Dimensional Force.

Input Force| Q Method | Relative Hysteresis Base Hysteresis
(Ib) (in-1b) (in-1b) (in-1b)
120 1.3426x10% 1.3045x10% 1.2889x10%
180 3.6580x10% 3.5980x10% 3.6247x10%
240 8.3285x10*% 8.1720x10* 8.1645x10*%
320 2.0817x10° 2.0417x10°3 2.0428x10°

force of 320-Ib are plotted with only the component at thedamental frequency yielding an el-
lipse compared with the data retaining all seven harmonitise response. The energy dissipated
is computed by integrating both curves. Very close agreémseachieved, indicating that almost
all of the energy is dissipated at the fundamental frequenlg higher harmonics are a result of,
and contain information regarding, the nonlinear respafsiee system.

Flat Steel, Input Force vs Base Displacement
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Figure 4.20.Base Motion Hysteresis Curves at Resonance.

The techniques and results from this set of experimentbledtahe framework for a number
of subsequent experiments to study variations of the testisgens to investigate the energy dissi-
pation due to microslip in mechanical interfaces. ThesegRrpents demonstrated that the BMD
provided an effective and accurate means for determinimgiiergy dissipation in a frictional joint
in shear.
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Displacement vs Input Force
1200 Ib Normal Force, 320 Ib Input, 337.53 Hz
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Figure 4.21. Comparison of Hysteresis with only Fundamental
and with Harmonics.
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4.2.2 Flat Lap Joint - Stainless Steel on Titanium

Two materials of interest to Sandia National Laboratonmea component bolted connection are
titanium and stainless steel. The BMD was configured withtélst specimens, and a very similar
set of tests as with the AISI 4340 steel specimens was peelbtoimeasure the energy dissipation
per cycle as a function of normal and applied shear forcegefixents were performed to measure
the energy loss per cycle for a sinusoidal input force ovange of loads of 60-, 120-, 180-, 240-,

and 320-Ib peak with a range of normal forces of 800-, 1204, 600-Ib.

Data were collected on a set of specimens that were machoried same specifications as the
4340 steel specimens in the previous section. After eaahdgele, the joint was assembled and
disassembled a total of five times to investigate variahdiftthe results.

The fixed-base resonant frequency of the system varied f@2n®295 Hz depending on the
normal clamping load and excitation level. Energy dissguavs shear force curves are shown in
Figures 4.22- 4.27 for each normal force level, along withast-squares, log-log line. The slopes
with the mean and standard deviation are also shown in TaBle 4
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Figure 4.22. Energy Dissipation of Titanium on Stainless Steel
with 800-Ib Normal Force.
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Figure 4.24. Energy Dissipation of Titanium on Stainless Steel
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Figure 4.26. Energy Dissipation of Titanium on Stainless Steel
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with 1600-Ib Normal Force.
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Figure 4.27. Straight Line Fit of Titanium on Stainless Steel with
1600-Ib Normal Force.

The data were very repeatable at each of the normal forcés|ea® illustrated by the small
standard deviations that resulted. For the titanium anidlets steel specimens, the data show
similar behaviors to the AISI 4340-steel specimens. Thpedof the energy dissipation curves
for both experiments showed a slight increase with deangassrmal force. The measured slopes
for the Ti-SS data are slightly less than those for the AlSIG18teel specimens, likely due to the
difference in frictional characteristics between theatiint materials.

Table 4.2. Comparison of Slopes of Energy Dissipation vs Force
for Steel and Titanium.

Normal Force Ti-SS Ti-SS Slope| AlISI 4340 Steel
(Ibs) Mean Slope| Std. Dev. Slope
800 2.73 0.490 2.86
1200 2.57 0.044 2.74
1600 2.46 0.029 2.66
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4.2.3 Stepped Specimen Experiments

The stepped specimens were originally designed to provida@lraost constant contact pressure
in the interface. This intent was not realized, however. $pecimens are not rigid bodies, but
instead are elastic structures where the localized coatdbt corners of the step in the geometry
creates a very sharp increase in the contact pressure. Aat@mtalysis with ABAQUS in Figures
4.28 and 4.29 illustrate the interaction of the two halvethefstepped test specimen when loaded
with the rollers.

Figure 4.28.Contact Stresses in Stepped Specimen.
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Figure 4.29. Expanded View of Contact Stresses in Stepped
Specimen.

The stepped specimen does not give a constant contact prelsstiprovides a complex pres-
sure distribution that may provide insight into the beheviaf threaded and tape joints. As shown
in Figure 4.30, the thread engagement in a threaded joiméstiae feature that the contact patch
terminates at an edge.
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Figure 4.30. lllustration of Localized Contact in a Threaded
Joint.

The same normal force and input shear force load levels wezd for tests on the stepped
specimens as for the previous experiments with the flat spaws. After each load cycle the joint
was assembled and disassembled five times to investigaabity of the results, which are shown
in Figure 4.31. The range of the resonant frequency was frfe2nH to 270 Hz, depending upon
the normal and input force levels. The slopes of the energgipition curves, approximately 2.8,
are clearly higher for the stepped steel specimen than édtdhsteel specimen, approximately 2.5.

Presumably this is due to the dramatically different nortreadtion distributions in their respective
contact patches.

_1 4340 Steel Stepped Specimen 800,1200,and 1600 Ib Normal Force
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Figure 4.31. Stepped Specimen Results.
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4.2.4 Curved Specimen Experiments

The curved specimen was designed to provide a different ¢fpmontact pressure that would
minimize edge effects and approach a classical, Hertz@tact condition. Half of the specimen
was machined with a 10-in radius while the other half was flahe special assembly aid to
position the rollers proved critical in the alignment of ttedlers with the curved specimens. As
on the previous experiments with the flat and stepped spesinttee same normal force and input
shear force load levels were used in the tests on the cuneminsens. Similarly, after each load
cycle the joint was assembled and disassembled five timeségtigate variability of the results.
The resonant frequency ranged from 270 Hz to 285 Hz, depgnugion the normal and input force
levels. The results, shown in Figure 4.32, demonstrate nitieipated trend of increased energy
dissipation with decreasing normal load. The slopes of tieggy dissipation curves for the 1200-

Ib and 1600-Ib normal forces were the same (3.06), whilesters a substantial decrease for the
1600-Ib normal force (2.48).

14340 Steel Curved Specimen 800,1200,and 1600 Ib Normal Force
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Figure 4.32.Curved Specimen Results.

4.2.5 Comparison of Flat, Stepped, and Curved Test Specimsn

One of the objectives of the experiments on the BMD with rsliwas to change the parameters
of the joint and observe changes in the energy dissipati@nfasction of normal force and input
shear force. Comparisons of the results from the previodisscribed experiments for the AlSI
4340 steel, flat, stepped, and curved test specimens areshdrvigures 4.33- 4.36. The energy
dissipation for the flat specimen is substantially less tloarithe curved and stepped specimens.
Note that the computed slopes of the energy dissipationaslsodifferent, which is likely a result

of the different contact pressure distributions, even ¢fiothe total normal force is the same in
each of the joint geometries.
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Curved, Flat, and Stepped Specimens, 1600lbs Normal Force
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Figure 4.33. Curved, Flat, and Stepped Specimen Results with
1600-Ib Normal Force.
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Figure 4.34. Curved, Flat, and Stepped Specimen Results with
1600-Ib Normal Force Linear Plot.
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Figure 4.35. Curved, Flat, and Stepped Specimen Results with
1200-Ib Normal Force.
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Figure 4.36. Curved, Flat, and Stepped Specimen Results with
800-Ib Normal Force.
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Table 4.3. Comparison of the Slopes of Energy Dissipation
Curves vs Force.

Normal Force| Flat Specimen Stepped SpecimenCurved Specimer
800 2.86 3.00 3.06
1200 2.74 2.83 3.06
1600 2.66 2.81 2.48

The results are somewhat puzzling because it was initigticipated that the flat lap joint
would dissipate more energy than the more localized contauditions of the stepped and curved
specimens. We hypothesized that the asymptotically deicrgaormal pressure for the flat speci-
men in regions removed from the normal force line load pregitly the roller would allow more

microslip to occur per unit of shear force.

During assembly of the specimens, we noticed that the oedlcontact for the stepped and
curved specimens provided less bending stiffness of tim $oi that the inertial mass could more
easily rock. We speculate that there may be more bendingracticcurring in these joints that
can modify the contact conditions and lead to increasedygrdissipation. Further investigations
through models and experiments are needed to reconcilétieedces. We recommend that in the
future, accelerometers should be used to measure thel laterderations of the mass that would

generate moments in the joint.

The results for the computed slopes are listed in Table 4.3.
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4.2.6 Dynamic Stiffness Calculations

Frequency measurements of an SDOF system such as the BMDetduary effective global stiff-
ness of the test specimen, jointed interface, and the specattachments to the mass and the
shaker, by using the frequency equatior= (k/m)%/2. The change in the frequency as a function
of the input shear and/or normal force can allow the changgifimess to be calculated. Exper-
iments with the solid equivalent structures have shownttiastiffness of the specimens and at-
tachment interfaces (tension/compression) to the mastharshaker are linear and do not change
appreciably with input force. Therefore, the change infretgs as a function of the normal and
input shear force is associated with the interface joifitsAn example of this effective stiffness
calculation is shown in Figure 4.37. Knowledge of the sotjdigalent specimen frequency allows
the stiffness of the joint itself to be calculated by sultirarthe difference compliances of the
jointed and non-jointed specimens. The decrease of eftestiffness with shear load is illustrated
for the cases of stepped and curved specimens in Figure Bh&#esponse of flat specimens (not
shown here) is similar to that of curved specimens.

Comparison of Effective Stiffness for Curved and Stepped Specimen
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Figure 4.37.Effective Stiffness Calculations.

4.2.7 Surface Roughness Studies

We configured a series of experiments with the BMD to inveséghe effect of surface roughness
on the energy dissipation of a simple shear interface. Ariggte to provide a uniform (isotropic)
roughness in the contact region was desired. Typical maxhiaind grinding operations leave
variations and directionality across the machined surtiagemight create further unknowns in the
contact conditions.
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After some research we determined that the Electric DigghBfachining (EDM) technique
could provide a very uniform surface roughness. Furtheemtbre roughness could be changed
over a large, selectable range by adjusting the EDM proceshié material of interest. Stepped
test specimens were prepared with three target roughness termed as “fine”, “medium”, and
“rough”. Subsequent laser profilometer measurementsrdeted that the surfaces were indeed
uniform in all directions. The measured average roughnases were 75-, 180-, and 38@bn rms
for the fine, medium, and rough specimens, respectivelysd heughness values were higher than
planned, but still provided a large range for study. A typstapped specimen with the “rough”

surface is shown in Figure 4.38.

Figure 4.38. Stepped Steel Specimen with EDM Generated
Roughness.

The stepped steel specimens with the roughened surfacesoeefigured and tested in the
BMD over the same range of inputs and normal forces used éoptdvious experiments. Results
from the experiments are shown in Figures 4.39 - 4.41. A<ipatied, the energy dissipation
increased with decreasing normal force for all the surfacgyhness values, but was more pro-
nounced for the roughest surface. The comparison of thegmissipation curves for the three
roughness levels at 1600-Ib normal force is shown in Figu4é.4The “rough” specimen, as ex-
pected, dissipated substantially less energy at all imreeflevels. The comparison between the
“medium” and “fine” results show that at low force levels thedium roughness specimen dissi-
pated less energy than the fine, but at the highest force (826l1b) the dissipation is essentially
equal.

The experiments with the BMD provided some interesting expental results comparing
EDM-processed test specimens at three levels of roughh#ssecommend that flat specimens
be used in the future for similar surface roughness evalnsti The stepped specimens have lo-
cal contact conditions with strong edge effects that cowlskfbly obscure the effects of the sur-
face roughness. Future work in this area that may prove kbduaould be to perform similar
experiments with the surfaces prepared with various mauiand grinding operations. These
operations will leave various types of anisotropy of theul@sg surfaces, which will modify the
effective contact area/pressure between the surface®ooftaontact pressure film measurement
techniques (see Section 9) can be used to understand thingesontact between the specimens
after the machining operations. Subsequent measureniethis energy dissipation as a function
of input shear force and normal force along with the measarerof the effective joint stiffness
could provide valuable insight into the constitutive modeVvelopment for bolted joints.
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Figure 4.39.Experimental Results for Fine Finish Specimen.
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Figure 4.40.Results for Rough Finish Specimen.
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1600 Ibs Normal Force: Specimens 2 (Fine), 4 (Medium), and 6 (Rough)

[

Blue - Fine Finish Q
Red - Medium Finish
Green - Rough Finish

Energy Loss per Cycle (inch-lb)

- GD

10'5 L L “““\2 L L “““3
10 10 10

Force(lbs)

Figure 4.41. Comparison of Three Roughness Levels at 1600-Ib
Normal Force.
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4.2.8 Aluminum-on-Aluminum Lap Joint Experiments

Similar experiments on aluminum-aluminum lap joint speams were attempted using the BMD
with rollers, but were not successful. The aluminum spensneould quickly gall and, on some

occasions, would completely lock together. An example dbse galling is shown in Figures 4.42
and 4.43. Steady state testing with sine wave excitatiaritbraduces thousands of cycles of load
to the interface will always be prone to complications ofiggl We recommend that if aluminum

on aluminum joints are to be explored, transient loadinga tumbbell test configuration, as
discussed in Section 5.1, be used because estimates ofdtyy elissipation can be provided with
fewer loading cycles in the joint.

Figure 4.42. Example of Galling of Stepped Aluminum Speci-
mens.

Figure 4.43.Example of Galling of Flat Aluminum Specimens.
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4.3 Lessons Learned

As with any experimental research project, lessons leaah@ty the way illuminate previously
unknown issues and correct assumptions made at the begioirtime project. Some of the lessons
learned with the BMD testing with rollers are listed below.

4.3.1 Inadequately Sized Shaker for the BMD

For the BMD experiments a small 400-Ib force rated shakehn wismall 10-lb armature (mov-
ing element) was used initially (Figure 4/44). The assuamptt that time was that the lighter
moving element and its suspension system would have less effi the experiment than a larger
shaker with a 100-Ib moving element and a 25,000-Ib fordagatAt the resonance of the BMD,
the dynamic mass of the system overwhelmed the smaller skakspension and trunion system,
causing side loading of the moving element and vibratiohefhaker body and base. This combi-
nation created undesired boundary conditions at the slagtieehment and led to very inconsistent
results. Upon configuring the support frame for the BMD witlai@e shaker that is designed to
test items weighing a few hundred pounds, we obtained farsupest results. If a concept simi-
lar to the BMD is employed, then we recommend that a shakearfbEgnt size be used to manage
the dynamic response of the BMD.

Figure 4.44.BMD on Small Shaker.
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4.3.2 Test Control Errors

Test control anomalies utilizing sine wave excitation orgéashakers can lead to damaged test
specimens before system shutdown. If the input shear fotceeels the macroslip force in the
joint, then many cycles of macroslip can occur, creatingrise internal heating and wear.

In closed-loop, feedback control systems, the controlstlaner sensitivity must be correctly
established or the control system will run the test at thengrevel. An example of the results
of the control system increasing the drive beyond the dedeeel into the macroslip regime is
shown in Figure 4.45. As seen the surfaces of the very highgth AISI 4340 steel were severely
damaged. The specimens are expensive to fabricate so wamesnd a thorough check of the
instrumentation and the channel sensitivities provideti¢occontrol system before testing.

Figure 4.45.Damaged Test Specimens.

4.3.3 Test Specimen Alignment

The alignment of the test specimens in the BMD is critical ¢bieving accurate and repeatable
results. As discussed in the description of the BMD, we usddsprings to support the inertial
mass and to account for small misalignment errors betwetwit halves of the test specimen. If
a more crude alignment is made before loading the cableseoroliers then asymmetric suspen-
sion forces will be in play and can affect the results. We meo@nd that assembly fixtures and
alignment aids be employed with the use of the BMD concept.
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4.3.4 Differencing Raw Accelerometer Signals

Several unsuccessful attempts were made to measure thger@lsplacement across the joint
by placing accelerometers on either side, computing th#ardnce and then integrating the re-
sult. The accelerometer arrangement consistent with gesoach is shown in Figure 4.46, where
accelerometers are identified by the twisted pair wirechéd to them. The uncertainty in the
calibration values (approximately 5%) and the alignmerdrsrof the accelerometers create bias
errors in the computed relative accelerations that canrbea@ry large errors during integrations.
The instrumentation noise is also problematic, partidylmr small acceleration measurements.
Also, phase differences between channels (includes aocedter, signal conditioning amplifiers,
and digitizers) can create large errors in the calculatodrise relative displacements.

Figure 4.46.Relative Acceleration Measurements.

4.3.5 Utilize Contact Pressure Film to Measure Interface Ressure Distribu-
tion

We recommend that as part of any experimental program iigestg microslip in mechanical
interfaces, the actual contact pressure realized in tim lp@ measured. As will be discussed in
Section 9, the assumptions regarding the contact condionbe very misleading. The use of
pressure sensitive film can easily provide insight and quidan the test setup to establish the
desired pressure distribution, and can also be very vaualassist in the development of models
for a particular joint. This information would be very uskfuthe experiments utilizing the rollers
with specimens of different geometry to aid in the interatieih of the results and the diagnosis of
improper test setup alignments.
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4.3.6 Summary of Lessons Learned

The BMD with rollers has been demonstrated to be a versatieapparatus to investigate mi-
croslip in a single interface without the presence of a b&kperiments can be configured to
change many parameters of interest in the interface sucbrasahforce, contact geometry, sur-
face roughness, lubrication, etc. The use of the BMD at thegifixase resonance allows the well
known properties of mechanical resonance of an SDOF sysieraltulate the energy dissipa-
tion per cycle and the effective stiffness of the joint. Tise wf a solid equivalent test specimen
(non-jointed specimen) allows the other contributionshte énergy dissipation and stiffness to
be identified so that contributions of the joint can be issdatThe BMD can also be configured
without the rollers to test bolted specimens, as discuss&edtion 4.4.

4.4 Big Mass Device Dynamic Sinusoidal Experiments with Btéd
Specimens

The BMD can be configured to test bolted test specimens (wittalers) and has proved to be
very useful in bolted joint investigations. The bolted jptest specimen hardware can be designed
to attach to the inertial mass and the shaker adapter plateintent of the test configuration is to
design a test that approximates a base-driven SDOF systamfast resonance. Subsequently, all
of the analysis tools for sinusoidal vibration describethmprevious sections are applicable. Vari-
ations of the BMD concept can be tailored to the type of bottehection(s) being investigated.
For example, the mass and geometry can be selected to peopaiticular frequency and/or force
level of interest. Concepts to put an additional spring leetwthe shaker and the shaker adapter
plate can also be used to tune the frequency while keepingnéiss constant. The applications of
the BMD described thus far in this document were designeddaige the cleanest possible, axial
motion of the mass to preserve one-dimensional loadingeojdimt. The experiment can be con-
figured to provide more complex loadings by designing thengeoy of the test specimens so the
joint interface is not coincident with the line of action b&tforce. An example of this arrangement
is discussed later for an inclined lap joint. Use of a solidhealent joint can be very successful in
isolating the energy dissipation and the stiffness of tivé fjoom the rest of the system.

4.4.1 Flat Specimens with a Single Bolt

A logical extension of the flat lap joint studies without Isak to repeat the experiments, but incor-
porate an actual bolt. The flat lap joint used in the previdudysis modified to include a drilled
clearance hole for a 3/8-in bolt so that the fastener in teeggecimen would be centered at the
same location where the rollers had been. An instrumentkd3i8-24 UNF) is then used to bolt
the two halves of the test specimen together with a knowropcel The experimental setup in the
BMD with the bolted connection is shown in Figures 4.47 [ad@4The instrumentation remained
the same as earlier studies, with a piezoelectric force gadea piezoelectric accelerometer (not
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shown because it was on the bolt head beneath the force gatyeated on the centerline beneath
the test specimen. A piezoelectric accelerometer is alsoepl on top of the mass near the cen-
ter. An additional accelerometer for monitoring purposeattached near the bottom of the test
specimen.

Figure 4.47.The BMD with Bolted Flat Steel Specimens.

Experiments similar to the previous experiments with tHkers are performed to measure the
energy dissipation per cycle for a sinusoidal input overreyeaof loads of 60-, 120-, 180-, 240-,
and 320-Ib peak. In the first set of experiments, the bolgisténed without a washer beneath the
head or nut of the bolt, and is adjusted at two preload leviel200- and 1600-Ib. The frequency
of the first axial resonance ranges from 318 Hz to 332 Hz, ddipgrupon the input force level
and the bolt preload. The energy dissipation per cycle wefoesults for 1200- and 1600-Ib bolt
preloads are shown in Figure 4.49. The energy dissipatioreswvith the bolt look very similar to
those developed for the test specimens with the rollerdaléatvs a similar power-law relationship
F = kD", evidenced by the straight-line fit with a sloperofvhen plotted on a log-log scale. The
energy dissipation is very sensitive to changes in the velbpd and significantly increases with
decreasing normal force (bolt preload). This is obviousmie data are plotted on a linear scale
in Figurel 4.50, where at 320 Ib of input force the energy gatson for the 1200-Ib bolt preload
is more than twice that for the 1600-Ib bolt preload. The Entharacter of the results between
the bolted and bolt-free joints is evidence that the undeglgharacter of the microslip process
remains the same whether the microslip is occurring in alsimgerface or simultaneously in
multiple interfaces with varying contact conditions.
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Figure 4.48.Close-Up View of a Bolted Specimen in the BMD.
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Figure 4.49. Bolted Flat Specimen with 1200-Ib and 1600-Ib
Bolt Preload.
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Figure 4.50. Bolted Flat Specimen at 1200-Ib and 1600-lb Bolt
Preload with Linear Scale.
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4.4.1.1 Effects of the Addition of a Washer

To further explore the effect of multiple interfaces in thadtbd joint, a plain flat washer is inserted
beneath the nut, and the experiment is repeated with a kaudt d6 1600 Ib. As seen in Figure
4.51, the addition of a single washer substantially in@sdke energy dissipation and the slope
of the fitted line. To further illustrate the substantialeeff of the washer, the energy dissipation
curves are plotted on a linear scale in Figure 4.52. The poesef the washer provides two
additional slip interfaces that participate in the micipgrocess, causing increased microslip per
unit of applied input force while maintaining the preloadstant. While this limited study does
not widely address the effects of bolts/nuts/washers dbelts do show that the BMD provides an
effective tool for quantitatively investigating dissipat and other effects.
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Figure 4.51. Bolted Flat Specimen at 1600-lb Bolt Preload with
and without a Washer.

In future studies, the analysis techniques discussed ipidgous sections might prove to
be very useful to explore the effects of various washers, (fi@k, coated, etc.) and nuts (hex,
flanged, etc.) on the loading response of different joints particular, the computation of the
nonlinear restoring force for various configurations anal@ation of changes to the shape of the
function could provide insight into methods of modelingtedljoint behaviors.

4.4.1.2 Comparison Between BMD with Rollers and with Bolts

To further explore the effects on the energy dissipationlwdléed joint, the results of the previous
study with the rollers providing the normal force are congglawith the results with the bolt.
The energy dissipation curves shown in Figures 4.53/ and digglay some interesting results
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Figure 4.52. Bolted Flat Specimen at 1600-lb Bolt Preload with
and without a Washer - Linear Scale.

considering the contact pressure differences of the sodlied of the simple bolted joint. The energy
dissipation curves at 1200-lIb normal force are similar,vaith slightly different slopes, showing
that the bolted joint dissipated more energy at higher ifipide levels. The energy dissipation
curves are surprisingly close to each other, with the rdédaded joint dissipating slightly more
energy at higher force levels, and the bolted joint sligitigre energy at the low force levels.
These experimental results confirm that the microslip peseems to be similar in all interfaces
regardless of the contact conditions and number of intesfadhe magnitudes and slopes of the
resulting energy dissipation curves may vary as a functidhenjoint properties but the underlying
power-law behavior appears to be a characteristic of tmtgaitudied thus far.

4.4.1.3 Summary

The success of the experiments with the BMD with the bolted,I#ip joint specimens provided
the framework to investigate other bolted connections s Tést technique is demonstrated to be

robust, reliable, and repeatable, while providing valead#tails in the dynamic behavior of the
bolted joint.
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Figure 4.53. Flat Specimen with Rollers and with Bolt and Nut
for 1200-Ib Normal Force.
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Figure 4.54.Flat Specimens with Rollers and with Bolt and Nut
for 1600-Ib Normal Force.
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4.4.2 AOS, Single-Leg, Bolted Joint - Inclined Lap Joint
4.4.2.1 Motivation

A particular bolted joint of interest at Sandia is the conimecof the System A, AOS unit to the
base attachment location of System A. The AOS is connect#tetbase attachment location by
three, discrete, inclined lap joints. These connectionsige the only mechanical load paths to
the AOS, so its dynamic response is strongly dependent e thalted joints. Two separate ex-
perimental studies analyze these joints. The [49]emssscoping experiments for evaluating
the joint with the BMD and the sinusoidal techniques devetbm the previous sections. These
experiments establish the experimental approach for t@nskproject, which is the first step (cal-
ibration) in an integrated model calibration and validateemonstration for a whole-joint model
(Chapter 12) for System A, AOS bolted joint. The second stejpidation) in the calibration and
validation project is discussed in Section 5.2.12.

4.4.2.2 Energy Dissipation Experiments

The initial series of experiments involves the investigasi of a single set of hardware that incor-
porates the local geometry of the AOS bolted joint and ada¢b the BMD. Because the hardware
for this joint experiment represents one leg of the threggdel attachment of the AOS, it is titled
the “single-leg” test specimen. The materials of the two fers of the joint are titanium and
stainless steel for the lower and upper portions respdgtigad the alloys are the same as those
used in the actual component hardware. The two pieces ofrigeedeg hardware disassembled
and assembled are shown in Figures 4.55/and 4.56. A 1/4-32)UBIB-in long mil-spec bolt
(MS9566-06) is used. This fastener is a special, flangedlseta steel bolt that does not require a
washer. During the assembly of System A, AOS parts to thedmtwnount hardware, measure-
ments of the vertical gap between the base of the AOS anddk@fdhe base attachment location
could range from a few thousandths of an inch to a light cdrtandition. This vertical gap is
shown in an expanded view in Figure 4.57. Experiments arfeimeed with a gap of 0.010 in and
with the gap closed to investigate the effect on the energsgigiation. The over-sized hole in the
base attachment location allows significant variation igrathent to occur unless efforts are made
to minimize the effect. The over-sized hole in the leg andititeraction of the interface and the
bolt head with the hole is the suspected major source ofti@mian the response of the system
from assembly-to-assembly of the same joint.
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Figure 4.55. A0S Single-Leg Test Specimen.

Figure 4.56.A0S Single-Leg Test Specimen with a Bolt.
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Figure 4.57.Expanded View of the Vertical Gap.
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The experimental setup with the single-leg specimen asgehibto the BMD is shown in
Figure 4.58. The same instrumentation, shaker, and cosysdém are used as in previous BMD
experiments. A piezoelectric force gage is used beneatkeiiespecimen to measure the input
force, and piezoelectric accelerometers are used to ne#seiaccelerations of the base and the
mass. The excitation for the experiments is provided withoal® T1000, Unholtz-Dickie, electro-
dynamic shaker. A Spectral Dynamics, Model 2552, Vibra@amtrol System is used to generate
and control the excitation waveforms used in the experiment

Figure 4.58. Experimental Setup in the BMD.

Experiments are performed to measure the energy loss pler foyca sinusoidal input force
over a range of loads of 60-, 120-, 180-, 240-, and 320-Ib pedtk the specified torque of 85
in-Ib resulting in a calculated normal force of approxinate700-lb. The fixed-base resonant
frequency of the system ranges form 269 to 278 Hz, dependirieexcitation level, and varies
slightly for each assembly of the bolted connection. Theldoge ratio (transmissibility) of the
acceleration of the mass and the acceleration of the basericalculated to determine the ampli-
fication factor Q). A constant-bandwidth (10Hz), digital tracking filter isad with a linear sweep
rate of 0.50 Hz/s in the signal processing to compgtd he amplification factor was established
at the frequency where the phase angle is measured to’be 90

Data are collected for a total of nine load cycles, each ottimvolves cleaning the contact
surfaces, reassembling the joint, and then performing gsvateach of the five force levels. The
graph of energy loss per cycle data vs force for the nine axeits is shown in Figure 4.59 in
a log-log plot that highlights the straight-line charaatéthe data. This straight-line relationship
indicates that there is a power-law relationship betweenetiergy loss per cycle and the input
force,D = kF". The data are also shown on a linear plot in Figure |4.60 thestibtes the strong
dependence of the energy dissipation on input force.
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At each force level that energy loss is measured, a 20 - 30 Pdinar is observed (when exper-
iment number four, which shows much less dissipation tharother experiments, is neglected).
It appears that the system was “locked-up” for the fourthltidbut for subsequent experiments
returned to similar levels as previously measured. The sladav that even though the same set
of hardware is used in all experiments, variations due teatgal disassembly and assembly can
comprise a significant amount of variation in the energy.lé3gther, experiments with multiple
test specimens, as discussed in the next section, showdhatbgpart variability of the energy
dissipation for test specimens machined to the same s@gwfis is typically much larger than
the assembly variation of one set of hardware. The slopgsecénergy curves in Figure 4,61 are
determined by a least-squares linear regression to eachi tbet log-log data, and are found to be
very repeatable: the average slope is 2.429 with a standadtobn of 0.05218. This indicates
that although the overall amplitude of the energy loss may 2@ - 30 %, the slope of each energy
curve is very repeatable.

= AF&F Single Leg? Results 10 mil Gap 85 in-lb Fitted Curves
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Standard Deviation = 05218
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— dataZ slope = 2.4539
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Figure 4.61. Slopes of a Straight Line Fit to the Energy Dissipa-
tion Data.

4.4.2.3 Solid Single-Leg Experiments

A similar set of experiments is performed for a geometncaléntical, solid-leg made of stainless
steel with no frictional interface. (Figure 4/62) The puspmf the experiments is to establish a
lower limit for the unaccounted loss mechanisms in the erpart and to allow the contribution
due to the joint to be identified. The solid-leg will not halie same stiffness as a single, solid-leg
composite (both titanium and stainless steel - physicallydssible to construct), but the internal
material damping character of both stainless steel andiditais very low and well below the
damping introduced by a bolted interface. The effectivingss of the joint becomes more difficult
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to compute, as the stainless steel, solid-leg does not leveame stiffness as would a solid
specimen of titanium and stainless steel. Because therlp@d@ion of the stiffness is due to
the elastic behavior of the two members of the specimen, te felement representation of the
two members could help provide an estimate of the lineainstt that would then allow the
contribution of the stiffness of the joint to be estimated. the future, a technique needs to be
developed so that the contribution of the joint to the enadipgipation and the effective joint
stiffness can be calculated when the joint members areréiftenaterials.

Figure 4.62. Experimental Setup of the Solid, Stainless Steel
Leg.

The results for the solid single-leg are shown in Figure 4083ive load cycles. The measured
natural frequencies for the solid-leg experiment rangenfB62 to 364 Hz, considerably higher
than the (softer) jointed single-leg whose natural fregieshrange from 273 to 278 Hz. These
frequency differences illustrate the reduction in stiffmen a bolted joint vs a solid geometry.
The data for the solid single-leg are very repeatable, asinig expected from a linear structure
without the uncertainty of a bolted connection. The dataapfollow a straight line with a slope
of two, as seen in previous testing of solid equivalent,dmstructures. The solid and jointed
single-leg data are plotted together in Figure 4.64. Tha sladw the significant increase in energy
dissipation introduced by the presence of the bolted cdiorecand the difference in slopes of
the energy curves between the two systems, resulting in mgokased energy dissipation for the
jointed connection as the input force increases.
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4.4.2.4 Load History Effects

The experiments demonstrate load history effects thatlacereted in simple, lap joint experi-
ments discussed previously. The amplification fac@rincreases with the number of vibration
cycles. When the bolted joint is disassembled and reasseimbth the same torque, the system
returns to a similar starting point with a lower amplificatifactor (higher damping) and then fol-
lows a similar trend of decreasing damping. A total of sewgreements are performed with an
input force of 120 Ib. For each experiment, a total of fouuswidal sweeps are performed, and the
equivalent viscous damping rat{o~ Zi is computed and plotted as a function of the cumulative
number of vibration cycles in Figure 4.65. The equivalemhdang ratio decreases asymptotically
as the number of cycles of vibration increases. The meareafdla decreases from approximately
0.4 to 0.3% of critical damping over approximately 28,00@leg of vibration (approximately 2
minutes at 275 Hz). This is a change of approximately 25%eérddimping ratio.
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Figure 4.65.Load History Dependence of Single-Leg Damping.

It should be noted that the change in damping associatedtetfirst few thousand cycles is
not captured in this data due to the vibration control sy&elelay in bringing the excitation to the
desired level before starting the sine sweep through resend here are thousands of load cycles
provided to the joint before the first sweep is completed. ffémesient experiments in the dumbbell
configuration discussed in Section 5.3 for a similar joimdvgla more dramatic decrease in the
energy dissipation after the first few transient ring-dowhthe structure. The energy dissipation
data reported in this section is based on the response dterfgst sweep through resonance.
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4.4.2.5 Base Hysteresis Measurements

The nonlinear response of the single-leg experiment ibéuinvestigated by computing the force
vs base hysteresis curves. As discussed in Section 3, thehateresis curve developed at reso-
nance provides a sensitive measure of the nonlinear respdiise system.

The Fourier coefficients of the base acceleration, inpufoand inertial mass acceleration are
obtained by fitting a best, least-squares fit with a sum of @ishifted sinusoids at the fundamental
frequency and higher harmonics. It is found that maintgrire fundamental and five harmonics
is sufficient to represent the accelerations and the inpaefoVery little is gained by including
yet higher harmonics. The Fourier coefficients indicaté tihe second harmonic is very strong in
the base motion, which is an indication of asymmetrical orobetween tension and compression
of the joint. Asymmetrical waveforms tend to require the iidd of even harmonics for their
Fourier series representation, in contrast to symmetviealeforms that may require only odd
harmonics. A typical set of Fourier coefficients for the baseeleration is shown in Tahle 4.4.
Note that the amplitude of the second harmonic (twice thguieacy of the fundamental) is higher
than the fundamental amplitude. Due to the inclined interfaith respect to the line of action of
the input force, the asymmetry between tension and conipreasses from at least two effects:
the difference in the joint stiffness between tension andme@ssion, and the normal traction is
significantly higher on the compression part of the cyclergby increasing the resisting frictional
force in the interface. (These two effects may actually be #spects of one phenomenon.) The
corresponding Fourier coefficients for the input force andeteration of the mass are given in
Table 4.5 and Table 4.6.

Table 4.4. Fourier Coefficients of Typical Base Acceleration for
the 60-Ib Force Input.

Harmonic # Frequency Acceleration Ampli- | Phase
(Hz) tude (Radians)
(9)
1 (Fundamental) 2.79E+02 1.60E-03 -90.23E-01
2 5.57E+02 3.08E-03 -2.49E+00
3 8.36E+02 4.74E-04 3.84E-01
4 1.11E+03 4.74E-04 -2.86E+00
5 1.39E+03 1.73E-04 -2.84E+00
6 1.67E+03 3.17E-04 -2.37E-01
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Table 4.5. Fourier Coefficients of Typical 60-Ib Force Input.

Harmonic # Frequency Force Amplitude Phase
(Hz) (Ib) (Radians)
1 (Fundamental) 2.79E+02 6.02E+01 6.43E-01
2 5.57E+02 7.13E-01 2.98E+00
3 8.36E+02 2.11E-02 -2.15E+00
4 1.11E+03 5.08E-03 3.88E-01
5 1.39E+03 2.85E-03 3.45E-01
6 1.67E+03 1.81E-03 9.95E-02
Table 4.6. Fourier Coefficients of Typical Mass Acceleration for
the 60-Ib Force Input.
Harmonic # Frequency Acceleration Ampli- | Phase
(Hz) tude (Radians)
(9)
1 (Fundamental) 2.79E+02 3.21E-01 -2.50E+00
2 5.57E+02 3.81E-03 -1.64E-01
3 8.36E+02 1.00E-04 6.72E-01
4 1.11E+03 2.51E-05 2.37E+00
5 1.39E+03 2.85E-05 -1.77E+00
6 1.67E+03 3.10E-05 -2.78E+00
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The reconstructed time histories using the Fourier coefiisi are calculated by summing the
harmonic components

alt) = % A sin(27ik fot + ¢) (4.1)
K=1

where Ay is the amplitude ok component,
fo is the fundamental frequency,
and @ is the phase df!" component.

The reconstructed time histories for the force, mass aat@ea, and the base acceleration are
shown in Figures 4.66/- 4.68. Note that the harmonic distortif the force and mass accelera-
tion are minimal, while the harmonics in the very small baseeteration are very pronounced.
The nonlinear behavior of the joint experiencing microsipnuch more apparent in the small
base acceleration than in the mass acceleration or forceewhe linear portion of the response
dominates the small, nonlinear component. The harmoniortiisn in the displacement decreases
rapidly with increasing frequency because, for a given lacagon, the corresponding displace-
ment decreases as a function of the square of the frequency.

Fourier Reconstruction of Fitted Input Force
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Figure 4.66.Reconstructed Input Force.
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Figure 4.67.Reconstructed Mass Acceleration.

Fourier Reconstruction of Fitted Base Acceleration
0.0 . . . : : . . . .

0.008 - 4

0.006 - b

0.004

0.002

0

-0.002

-0.004 - A

-0.006 4

-0.008 4

-0.01

1 1 1 1 1 1 1 1 1
0 0002 0DD4 DODG 0005 001 0012 0.014 0016 0018 0.02
Time(sec)

Figure 4.68.Reconstructed Base Acceleration.
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Utilizing the analytical fit to the measured signals, thee®vs base motion, hysteresis curves
were computed for both the solid and jointed legs for setbekperiments. Because the linear por-
tion of the response to a harmonic input is contained in thparse at the fundamental frequency,
the force vs linear portion of the base displacement sholatdgs an ellipse for a linear system.
Deviations from the ellipse are an indication of the nordineesponse. Typical force vs base mo-
tion, hysteresis curves are shown for 60- and 320-poundsroéfin Figures 4.69 and 4.70. The
solid-leg hysteresis curves are much more elliptical thase for the jointed leg. The area within
each curve is a measure of the energy dissipated per cycte.thosignificant difference in area
for the jointed leg compared to the solid-leg. The asymmettize response between compression
and tension is also very evident in the plot. The loop showthénhysteresis curve for the 320-1b
input force level is due to the large, second harmonic corapbthat increases with increasing
input force level. This loop indicates that energy is adyua¢ing recovered during this part of the
response cycle and is further indication of a nonlinear rap@m in the experiment.

AF&F B0 Lb Sweep
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— Solid Leg
— Jointed Leg
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Figure 4.69.Force vs Base Displacement Curves for a 60-Ib Sine
Input.

The energy loss per cycle was computed three ways for sdl&ude cycles. The first tech-
nique utilizes the measurdg at resonance. The second uses the derived Fourier coefi¢aan
the mass and base accelerations to compute the relatiaaispent, and integrates the force vs
relative displacement, hysteresis curve. The third tepuses the derived Fourier coefficients of
the base acceleration to integrate the area under the fericase displacement, hysteresis curves.
A typical comparison of the computed energy loss per cy@enfthese techniques is shown in
Table 4.7. The calculations usi@gat resonance yield numbers that differ by as much as 12% at
the higher force levels, compared to those computed by thikads that involve fitting the force
and acceleration signals and computing the hysteresigsumhe method utilizing the amplifica-
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Figure 4.70. Force vs Base Displacement Hysteresis Curves for

320-Ib Sine Input.

Table 4.7.Comparison of Energy Dissipation per Cycle Calcula-

tions.
Input Force Resonance Q) Force vs. Relative Dis-| Force vs. Base Displacet
(Ib) (in-1b) placement ment
(in-1b) (in-1b)
60 3.805E-05 3.683E-05 3.768E-05
120 1.956E-04 1.893E-04 1.893E-04
180 5.207E-04 4.907E-04 4.905E-04
240 1.066E-03 9.759E-04 9.755E-04
320 2.242E-03 1.958E-03 1.957E-03
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tion (Q) at resonance assumes all of the energy is dissipated atridarhental frequency of the
excitation. As discussed in Section 3, if harmonic distortexists on both the base acceleration
and the force, then energy can be dissipated (or recoveydtghigher harmonics. The loop that
occurs in the hysteresis curves represents energy beirgl&othe system and must be subtracted
from the total energy calculated by using only the fundamlenéquency. The results for the flat
lap-joint discussed in Section 4.1 with a much more symmaitstiffness, did not show this loop,
and all three techniques yielded much closer results foetteegy dissipation.

4.4.2.6 Further Investigations of Nonlinear Response of 8gle-Leg Joint

The results of the AOS single-leg bolted joint studies proadpadditional analysis by Hunter
[56] to investigate the nonlinear behavior observed in gsponse of the system. The approach
expanded upon the techniques discussed in Section 3.1dwlat@l the nonlinear restoring force
of a bolted joint. A least-squares estimate, utilizing timalgtical representations of the base
acceleration, force, and mass accelerations of the lireéiop of the restoring force was computed
and removed from the total restoring force. The computedimesr restoring force at the five input
force levels for a typical set of single-leg data is showniguFe 4.71.

Force with linear removed vs. Velocity and Displacement break number 0

25~

20

displacement in

velocity infsec

Figure 4.71.Nonlinear Restoring Force of a Single-Leg.

Based on the orbital nature of the restoring force curvesitéticonverted the curves to polar
coordinates and fit the restoring force surface using adio@abination of five harmonic terms as
givenin Equation (4.2). The resulting surface fit to theagag force is shown in Figure 4.72. This
surface fit interpolates the measured trajectories angdietines the nonlinear restoring force that
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can allow candidate joint constitutive models and numésitaulations of the nonlinear restoring
force and system response to be evaluated.

Fmest= nfcn (r)sin(n@) +dp (r)cos(nb) (4.2)
=

where r = radius of query velocity, displacement.
6 = angle of query velocity, displacement.
cn(r), dn(r) = Fourier coefficients as a function of radius.
Cn(r) = Cn (1) +Cn(2)r +Cn(3)r2+cn(4)r°

and  dn(r) =dn (1) +dn(2)r +dy(3)r2+dn(4)r3

Surface Fit to Break 0

-1 e ———— 05 0 0.5 !

displacement

Figure 4.72. Surface Fit of the Nonlinear Restoring Force.

4.4.2.7 Summary

The results for the AOS bolted joint in the BMD allows for thentinear damping of the joint
to be isolated and measured. This joint represented amettlap joint with the interface not
coincident with the applied force, providing substanttdfrsess nonlinearity between tension and
compression. The joint demonstrates similar energy dasisip behavior as seen in the previous
lap joint experiments, and the energy dissipation vs foureas demonstrates a similar power-law
relationship. In this study the bolt load is maintained ¢ans(as measured by bolt torque) and

128



the repeatability of the joint behavior evaluated aftelespd assemblies. The results indicate for
this joint the assembly-to-assembly variation of the magi@ of the energy dissipation is on the
order of 20-30%, but the slopes are very repeatable. Thisssefexperiments provided the exper-
imental approach to extend the study of the AOS joint to eatads of multiple joints machined
to the same specifications. The purpose is to develop catibhrdata with known and unknown
uncertainties for parameterizing joint constitutive misd@hese experiments are discussed in the
next section.

4.4.3 AOS Single-Leg, Bolted Joint - Model Calibration Expements

An integrated model calibration and validation projectéfprmed at Sandia to demonstrate the
process for a finite element, structural dynamic model. TS Aolted joints are a key part of
the project, as they represented a nonlinear element of tdeihwith significant variability in
their energy dissipation and stiffness properties. Theperaments are performed to generate
a statistically significant data set for purposes of catibraof an lwan whole-joint model with
known uncertainties associated with the parameters. Tidatian experiments are discussed in
Section 5.3.

To develop a statistical estimate of the variability of thatéd joints, multiple sets of joint
hardware are fabricated. Three top pieces and three botieregof the AOS single-leg hard-
ware are used to create nine single joint configurations shiowigure 4.73. Each of the nine
configurations is assembled and disassembled five timddingdorty-five independent data sets.
Actual mating components of a full-scale system consistadli bitanium (bottom) and stainless
steel (top), but both halves for this study are made fronmkdas steel. Utilizing stainless steel for
both halves of the bolted connection allows for a monolithééerence” structure to be fabricated
to isolate the behavior of the joint and allow computatioratthchment compliances of external
interfaces. This is the same bolt type discussed in Sulosedtit.2.2 (1/4-32 UNF x 3/8-in long,
MS9566-06).

The single-leg specimens are assembled into the BMD in tine saanner as discussed in the
previous section, and are shown in Figure 4.74. In this safeexperiments, a different range
of input forces is selected to span a larger range of forcé® ekperiments were performed to
measure the energy loss per cycle for a sinusoidal inpuéfover a range of loads of 100-, 200-,
300-, 400-, 500-Ib peak, with the specified bolt torque of@tiresulting in a calculated normal
force of approximately 1700 Ib.

4.4.3.1 Solid-Leg Baseline Experiments

Since this series of experiments is being performed fobration purposes, it is important to
establish a lower limit for the unaccounted energy loss raeigms in the experiment with the
single-leg specimens. It is also important to establisbotéf of the boundary conditions, repeata-
bility, and other unknowns in the experiment. To accompligh, a similar set of experiments is
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Figure 4.73.Single-Leg Specimens.

Three pairs of jointed specimens (top A, B, C and bottom 1),3r81
one monolithic solid specimen.

Figure 4.74.Single-Leg Setup in the BMD.
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performed on the solid-equivalent single-leg with no faotl interface. In the first series of tests,

the solid hardware is disassembled and assembled betweleiseteof tests. This test is intended

to evaluate the sensitivity of the responses to uncertamtiye portions of the experiment setup

that have nothing to do with the jointed interface undergtadch as fixture bolts, mounting bolts,

support flexures of the large mass, etc. Between each tesfixthre base is rotated to a new

position, the force gage is removed and rotated, and thedixtalts and washers are exchanged.
This test is repeated sixteen times and the results are sindwigure 4.75. The measured natural

frequencies for the solid-leg experiment ranged from 36260 Hz with a mean of 365 Hz.

Black - Experiment Reset
Red - No Experiment Reset

Average slope=1.96

Energy Dissipation per Cycle (inch-Ibs)

Force (Ibs)

Figure 4.75.Solid Hardware under Steady-State, Sinusoidal Ex-
citation.

In the second test series, the hardware is not disturbedebettests. This series of tests is
intended to evaluate the sensitivity of the responses ankignal measurement accuracy. By
leaving the experiment setup undisturbed for each tesguldcbe determined whether there are
any variations in the measured response due to variatiotiseimata acquisition and vibration
control system. This test is repeated twelve times and thdteeare also shown in Figure 4.75.

The tests performed on the solid hardware indicate that uneasent repeatability is accept-
able. The scatter in the energy dissipation data acquirethé hardware with no experiment
resetting can be quantified with a coefficient of variatio®{G, defined as the standard deviation
divided by the mean, of 3% at most. The variation in energgipation due to disturbances in
the experiment assembly is higher. The scatter in the datmnwhe experiment is reset can be
quantified with a COV of no more than 13%. The average slopeliokar fit through the solid
data on a log-log scale is 1.96. Recall that a slope of 2.@atds linear behavior.
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4.4.3.2 Experiments on Multiple-Jointed Single-Leg Configrations

Next, response data is gathered on all combinations ofgdihardware, and energy dissipation is
calculated as a function of the five force levels. The fixegeb@sonant frequency of the system
ranges from 298 to 342 Hz, depending on the excitation lewel varies slightly for each assembly
of the bolted connection. The average is approximately 320cHnsiderably less than that mea-
sured for the solid-leg (365 Hz), with the frequency diffeze indicating the reduction in stiffness
caused by the bolted interface. After gathering data at eéttte five different loads, the joint was
reset. Resetting the joint is defined as taking the bolt e tissembling the joint with bolt again.
Energy dissipation measurements are included for all nufsgure 4.76.

10™

1071

10°L

10

Energy Dissipation per Cycle (inch-lbs)

10 10°
Force (Ibs)

Figure 4.76. Bolted (Color Curves) and Solid (Black Curves)
Specimen Dissipation.

The average slope of the energy dissipation curves for tiie hardware is 2.55, which
indicates significant nonlinear behavior in the joint ifdee. The variation in the jointed energy
dissipation represented by COV is as high as 30%. The vamiati energy dissipation ranges
from as high as 150% of the mean to as low as 95% of the mearodt#shs of calculated energy
dissipation values at each load level are shown in Figure. 4n7general, a larger portion of energy
dissipation values falls toward the lower end of each diation. The average log-log slope of the
jointed specimen energy curves is 2.55 and the histogrameotalculated slopes are shown in
Figure 4.78. Data from these experiments are transmittadatysts and uncertainty engineers for
use as calibration data and as the basis of a probabilistiiehod the fundamental parameters of
the lwan joint model for the inclusion in the structural dgma model.

The BMD is shown to provide a very repeatable experimentutjinahe evaluations with the
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Figure 4.77.Energy Dissipation Values at Five Load Levels.
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Figure 4.78.Slopes of Energy Dissipation Curves.

solid specimen. The data from the experiments show that trertwo basic types of variability for

the bolted connections. The first is the assembly varigldit a specific joint. The experiments
show that there is a 20-30% variability that occurs when thet jis reassembled several times.
The second is the part-to-part variability that comes frtvn glight differences in the geometry
of specimens machined to the same specifications. Thistieylarly true for the contact region

of the joint as discussed in Section 9. The range of the vanian energy dissipation is as high
as 150% of the mean and as low as 95% of the mean. This cledibates that the part-to-part

variability dominates the uncertainty of a particular bdljoint geometry.

4.4.4 Summary of BMD Dynamic Experiments on Bolted Joints

The experiments discussed in this section show that the Bbigept is a very versatile experi-
mental method for bolted joints research. The results fertbited specimens demonstrate very
similar behaviors as the experiments in the BMD with thearslland bolt-free specimens. Several
measures of response can be generated from the experirhahtivie insight into the nonlinear
behavior of bolted joints. The techniques for computingribalinear restoring force appears to
offer a very valuable approach for future research.
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Chapter 5

Dumbbell Joints Experiments

Brian R. Resor, Danny L. Gregory,
Michael D. Jew, and James P. Lauffer

5.1 The Dumbbell Technique For Dynamic Axial Loading

A two mass dumbbell arrangement is one of the cleanest enpats for the measurement of
energy dissipation and stiffness of simple, nonlineantgd interface elements. The dumbbell is
well isolated from other experiment hardware because lizes free-free boundary conditions.
The only connections to other hardware are the relativelylmmgees that suspend the masses.
Additionally, the axial mode of the dumbbell is easily erdt while at the same time keeping
participation of other dumbbell modes minimized. Upon &t@n of the dumbbell axial mode
with an instrumented hammer, the transient loads in thd joterface sample during ring-down
are dominated by motions that induce tension and compressithe hardware. If desired, the
dumbbell can also be excited in other manners to force yaation of other modes, and therefore
more complicated loads in the joint interface.

The transient response of the dumbbell to the hammer ingatidacollected and then post
processed. Post processing can reveal the effective j@mtent stiffness and the damping. For
jointed interfaces, the damping is typically nonlinear. Adified, logarithmic decrement, analysis
technique is used in the simplest cases to understand tleevAnying properties of the jointed
interface.

This section will describe the experimental technique dmedsimple data analysis using log-
arithmic decrement. Later sections will show several exampf dumbbell experimental results.
The experimental data will give the reader a reasonableeafgtion for nonlinear, bolted joint
behavior in axial loading.
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5.1.1 Experiment Setup

Figure 5.1 shows the setup of a typical dumbbell hardwaréhantmer. In this case, each stainless
steel dumbbell mass weighs approximately 30 Ib and con@m‘\ tapped hole for eye bolts. The
dumbbell is suspended by soft bungees. Lap joint specinrensaech held to the masses with a
single 3-in bolt, torqued to 80 ft-Ib.

Figure 5.1. Dumbbell Experiment Setup.

The bolt holes have been tapped for a short length to allovingtallation of a threaded plug
in the outside end of each dumbbell mass. This configurasibown in Figure 5.2, ensures that
the hammer tip can strike the dumbbell at the center of itaisad

5.1.1.1 Dumbbell Excitation

A 5,000-Ib force gage and nylon hammer tip are used to measut@rovide the near-Haversine
input to the dumbbell. Additionally, the use of a pendulumaagement enables the inputs to be
consistent in impact location, direction, and amplitudess all hits. In typical hammer excited
experiments, the hammer tip and hammer size are both chassfity to excite specific frequency
ranges.

5.1.1.2 Force Measurement in the Dumbbell Specimen

Axial Force Measurement Early dumbbell experiments were conducted with a ring-typezo-
electric, force gage installed in-line with the joint spaen. Figures 5/3 and 5.4 (shown again later
as Figures 5.25 and 5.26 ) show an example of a dumbbell wiltatial force gages in-line with
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Figure 5.2. End View of the Dumbbell and Threaded Plug.

the hardware. The force gage provides a direct measurealffaxte in the joint specimen. Inves-
tigations quickly revealed that the force in the joint ifidee is truly the product of one dumbbell
mass and the acceleration of the center of mass of the dumibhelaxial motion of the dumbbell
center of mass can be approximated quite well by time symchu® averaging of two or more
appropriately placed, single-axis accelerometers on tideo# the masses, eliminating the need
for the force gage and simplifying the experiment. Removh®gin-line force gages is desirable
because their compliance significantly changes systenmnaigsa

Without a force gage installed, a very effective instruraéioh scheme for response measure-
ment includes four accelerometers on the end of at least amibloell. Figure 5.2 shows an
example of four, single-axis accelerometers spaced ewalynd the end of a dumbbell for axial
motion measurement. By performing time synchronous avegagne can indirectly determine
the force exerted in the joint during ring-down. Four acoaieeters (two on each end mass) are
sufficient to describe the axial motion of the dumbbell centenass.

137



Figure 5.3. Dumbbell with Force Transducers In-Line With The
Specimen and Tri-Axial Accelerometers On The End Masses.

Figure 5.4. 3S-Jointed Specimens Installed with Two In-line
Force Gages.
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Time Synchronous Averaging of Response WaveformsPrior to averaging in the time do-
main it is important to remove any offsets that may be preisetie signals. Typically, the average
of the pre-trigger data is used to remove the offset in eadmsarement channel. Next, time syn-
chronous averaging is applied to the signals from evenlgehgages around the perimeter of the
end of one of the dumbbells. The resulting discrete wavefepnesents the average motion of its
mass.

aavgm = M?I = (17 27“'”) (51)

where N is the number of response channels being averaged
and nis the number of points in the discretized time history.

The average acceleration can then be multiplied by the nfassingle dumbbell to determine
the time varying force in the specimen.

F = maayg (5.2)

Lateral Force Measurement Force gages that measure all three axes of force are awailabl
These gages can also be used at the locations shown in Fig@fsnd 5.26 to determine the
shearing forces in addition to the axial force in the speainidhese measurements have been made
at Sandia. Accurate and meaningful interpretation of tkerdh shearing forces, which probably
are realized in the joint interface as a moment, is an aretufore work.

5.1.1.3 Use of Monolithic Hardware

To understand the response of the jointed specimens , g&ngal also to test monolithic elements
in the experimental fixturing.

5.1.1.4 Expected Mode Shapes

The mode shapes described in this section were derived fiiomeielement model of the dumb-
bell setup. The modal frequencies and mode shapes caltdlai® the finite element model
generally agreed well with the modes identified and fittednftest data. There are six flexible-
body modes that are of primary interest to the experimesttaéyond the six, rigid body modes
of the dumbbell on the bungee supports. The first six flexi@dy modes for the dumbbell are
pictured in Figures 5.5[- 5.8. Though there appear to be tirs paorthogonal bending modes,
asymmetries of the test specimen result in significant idiffees in natural frequency. Frequen-
cies of the modes will vary depending on whether the hardwganmeonolithic or contains a joint.
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Figure 5.5. Modes 1 & 2 - Dumbbell, Orthogonal, First Bending
Modes.

The jointed hardware frequencies are lower than the mdnofitequencies. Regardless, the mode
shapes of both monolithic and jointed dumbbells are similar

Generally, the first two flexible-body modes are lowest igjfrency, and modes three and four
are the next higher pair of modes. Occasionally, as showrigarés/ 5.5 + 5.8, the frequency
of the first torsional mode lies between the first two (supitfig orthogonal bending modes.
(We drop the word “superficially” in the following but its pence is to be understood.) The
closeness in frequency of these orthogonal modes is relatdte nature of the joint specimen
under test. Indeed, the mode ordering may change for on@spetype to another, depending on
the stiffnesses in the two bending directions.

The first two orthogonal bending modes have the ability to@se the joint interface in simple
bending. Study of the structural response at these modeksl wimld information regarding the
joint interface with application of moments.

The dumbbell axial mode is generally the fifth mode. The axiatle is the mode that provides
the most useful loading of the joint specimen for axial lo@diThe experimental setup should be
designed so the axial mode is spaced sufficiently far fromodimgr structural modes, assuring that
analysis of the axial mode is as straightforward as possitild little influence of response by
adjacent modes.

Generally, the torsional mode of the dumbbell is not easilyited by the inputs described in
this chapter. It is not typically present in any significamtaunt in these experiments. However,
the experimentalist should understand the mode to keepnt &dversely influencing the data in
an unknown manner.
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Figure 5.6. Modes 3 & 4 - Dumbbell, Orthogonal, Second Bend-
ing Modes.
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Figure 5.7. Mode 5 - Dumbbell Axial Mode.
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Figure 5.8. Mode 6 - Dumbbell Torsional Mode.

Beyond the modes shown here, there are many more local méttesjoint specimen. Their
shapes and frequencies are highly dependent on the gecaneltimaterial of the individual spec-
imens. Examples are shown in Figure 5.9. These modes ocaetasitzely high frequencies.
Therefore, their displacements are very small when thepdiapo be excited. As far as is under-
stood now, they have little effect on the behavior of thetjgiterface experiment response.
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Figure 5.9. Higher Frequency Dumbbell Modes.
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5.1.2 Basic Analysis of Transient Ring-Down

The waveform decays of the transient responses are poss@at to derive a curve describing the
energy dissipation dependence of damping on force amplitdd advantage of this technique is
that a single impact with the hammer exposes the joint to & wadge of force amplitudes during

ring-down.

The rate of decay of the transient response is related toahwgihg in the structure, and the
damping is related to the energy dissipation. In a nonlijeeated interface, the rate of decay, the
damping, and the energy dissipation per cycle appear towiintime because they are governed
at least partly by the force in the joint at any particulardirihe following basic derivation explains
how a time varying, instantaneous value for damping andggraissipation can be approximated.

5.1.2.1 Derivation of Damping and Energy Dissipation Measement Techniques

Consider the free decay ofiaear SDOF system,

X(t) = xoe ¢ “n coq eyt (5.3)

where x(t) is the time history of the system response (restoring facegleration,
velocity, or displacement),
wn is the natural frequency of the SDO&? = K /M
wy is the damped natural frequency,
{ is the instantaneous damping factor,
and X, is the initial amplitude of the response.

The envelope of the peaks in the waveform is

X(t) = xoe ¢ et

Taking the logarithm of both sides,

log(x) = —{ ont +log(Xo)

Then, differentiating with respect to

d(log(x))

G~ ¢ (5.4)
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The equivalent damping factdf, is the slope of the envelope (Iog as function ot) divided
by the resonance frequency.

Though the above derivation presumed a linear system, werlgnate in the following that the
log decrement technique can be used to deduce the energyatiss per cycle even in nonlinear
systems.

The envelope of log) is linear for a linear system. A higher order polynomial carulsed to
approximate the points that define the envelope for nonlijp&ated structures, such as the bolted
joint. The polynomial order applied to yield the best fit deg@e on the shape of the envelope.
Typically a fourth or fifth order polynomial is used to fit elhwpes of the dumbbell responses,
such as was done to fit the curve in Figure 5.10.

Polynomial Fit
5.5 T

5
450 %

4+

Log(x)

| I I | I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (s)

Figure 5.10.Peak Amplitude Fit.

Fifth order polynomial fit to the logarithm of peak amplitede

The instantaneous value of the equivalent viscous dampitig at any time during transient
decay,{ (t), is obtained by computing the slope of the polynomial fit te ligarithm of the peak
amplitudes and dividing by the natural frequenay, per Equation (5/4). Example results are
given in Figures 5.11(- 5.12, indicating the decrease in dagwith time as the amplitudes decay
during the transient response.
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Figure 5.11.Polynomial Fit and Actual Response.
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Figure 5.12.Time Evolution of Zeta.

Zeta plotted as a function of time. Zeta is proportional te #hope of

the fit seen in Figure 5.10.
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To estimate energy dissipation for a nonlinear system, weymme that the ring-down has the
same form as in Equation (5.3), but witslowly varying in time. The decrease in potential energy
from one cycle to the nextis

D = AP = (1/2)KX? (1— e*4"5‘*h/wd) ~ 21 KX2 = 2 M X2 (5.5)

where K is the linearized system stiffness,
M is the system sprung mass,
and X is the amplitude of oscillation.

Because it is generally accelerations rather than amplitiialt is measured, a more convenient

form of the above is —
D— "ZZ A2 — 277 MAZ (5.6)
w2

whereA is the amplitude of measured acceleratidn: wgX.

Several assumptions have gone into the above.

1. The relationwy = wh+/1+ 2 holds even for our nonlinear system,

2. { is small enough that we can ignore terms higher than the fidgtron ¢,

3. ZHZ/wd <<

The dumbbell may be considered as the composite of two SDGtersg, each oscillating
about the mid-plane of the specimen. The energy dissipafitme dumbbell is now

D(t) = 2 (2 Ky A%/ W) = 2 (2 My, A%) (5.7)

where A s the amplitude of acceleration of each end mass with réspéice specimen center,
M5 is the mass of each of the end masses,
and  Kyjp =My

Of course, if using inch-pound-second units, one must beaaity careful to use units of mass
rather than weight in the above.

Log-log plots of energy dissipation per cycle vs force amuple have become a very common
method of exploring the nonlinearity of joint response. Ttiee terms are obtained either from
in-line force transducers or from a usefot= MA. Such log-log plots are often nearly linear and
one looks to the parameters of the fitted line for insight thivdissipation properties of the joint.

An example plot of energy dissipated vs force together wghstraight-line fit is shown in
Figure/5.13. The straight-line fit is used to estimate the gaid slope of the curve in log-log
space. These parameters provide some insight into the dgrapd nonlinearity of the response.
Gain is a measure of the overall damping, and the slope is aureaf the nonlinearity. A slope
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Figure 5.13.Fit to Energy Dissipation Curve.

of 2.0 indicates a linear damping. A slope greater than dizate high magnitudes of nonlinear
damping.

5.1.3 Digital Filtering

Often the desired axial dumbbell response actually is eomiated by structural dynamic modes
of the experiment that can either be detrimental to the ddsiata or can simply complicate post
processing of the data. There are several reasons why a& sax@hl, dumbbell mode may actually
include more modes:

e The input to the end of the dumbbell is not well-centered, thedefore bending modes of
the dumbbell are excited.

e The line of action of the axial force through the jointed nfdee is not centered about the
interface. Thus, the primary axial mode shape includes smnding.

If multiple modes are unavoidable, then there are ways tbwigathem:

e Use a pendulum hammer or pneumatically charged hammerndot ia the end of the dumb-
bell. Either tool typically enables the input location amdpditude to be extremely repeat-
able, relative to a manual hammer input by the experimesttali

¢ Digital bandpass filtering around the mode of interest toaeminfluence of other reso-
nances in the postprocessing steps (the subject of thigstidns).
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e Modal filtering of the dumbbell response data (explainedlater section of this handbook).

The purpose of this section is to verify and illustrate thatusmate damping estimations can
be made of a single mode that is embedded within several nohatesg a transient response.
Estimation requires use of a digital band-pass filter atriagufency of interest. Discrete, analytical
responses are generated and their decay rates are det&rmine

Not only does this exercise verify the correctness of appglyilters to the data and measuring
the correct damping values, but it also serves as a verditafithe accuracy of the transient decay
rate measurement discussed directly above.

5.1.3.1 SDOF Numerical Example

Matlab is used to calculate responses of an SDOF system. ifs&gon of the accuracy of the
routine, one compares a response from the numerical schethe tinalytical equation for the
response of a linear system. The transient response of tadlyjnquiescent SDOF system to an
impulse can be described as follows:

X(t) = e‘z‘*’f‘t% sin(cyt) (5.8)

wherex(0) is the velocity induced by the impulse and, as usugl= wh\/1— 2.

The physical parameters chosen in this exercise are

ki =1.2x10
¢ =3.0x 104
my = 100
where my is the mass of the SDOF,
k1 is the spring stiffness,
and ¢ is the damping coefficient.
Therefore,w, = ,/r'fq—ll = 200rad sec is the natural frequency of the system gnée 2\/‘% =

0.0433 is the damping factor.

The Matlab function ode45.m uses the state-space repatieendf the equations of motion to
solve for the response. The state-space representatidreéovibration of a single mass, spring
and damper is written as

X = AX (5.9)



where Xis the vector of state variables

and

0o 1
A=1 k4 —o

my m

An initial value for the velocity is used to simulate the inspaFigure 5.14 shows the analytical
response of Equation (5.8) and the numerically calculagsgpanse together. The logarithmic
decrement technique described above is used to calcuatdathping of both the numerical and
analytically generated responses. A straight line canyehbsi used to fit the logarithm of the
peaks in the response because the responses are linear.inDaralues of 0.0434 and 0.0433
were calculated from decay of the numerical solver genéregsponse and analytical formula,
respectively. The difference corresponds to a 0.25% vanah measured damping. This shows
that the technique is very accurate for simple, linear resps.

magnitude

A I I I I I I I I I
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seconds

Figure 5.14.Transient Response Comparison.

Comparison of transient responses generated using theyaeel for-
mula and generated using a numerical solver with state eqost

5.1.3.2 Two DOF System

Next, an analytical 2DOF system was created in order to gémarresponse that contains multiple
modes. Once the response is calculated, the response ahedehwill be filtered out of the overall
response and compared to the analytical predictions of thdahresponses. An example of the
2DOF system is shown in Figure 5.15.
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Figure 5.15. Simple 2DOF System.

The equations describing the free vibration this system are

MX+Cx+Kx=0 (5.10)
with
_|m O |t —c | ktke —ke
M_[ 0 mz}’c_[ & o }’K_{ ko ke (5.11)
or in state equation form
X1 0 0 1 0 X1
d | x 0 0 0 1 X
=q 2= k) ke e o |4 (5.12)
dt X1 m my m my X1
Xo ke —ka Co —C Xo
mp mp mp mp

The response of the system to an initial condition is deteeshinumerically two ways. First,
the state-space matrix is used with the numerical diffeaeatuation solver ode45.m to calculate
aresponse. Then, the modal matrix, formed from mode shagtergeis used to calculate both the
modal response and overall system response. Physical pa@nare added to those of the SDOF
model above for the 2DOF casei9k, co=c1, and mp=my.

First, calculate the modal responses. Define the modal cwies,

)

o™

-X
-X

q=1¢
q=¢

where @ is the transformation (modal) matrix formed from the massamalized mode shape vectors.
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Initial conditions forq and g can be determined based on the actual physical initial eondi
tions. Also, the transformation matrix is used to transf@quation|(5.10) into a set of uncoupled
differential equations. These equations in state-spaoe &oe written as

q=Aq (5.13)
with
0 0 1 0
0 0 0 1
A= —k]_]_ 0 —C11 0
0 —k22 0 —Cp2

where k1, kop, C11, and ¢, are the diagonal terms in the decoupled matrix coefficients
of Equation((5.10) (diagonal terms in the decoupled massixrae 1).

Matlab is used to calculate the modal matrix and then to daleaihe coefficient matrices so
that the state matriA can be used again along with the numerical differential eqaasolver
ode45.m to calculate responge® initial conditionsgy anddp. Using initial conditions of

e[3) we

The modal responses are as shown in Figure 5.16. A by-predtice modal response calcu-
lation is the parameter set for each mode, shown in Tablehgé.modal responses can then be
combined using the modal matrix (mass normalized) to olgérall system responses, The
system responses are shown in Figure 5.17a. The systemmsespealculated using the original
state Equations (5.10) are shown in Figure 5.17b, and aread ggreement.

Table 5.1. Analytical Modal Parameters of the 2DOF System.

Zeta | Frequency (Hz
Mode 1| 0.0268 341
Mode 2| 0.0701 892

5.1.3.3 Compare Filtered and Modal Responses

Estimates of the modal responses are obtained by applyimgitaldoandpass, Chebyshev filter to
the system responseg. Figure 5.18 shows the transfer function of respons® a perfect impact
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Figure 5.16.2DOF Modal Responses.

Modal responses of 2DOF system to initial condition withgbgl pa-
rameters defined above.
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Figure 5.17.Calculations of System Response.

(a) System responses calculated as a linear combinationddfidual
modal responses. (b) System responses calculated froeresfaations.
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on massp. The natural frequencies determined from this plot are 32 &t 892 Hz.

I I I I I I
0 200 400 600 800 1000 1200 1400

Figure 5.18. Transfer Function of Responseg to a Perfect Im-
pact Input.

A 300-Hz-wide fourth-order, digital, bandpass, Chebysfigsr was applied to each mode.
The filtered responses are seen in Figure 5.19 and FigureafoR@ with the modal responses
from Figure 5.16.
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o

-0.005 -

-0.01+

-0.015 : : : : :
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Figure 5.19.Filtered and Modal Response - Mode 1.

The evolution equations for the modal coordinates are nétaby substituting the modal ex-
pansion back into the governing equation, Equation (5.02)e resulting nodal predictions are
then independent of any modal scaling or normalization.

The linear damping of each filtered response is again egtinaing the transient decay-rate
technique with a straight-line fit of the logarithm of the kgan the response. A straight line is
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Figure 5.20.Filtered and Modal Response - Mode 2.

Table 5.2. Comparison of Zeta for Each Mode

Mode 1| Mode 2
From modal transformation calculation0.0268 | 0.0701
Measured using logdec technique 0.0267 | 0.0722

used because the analytical model is linear. Table 5.2 casplae calculated and estima@&fbr
each mode.

The estimated, in the Mode 1 filtered response is an accurate representatitre actual
damping of that mode as determined by the modal transfoomatlculation. The contribution of
Mode 1 dominated the overall response, and therefore treydate of the filtered signal is easy to
measure because there are many peaks and few end effectssdadup and ending of the digital
filter. Figure 5.21 shows the high quality fit of the envelopétte filtered signal.

The estimate of the Mode 2 damping is not as accurate. Gibbsgphena in the filtered
response make data at the beginning and end of the interugahbte. Also, Mode 1 dominates
the response. Even after filtering, Mode 1 response rematos@lication in extracting Mode 2
response until very long times, when Mode 1 has nearly dectyeero. The effects of Mode 1
contamination and Gibbs phenomena, do not leave very maakgspe the filtered Mode 2 response
that are clean enough to fit in the damping measurement. lertiean estimate of the Mode 2
damping is not as accurate as desired. Figure 5.22 showiaéiae fit to the transformed amplitude
data.
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Figure 5.21.Mode 1.

(a) Fitted peaks in the filtered signal. (b) Energy curvesdibconfigu-
rations.
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Figure 5.22.Mode 2.

(a) Fitted peaks in the most acceptable portion of the fittesignal and
(b) straight-line fit through the logarithm of the peaks.
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5.1.3.4 Summary of Digital Filtering

This simple investigation shows that accurate damping areasents can be obtained, with certain
limitations, for the response of a single mode by applyindgital bandpass filter to the overall
time-history. Digital bandpass filtering is a useful toolemhdamping measurements of a single,
specific mode are desired and the experimental transigmmes is just slightly contaminated by
other modes.

It is still best to try to ensure that the mode of interest dd@sinate the dumbbell response,
though. As long as the mode of interest dominates, and the robiditerest is spaced sufficiently
far from other strong modes, then a low order, relativelyayigdigital filter can be used to filter the
response. Such a filter minimizes the effects in the filteesgponse due to filter startup, thereby
allowing a wider range of amplitudes in the response to Heedi for the damping, and energy
dissipation, calculations.

This study has shown that the modified logarithmic decremmriine used to determine damp-
ing by measuring the decay rate of a transient responseusaec
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5.2 Dumbbell Experiment Examples
System B Bolted Joint Specimens

5.2.1 Motivation

Early dumbbell experiments were performed using joint spens that replicated the geometry
and materials found at the tab-like bolted connections st&y B, Laterally Oriented Subsystem
(LOS) housing. This experiment was unique for a few reasons:

e The joint specimens were created in a way that simulated tfferent orientations of shear
loading for a given tab.

e The hardware under investigation utilized joints that eamed both two and three bolts in a
single tab. (See Figure 5.24.)

e The materials used in the joint specimens were not the saomairaum was on one side and
stainless steel on the other.

The goal of this particular project was to provide experitakdata and insight to develop and
validate structural dynamics models for System B, LOS liojtent. The finished, whole-joint
element was to be included in a Salinas, structural dynamexel of System B.

Some jointed interfaces contain a load path through the jbat is in a single preferred di-
rection relative to the overall system. Because the LOS ihgusonnections carry loads from
multiple directions, test specimens were designed to seitehe bounds of the joint orientation
with respect to the incoming load.

Differences were observed in the energy dissipation of tied joint depending on the con-
figuration. This variability suggests a need for joint mad#dat have the capability to utilize
more than one set of parameters, depending on the oriamt&imilarly, the variation in physical
tolerances and assembly procedures of the LOS housinglamtenections create variability and
uncertainty in their responses. Studies were performeaw/&stigate the sensitivity of the response
to this assembly variability. We learned that a range oftgarinterface model parameters can be
determined based on the experimentally observed vatiabili

5.2.2 Dumbbell masses

The setup of System B hardware experiments was exactly asiuksd in Section 5.1.
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5.2.3 Hammer input

The dynamic load input to System B hardware came from a mprapblied, modal hammer.

5.2.4 Bolted Joint Specimens

The LOS housing had six tabs oriented at various angles drivsigircumference. Lateral loads
into the housing were the environment of greatest intesthis hardware. A lateral load can
enter an individual tab from any direction. Two primary otig#tions defined the bounds of how
this lateral load can enter as a shear force into an indiVtdbdFigure 5.24). The loading direction
is indicated by arrows in Figure 5.24a.

We used a simple nomenclature to distinguish the specinWhen three bolts were in series
with the applied load, the specimen is named a 3S-specimemn two bolts were in parallel with
the applied load, the specimen is named a 2P-specimen.

Solid specimens, without joint interface, were used to lewa controlled measurement of
unknown sources of damping. The difference in energy digisip per cycle between the solid data
and the corresponding jointed data approximates the emksgipation due to the joint interface.

The specimens were made of materials representing thel aggtam hardware. The housing
is stainless steel and the cylindrical case into which theshny attaches is aluminum. For the
simplified specimens, the half of the joint that containstdiewas made of stainless steel and the
half that represents the mounting surface of the case wasiraln. The solid specimens were
made of stainless steel. The difference in internal damepfrgjainless steel vs aluminum is very
small, and well below that introduced by the joint. Bolts amakhers that were used in the real
hardware were also used for the simplified joints: bolts, BERI7-33 (cap screw with #8-32 UNF
threads) and #8 washers, NAS620-8.

5.2.5 Dumbbell Design

After the joint specimens for this investigation were degid, the dumbbell masses were modeled
along with the specimens using a relatively simple, lineadet (Cosmos within Solidworks).
(Resulting hardware is shown in Figure 5.25.) The frequenof the axial and bending modes of
the dumbbell were estimated. Using the simple model, theesfizhe dumbbells could be varied
until the modes were adequately spaced. A primary goal wassare that the frequency of the
axial mode was not near any of the dumbbell bending modesitiaddlly, the axial frequency
was targeted for the 500-1000 Hz range to simplify data atiom and postprocessing. With a
dumbbell weight of about 30 Ib at each end, the axial modedtin & and P specimens was in the
vicinity of 800 Hz. The exact weight of each of the dumbbetfteafabrication was 29.4 Ib.

159



Figure 5.23.LOS Housing (grey) , Aeroshell (blue) with Tabular
Bolted Joints.

Figure 5.24.Specimen Nomenclature.

(a) S-specimens with arrows indicating direction of forggokcation,
and (b) P-specimens.
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Figure 5.25.Hardware Setup for the Dumbbell Experiment.

5.2.6 Dumbbell Excitation

Hardware was excited by careful taps with the hand-held ifwtamer, which was a PCB Model
086D05 with a plastic tip. Excitation was done in two ways:akjal tap applied at the end of
one dumbbell mass and 2) lateral tap applied to the top suddone dumbbell (S-specimens,
only). The axial input exercised the specimens in axialirisompression. The lateral input
exercised the S-specimens in bending similar to that egpeed by the joints when the overall
housing responded in a drum-like mode. More informationmadyssis of bending response of this
hardware is found later in this section.

5.2.7 Force Measurement in the Dumbbell

The dumbbell responded primarily in its first axial mode up@mmer impact or tap at the end
of the mass in the longitudinal direction. As the respons¢hefaxial mode rings down, the
joint is exposed to varying amounts of shear loading, stgréit an initial peak and decaying to
zero. The transient decay force response was measureddaydgages in-line with the specimens
(Figure 5.26). Two force gages and eighteen accelerombtemels were used both to measure
the axial force in the specimen and to determine mode shapés. mode shapes for both S- and
P-specimens demonstrated that the specimens were exkentismnsion/compression, while the
joint interface was exercised in shear.
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Figure 5.26. 3S-Jointed Specimens Installed with Two In-line
Force Gages.

5.2.8 Data Analysis

Each measured transient force time history was processgdltban energy dissipation per cycle
vs force curve. The modified logarithmic decrement techaidescribed in detail earlier in this
section was used to calculate energy dissipation per cgcheatious loads in the joint specimens
when the transient response ring-down was dominated bygéesimode.

The dumbbell was not perfectly symmetrical and it was imgmeso apply the hammer input
in the exact center of the dumbbell end. Therefore, multipdeles are present in the response of
this structure. It becomes difficult to process the datarately if their magnitudes are significant
enough to contaminate the axial response and cause an mmgeay envelope. Therefore, the
raw responses were bandpass filtered around the axial made sfructure. Bandpass filtering is
described in detail earlier in this section

Considerable thought was given to the choice of the orddrepblynomial fitn, to the peaks
of the waveform in log-log space. Findings for this data adéadlows: Whenn is about 2.2-2.4
and the dumbbell axial response is uncontaminated by otbdes) a fourth or sixth order fit works
well. Figure 5.27 shows the fit of a fifth order polynomial te tihgarithm of peak amplitudes for
a medium level hit. Figure 5.28 shows the same polynomiahfit geaks superimposed with the
positive amplitudes of the transient response. The fit tgodaks is quite good.
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Figure 5.27. Fifth-Order Polynomial Fit to the Logarithm of
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Figure 5.28.Polynomial Fit and Actual Response.
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5.2.9 Application of Filters to Experimental Data

The stiffness of P-type joint specimens is nearly symmakrigVhen a hammer input is applied
to the end of the mass in the axial direction, the respondadimdoserved is a clean decay that is
dominated by the axial mode (Figure 5.29a). However, tHfnetis of an S-type joint specimen
is not as symmetrical. When a hammer input is applied neaceheer of the mass in the axial
direction, the response that is observed is contaminatatiebfirst bending mode of the system
(Figure! 5.29b). It is difficult to determine a clean envel@pel measure the decay rate of a single
mode from such a response using the technique described.abmyital filtering of these responses
is desired.
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Figure 5.29.Comparison of Measured Responses.

(a) P-type joint specimen and (b) S-type joint specimen.

The presence of the bending mode in the response of the 8rspeis obvious in the plot of
the restoring force in Figure 5.30. The peak at 800 Hz is the axode, and the peak at about 435
Hz is the first bending mode.

A second order, Butterworth, digital bandpass filter is egujio the data to extract a clean axial
response. Several filters were tried. Each worked equallly g the lower order, Butterworth
filter tended to create lower magnitude start and less erdtsff The filter is centered on 800 Hz
and is 300 Hz wide. The resulting discrete, Fourier tramsforagnitude is seen in Figure 5/31 and
the filtered time history is seen in Figure 5.32.

A few of the first peaks in the filtered time history of Figur8must be ignored because they
are contaminated by the filter end effects. Overall, therétidransient decay is clean and can be
easily analyzed to determine energy dissipation per cyeléhke axial mode.
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Figure 5.30. Discrete Fourier Transform Magnitude of S-Type
Specimen Response.
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Figure 5.31. Discrete Fourier Transform Magnitude of S-Type
Specimen Filtered Response.

165



400 : ‘ 200 ‘ : ‘
—— Not Filtered —— Not Filtered
— Filtered 5 — Filtered
300} + i
100}
200 »‘[
‘ ‘ I 1
st I |
|
5o | : I ‘\Hw \M e
. - \ I
g ‘ H‘H“U g o (1 ‘ H ‘ M‘ w‘\‘w‘\u MHJ‘H
e o M HH\“\”HM\‘h‘\‘H‘\u\‘M‘w‘\‘w“‘““\\‘w“‘\ 2 ‘ H‘ \ il | ‘ ‘” I |
501 U M
(il NI
100} ‘ i
100
200 1501
‘ ‘ ‘ ‘ ‘

0

5.2.10 Experiment Results

The experiments performed here subjected the joint spesiineFigure 5.24 to tension and com-
pression forces using hammer excitation at the end of onlgeafiasses in Figure 5.25. The ham-
mer inputs were sufficiently high to cause peak force leveZ0-300 Ib in the joints at initiation

0.05

of the transient.

Figure 5.33 shows an example of some measured responseliuatrdtes the difference in
response decay rate of a jointed and a solid specimen. ¢lehe jointed specimen exhibits
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Figure 5.32. Comparison of Filtered and Unfiltered Time Histo-

ries of an S-Specimen.

amplitude dependent damping. It also exhibits more ovdeatiping.
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Figure 5.33.Comparison of Linear and Nonlinear Damping.
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5.2.10.1 Comparison of Series and Parallel Configurations

Figures 5.34 and 5.35 provide a comparison of measured yed&sgipation per cycle for series
and parallel configurations. Each plot also contains endiggipation curves for the solid speci-
mens. The slope of the solid specimen curve is approximatélyindicating the solid specimens
exhibit linear damping. The differences between the soidijainted curves represent the energy
dissipation due to microslip in the joint interface. In batises, series specimens dissipate more
energy than the parallel specimens. The vast majority aéldity in the results occurs because
of differences in response due to assembling and disasswntibé joint interface.

10

Blue - 3S Jointed
Red - 3P Jointed 1
10'3 | Black - 3S & 3P Solid J
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Figure 5.34.Comparison of Joint Orientations.

Examples: Three bolts in series and three bolts in paralllin-1b bolt
torque preload.
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Figure 5.35.Comparison of Joint Orientations.

Examples: Two bolts in series and two bolts in parallel, 18birbolt
torque preload.
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5.2.10.2 Comparison of Two and Three Bolt Configurations

Figures 5.36 and 5.37 compare energy dissipation curvesrfolar bolt orientations and varying
number of bolts. In both cases, specimens with only two itsbited more energy dissipation
than specimens with three bolts. When there are only twasptiere is less contact pressure
generated in the joint interface. Therefore, more micposticurs when shear loading is applied to
the interface.

Magenta - 2S Jointed
Blue - 3S Jointed
3| Black - 3S Solid

Energy Dissipated per Cycle (inch-lbs)

10 10° 10
Force (Ibs)

Figure 5.36. Comparison of Energy Dissipation for Two and
Three Bolts in Series.
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Red - 3P Jointed
10°L  Black - 3P Solid J
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10 10° 10°
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Figure 5.37. Comparison of Energy Dissipation for Two and
Three Bolts in Parallel.
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5.2.10.3 Comparison of Bolt Torque

The assembly procedures for attachment of System B housiitig) mating counterpart call for a
bolt torque of 18-22 in-Ib. Data were gathered during thiestigation using bolt torques of both
18 and 22 in-Ib. Figures 5.38 - 540 contain families of epengrves for all specimens with bolts
torqued to both 18 and 22 in-lb. In all cases, the averageygmissipation per cycle is higher with
a bolt torque of 18 in-Ib. Lower torque and lower bolt prel@attourage less contact pressure in
the joint interface and allow more microslip to occur whea iffiterface is loaded.
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Figure 5.38. Effect of Preload on Energy Dissipation per Cycle
in the 3S-Jointed Specimen.
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Figure 5.39. Effect of Preload on Energy Dissipation per Cycle
in the 2S-Jointed Specimen.

170



2P Jointed Specimen:
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Figure 5.40. Effect of Preload on Energy Dissipation per Cycle
in the 2P-Jointed Specimen.

In one case, a set of data was gathered with a bolt torque of-b4td observe the effects on
energy dissipation outside the specified range. Figure &@#afains energy curves for preloads of
14, 18, and 22 in-Ib. Figure 5.42 is a plot of the average gneiggipation at 90-Ib external load
for each bolt torque setting. Figure 5.42 demonstratesatirelationship between bolt torque and
energy dissipation in this range of bolt torques with thespeeimen.
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Figure 5.41. Effect of Preload on Energy Dissipation per Cycle
in the 3P-Jointed Specimen.
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Figure 5.42. Average Energy Dissipation at 90 Ib for Varied Bolt
Preloads on the 3P-Jointed Specimen.

5.2.10.4 Investigation of Bending in the Joint

Shear loading at the jointed interface is suspected as tbevbelming cause of microslip and
therefore, energy dissipation. Typically, when a boltedtjs loaded so that only the local normal
force in the joint is varying (such as a bolted pipe flange iregension), then practically no mi-

croslip occurs at the interface and very little energy isigiated due to the bolted joint. However,
when a joint is loaded in such a way that there is local shetdueahterface, microslip still occurs

and additional energy is dissipated during the response.

If the LOS housing was excited in its longitudinal directiand the housing responded strongly
with drum-like modes, then each of the attachment tabs wbaldxercised in some amount of
bending. The bending action is a potentially significantreewf additional energy dissipation in
the structure.

Excitation from a hammer tap to the top of the dumbbell wasnshim Figure 5.25, along
with the measured dumbbell responses. P-type specimetizedest representation of the tabs in
bending in the case of the LOS housing deforming in respanaeltum mode in the housing. The
first bending mode of the dumbbell is excited by the input dredresponses are measured.

Figure 5.43 shows how a joint in bending might be approxichatea simple SDOF system so
that the equivalent energy dissipation per cycle vs geizedforce (moment) amplitude curves
can be generated for the joint in bending in a similar manedorma joint in shear. Figure 5.44 is
a side-by-side comparison of energy dissipation curvesionfg in shear and joints in bending.

There is a small amount of additional energy dissipationsuesd for the P-series joint in
bending relative to the solid joint in bending. However, thiéerence appears to be insignificant
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Figure 5.43. Approximate Representation of a Joint in Bending
to an SDOF System.

Axial Excitation:
Red - 3P Jointed
Green - 2P Jointed
Black - 3P Solid

Energy Dissipated per Cycle (inch-lbs)

Lateral Excitation:
Red - 3P Jointed
Green - 2P Jointed
Black - 3P Solid

10°
Force (Ibs)

10°
Force (Ibs)

Figure 5.44.Energy Dissipation per Cycle for the P-Series Spec-
imens.

Examples in (a) shear and (b) bending. Generalized force in
subfigure (b) is moment.
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compared to the difference that is observed for a joint iresh&his result tends to support the
hypothesis that bending can introduce additional energgipation, but local shear in the interface
is likely the major contributor to overall energy dissijeti
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5.2.10.5 Energy Dissipation Curves Characteristics

There are two main characteristics that can be used to sidgsigribe an energy dissipation curve
for a bolted joint: slope of the curve and overall gain (\@&tiposition) of the curve. The slope
of a straight line fit through the energy curve on a log-logt jdoan indication of the nonlinear
dependence of damping on amplitude. The energy dissipetioe for a perfectly linear, viscous
damped system would have a slope of exactly two. Figure 5.46piot of the slope of a straight
line fit through the average energy dissipation curve of emsembly/disassembly that was per-
formed during the experiment. These points represent datallf jointed specimens with both
18 and 22 in-Ib of bolt torque. The average slope is 2.5760 Alsere does not appear to be an
obvious dependence of slope on the tab orientation, nunfleits, or bolt torque.

Energy dissipation curves for
all configurations and bolt preloads

Energy Dissipated per Cycle (inch-lbs)

10 10° 10’
Force (Ibs)

Figure 5.45. Energy Dissipation Curves for All System B Con-
figurations.

Figure 5.47 is a plot of the average energy dissipation db36r each assembly/disassembly
that was performed during the experiment. This plot illatgs the strong dependence of average
energy dissipation on tab orientation and number of bolts.

5.2.11 Derivation of Whole-Joint Model Parameters

Each configuration does exhibit a different amount of enéiggipation, and it would make sense

to characterize each uniquely in a system model that cathese joints. The best representation
of this joint in all its configurations would be obtained byingsseparate joint elements, each of
which has its own independent parameters. Parametersriietel for series specimens would be

representative of the behavior of a housing tab when the dodets the interface in the housing

circumferential direction. Parameters determined foalparspecimens would be representative
of the behavior of a housing tab when the load enters thefatein the housing radial direction.
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Each Set of Data.
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5.2.12 Conclusion

Experiments were performed to quantify the effects of magdr energy dissipation due to attach-
ment tabs of System B, LOS housing. Hardware was fabricatehpture the various config-
urations of attachment tabs around the housing and to mee#iserrisolated effects of the joint
interfaces. Experiments were performed to evaluate tleetsfiof bending in the attachments tabs
of the LOS housing. As expected, local shear in the intenfgee® the major contributor to energy
dissipation, and bending effects were insignificant. maéforce levels in the joint during experi-
ments are representative of what will be encountered inrehetwironments. Sufficient data were
gathered to assess the variability and uncertainty in th@sored responses and the final metric
energy dissipation per cycle.

177



5.3 Dumbbell Experiment Examples
System A, AOS, Single-Leg Joint

This investigation was performed as a second step in a madibration and validation exer-
cise for derivation of whole-joint parameters. The modehpzeters were intended for use in a
larger, component level model. The transient nature of thalbell input and response was a
desired characteristic in the validation. The combinatbdumbbell and pendulum hammer in-
put provided a very efficient and clean experiment for gatigeuseful joint interface response
information.

5.3.1 Experiment Setup

The setup of this dumbbell investigation is similar to thBgstem B investigation, as the dumb-
bell was suspended from a sturdy support by soft bungees.Rigeares 5.48 and 5.49.) However,
there were differences between the two investigationst,Fio force gages were placed inline with
the joint specimen. Second, the hammer tip was placed anthefea pendulum arrangement, as
shown in the figures, better to control accuracy of both tipeiiocation and magnitude. Both

differences helped to enable a very clean and effectivererpat to measure energy dissipation
in the joint due to axial motion in the specimen.

5.3.2 Dumbbell Masses

Dumbbells used for this investigation were 30-lb each. @otions between masses and joint
specimens used%}in bolt that torqued to 80 ft-lb.

5.3.3 Specimens

There were three pairs of AOS, single-leg, joint hardwaweHpair consisted of a top and bottom,
both fabricated from stainless steel. Tops are designat@&lakd C while bottoms are designated
1, 2 and 3. A combination of top and bottom is referred to asB&,C1 and so on. Multiple pieces
of the same hardware were created to evaluate variabilitgsponse due to slight manufacturing
differences. (See Figure 5/50.)

The local geometry of the joint interfaces was exactly theesas for the joints of the actual
System A. The bolt used to load the interfaces was the sameabalsed in the real system.
Assembly torque applied to the bolt was the same as for theystem, 85 in-lb. Again, there was
a monolithic joint specimen. (Figure 5,51.) The monolithpecimen in this case included every
detail of the interface geometry, including the small gagseeted to appear in the real, assembled,
component level connection.
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Figure 5.48. A0S Single-Leg Dumbbell Setup.
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Figure 5.49. AOS Experiment Setup, Showing Pendulum Input
Structure.

Figure 5.50.A0S Single-Leg Specimens.
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Figure 5.51. Monolithic AOS Single-Leg Specimen - Side.

5.3.4 Force Measurement

Axial force in the joint specimens were determined indisestith Equation (5.2). There were four
accelerometers on the end of the dumbbell mass that weranuiggltime synchronous average.

5.3.5 Experiment Results

The solid-leg was again used to quantify issues relateddelive energy losses in the experiment
and boundary conditions. The characteristics of the s@rdware were also used to calculate the
unknown attachment compliances at the boundaries. Thecoimdinations of jointed hardware
were each exercised a total of five times to yield a set of fbvly responses that capture the
inherent variation in dynamic response due to the bolted pgsembly/disassembly and variation
in hardware.

Hammer inputs were sufficiently high to create peak forcelkewf 400-500 Ib in the joints
during response ring-down. These levels were represeatatithe levels at which the joint was
initially calibrated for use in steady state, harmonic ingxperiments (up to 500 Ib). Higher levels
in this case were not practical with the combination of hamamel tip that was used.

5.3.6 Solid-Leg Baseline Experiments

Information about the solid-leg in the dumbbell arrangenvess provided to analysts for initial
calibration of the linear dumbbell model. The dumbbell dyizs are simple. There were six
rigid body modes and five major structural modes. Table 518 tigid body frequencies that were
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Table 5.3.Dumbbell Rigid Body Modes.

Mode Frequency, Hz
Vertical translation 2.2
Axial translation 0.71
Transverse translation 0.63
Rotation about vertical axis 0.72
Rotation about transverse axidNot measurable
Rotation about axial axis Not measurable

measured manually using a stopwatch and direct observatlomtime required for ten cycles of
vibration in each mode was measured, and then the frequeaygalculated.

Figure[ 5.52 shows the other structural resonances of sitésethe dumbbell configuration.
The axial responses reported are due to a slightly off-cential input. The solid-leg was as-
sembled into the dumbbell arrangement and responses medasiite leg was then removed and
reassembled a total of five times. Energy curves from theceseeare shown in Figure 5.53.

. Solid Leg: Axial Dumbell Response

Mode Frequency (Hz)
1st Bending - Rocking 145
1st Bending - Shearing 195.6
2nd Bending - Rocking 912.2
_ 2nd Bending - Shearing 948
dag onemt | Axial 1390.6
10 e Fr;g‘?zz)n‘m 650 850 2000 Axial mode damping = 0.0589%

Figure 5.52.Solid Dumbbell Response Information.
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Energy Dissipation per Cycle (inch-lbs)

Monolithic Specimen: Energy Dissipation Curves

Monolithic Specimen: Energy Dissipation Curves

Energy Dissipation per Cycle (inch-lbs)

Force (Ibs) Force (lbs)

Figure 5.53.Energy Dissipation Curves.

Energy dissipation curves for the solid specimen in the cethlar-
rangement: (a) Five different curves that appear indistiisgpable and
(b) Extreme zoom on curves.

183



The dumbbell experiment was a very clean experiment, faethas virtually no variation
in the measured responses of the solid-leg. Figure 5.54 ama@nergy dissipation curves from
the solid calibration (steady state sinusoidal) and mdmolivalidation (transient dumbbell) ex-
periments. The baseline dissipation of the solid dumblselbw compared to the steady state
experiment. The close agreement between calibration @gr@mexcitation; BMD) and validation
(transient excitation; dumbbell) experiments for sokd-dissipation indicates that they are both
“clean” experiments with the latter being “cleaner” and mogpeatable. (See Section 5.1.1.3 for
a discussion of this issue in the context of dumbbell expemnits)

Energy Dissipation per Cycle (inch-lbs)
S

Force (Ibs)

Figure 5.54. Solid-Leg Energy Dissipation Curves.

Comparison of calibration (black) and validation (blue)liseleg en-
ergy dissipation curves.

The high quality of the data is partly due to the simplicitytioé dumbbell experiment. There
were only two bolted connections, each usﬁa'gn bolts torqued to 80 ft-Ib. Also, the only bound-

ary conditions that provide a path for additional energysiggtion are the two elastic support
bungees.

5.3.7 Load History Effects

Very large variations in energy dissipation, along with @yéaoffset in dissipation from the ex-

pected range, were observed in the jointed dumbbell spesichéring early stages of testing. The
source of the variation was finally attributed to the loaddrgof the joints. This effect was quan-

tified using the pendulum hammer as a consistent input. Ei§LE5 demonstrates the variation in
responses for the same specimen with practically the sapogsin

The number and magnitude of hammer inputs were tightly otiatt using the pendulum setup
so that the breaking-in effect could be carefully obseree@fich specimen. Figure 5/56 illustrates

the progression of energy dissipation curves as a singt@rapa experienced increasing numbers
of hammer inputs.
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Figure 5.55.Break-in Effect.

(a) Hammer force waveform for first and ZBEnputs and (b) dumbbell
axial response for first and 185hammer inputs.

Specimen A3: Energy Dissipation Curves

Increasing number of hits

Force (Ibs)

4

x 10" Specimen A3: Energy Dissipation at 100lbs
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Figure 5.56.Energy Dissipation Evolution.

(a) Example of the progression of energy dissipation cuwihs in-
creasing hammer inputs. (b) Energy dissipation at an adoitrforce
level as a function of number of hammer inputs.
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After a large number of inputs, the energy dissipation coge®on a stable value. Examples
of more convergences are seen in Figure 5.57 for a singlésprsequence. Each time the joint
was taken apart and reassembled, the asymptote for a langieenwf hits was slightly different,
but the convergence behavior is clearly similar.

x 107 Specimen A3: Energy Dissipation at 100lbs

4 l\ —O— Lc1
k —%— LC-2
\ —%— LC-3

—7— LC4
——LC5

Energy Dissipation per Cycle (inch-Ibs)

I I I I | I I I
20 40 60 80 100 120 140 160 180
Number of Hits

Figure 5.57.Energy Dissipation Convergence.

Example curves showing energy dissipation convergence sage
force level for five load cycles of one specimen combination.

A similar load history effect has been observed in the pasimgle-leg joint experiments in an
SDOF experiment under steady state, sinusoidal loadingd@]7 During those experiments, the
equivalent damping ratio also decreased in an asymptdaiida with increasing vibration cycles.
Changes of about 25% were observed over approximately @8yafdes of sinusoidal vibration.

Changes in energy dissipation values by an approximaterfattour (a range of 300%) were
observed for most jointed dumbbell, transient experimemtse discrepancy in the variation be-
tween transient and steady state experiments is easilgiexpl. Many thousands of cycles occur
in the specimen during a sinusoidal test before the test@astequalized and accurate response
measurements can be made. The transient experiment hagdvidngage that the dissipation for
a freshly assembled joint interface can be measured witfirdtehammer input. Therefore, the
transient technique does a better job of capturing the vat#tion in energy dissipation due to the
“break-in” effect from a fresh interface to a “well-used'ténface.

Figure 5.58 illustrates a postulated mechanism for thekbireaffect. As the interface is ex-
posed to more vibration cycles, asperities engagemergases. As the interface becomes more
constrained, the damping goes down.

Energy dissipation measurements for both the sinusoidbtransient tests are compatible for
purposes of direct comparison because they both were matie bardware after it had converged
to its asymptote. The dumbbell for every transient test wemrstted to at least 165 controlled
hammer inputs (with the pendulum hammer) and the SDOF expetifor every sinusoidal test
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Initial
Engagement Engagement
after vibration

Figure 5.58. Load History Effect - Postulated Asperity Engage-
ment Mechanism.

was submitted to thousands of vibration cycles in the poésystem equalization and the sub-
sequent sweep through resonance.

5.3.8 Jointed Experiments

The nine different combinations of hardware were each alsleehand disassembled five times
yielding forty-five responses from which energy dissipatcurves were determined using the
technique previously explained. The force input from thedudéum hammer was very repeatable.
The average peak force input was 1,126 Ib, with a standarititav of 2% of the mean. Pulse

durations were 0.6 ms.

| I

0 .
1040 1060 1080 1100 1120 1140 1160 1180
Peak Hammer Force (Ibs)

Figure 5.59.Peak Hammer Input Forces.

Mean = 1126 Ib, Standard Deviation = 22 |b.

The magnitude of the input force was chosen to transmit als08 Ib of peak force into
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the joint during the initial peak. The actual achieved, pgaht force levels varied due to slight
differences in joint behavior, and did not quite reach 50thlall cases. More force could have
been applied by the hammer, but would have been at the costonéaked consistency in peak
input level and input location, because a bungee cord woave been required to accelerate the
pendulum through the required additional velocity.

The use of the pendulum to apply an input that was consistdmtih amplitude and location
at the end of the mass, mitigated any significant, dumbbehding mode contamination in the
responses. Still, the motion of each of the four accelerersain the far end of the dumbbell
(away from the hammer input) was averaged to yield the clgessible single-mode ring-down.
The data were easily processed by the log decrement teehniResponses were gathered at a
sample rate of 12.8 kHz and a specified number of data poins weed to perform the analysis.
The first 2,500 or 8,000 points, beginning with the initiadpense peak for the jointed and solid
specimens, respectively, were used to make the energyadiEsi measurements. A fifth order
polynomial was used to fit the peaks of the ring-down as ames#i the envelope. All the energy
curves from each hardware combination are shown in Fia&@ 5.
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Figure 5.60. Transient Dumbbell Validation Data.

The energy dissipation curves from the transient dumbblpkements were overlaid with the
energy dissipation measurements from the steady stabeat#din experiments in Figure 5.61. The
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agreement in both overall magnitude and variation in tha Batween calibration and validation
experiments is very aood.
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Figure 5.61. Transient Validation Curves Superposed on Steady
State Calibration Curves.
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5.4 Dumbbell Experiment Examples
A Generic Interface Parameter Study

5.4.1 Motivation

This series of experiments was an effort to understandgdintterfaces that are held together by
some of the more common small bolts. These types of boltedfattes are used at the component
and subcomponent level of hardware assemblies.

Bolted joint experiments shown thus far have been designadderstand a single and specific
type of interface, one that is in the only mechanical loadhpata component of specific interest,
such as an AOS. Often such an interface is unique and benmefitchreful assessment. The quan-
tification of its behavior experimentally can be relativetyaightforward. Then, implementation
of the bolted joint element in an analytical model can prdosgh relative ease.

It is not always true, though, that the majority of energysitiation in a real structure comes
from a single set of jointed interfaces that are in the meidaduitoad path of some input energy.
Much energy dissipation can occur within a component if ittamns many smaller, bolted connec-
tions distributed within it. This is especially true for darare that is not dynamically rigid and
therefore experiences notable amounts of relative displ@at and strain throughout its structure.
Examples of such hardware are shown in Figures|/5.62 and 5.63.

Figure 5.62. Example of Space Flight Hardware.

This component has a relatively simple metal framework ainirtg
electrical components held together and connected to tkieassembly
by numerous small bolts with washers.

Figurel 5.62 shows an example of hardware containing nursarderfaces held together by
small bolts. Also, the component itself is attached to thd level of assembly by a large number
of small bolts distributed in some fashion. Bolts and irdeés in this hardware provide a large
majority of the energy dissipation to the structure. Theaaunce of interfaces serves as a desirable
mechanism to keep the responses of the box to a minimum, sagadtect internal electronics.
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Figure 5.63.Mock Weapons Component.

Collection of circuit boards and foam potting fastened tbge at key
locations and connected to next assembly with small bolts.

The hardware in Figure 5.63 is an example of a component withanal metal skeleton that
supports several stacked circuit boards. The circuit ®ard intrinsically rugged partly because
of the foam potting compound supporting them. In the finabaddy, the mechanical energy
into this hardware arrives through both the top and bottothefthree-legs of the metal support
structure, which contains a small number of carefully desiy small bolt connections.

In addition to studying very specific jointed interfacestthee well-known energy dissipaters
along a mechanical load path, it is beneficial to study andnbigunderstand the contribution
towards overall energy dissipation in the structure thellemiaolted joints may provide.

5.4.2 Experiment Setup

The dumbbell experiment was chosen over other experimposibilities to exercise the joints
specimens for this study. The dumbbell experiment is delgirf@r the following reasons:

e Captures the nature of dynamic behavior in a true transiant@ament

e Easily performed by most well trained laboratory persornmi¢h basic knowledge of ac-
celerometers, conditioning, hammer input, and data aitquisExperiments involving elec-
trodynamic shakers require detailed understanding anithbilsly of the proper vibration
control system.

e Efficient and effective application of simple pendulum, maen, and dumbbell technique
to gather large data sets provided that several tens of hammpacts are not needed to
“condition” the joint to account for effects of accumulatedding.
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Figure 5.64.Experimental Setup.

e Most importantly, the experiment is supported freely anérmfs “clean” enough to distin-
guish the effects of deceptively small features in the gdrtardware, dynamic response

This experiment was performed later in the time line of SNaltdd joints work. The setup
seen in Figure 5.64 shows a rather large number of resporssunegnents. These response mea-
surements are arranged so that the first six major structhwdes of the dumbbell can be studied.
The hope for future work in this area is to gain the abilitymalyze and then describe the behavior
of the jointed interfaces due to coupled loading in the fiatgr as a result of any combination of
modes.

This section will describe only the lessons learned fromlyeairag the axial motion of the
dumbbell, or pure shear loading in the bolted joint. Thiseskpent was performed in accordance
with all the preparations, procedure, and attention toildeda described earlier in this section.

5.4.3 Dumbbell Masses

The weight of each dumbbell in this arrangement was 60 Ibydicg the plugs that are installed
during tests. When installed and torqued tightly, the ttieglaplugs provided a convenient, solid
surface for the hammer to strike the dumbbell in a way thatestrimarily the axial mode of the
system.

192



5.4.4 Hammer Input

A pendulum hammer arrangement was again used to providatedpe, transient inputs to the end
of the dumbbell. The amplitude was controlled by the reldesght and was measured by a force
gage at the end of the hammer. The input amplitude was kepgtaot) within 5%, for the entire
range of tests shown here.

The hammer tip for these experiments was again white pladtie repeatable location of
impact was also well controlled by the use of the pendulurhnigue. For inputs meant to excite
primarily the axial mode of this hardware, the impact logativas limited to the center of the
threaded plug.

5.4.5 Time History Effects

Unlike the AOS single-leg hardware, there were practicatiyeffects from multiple hits on the
energy dissipation of this hardware. Still, to be sure timgt small effects or inconsistencies are
effectively minimized, the data sets shown here are for ¢éméhthit applied to the experimental
assembly.

5.4.6 Specimens

There were three pairs of jointed hardware and one piece obftbic hardware. (See Figure
5.65.) The specimens were made from stainless steel. Atirspas received up to three bolts
each. Each of the three pairs had different sizes of bolts326INF, #8-32 UNF, and #10-32
UNF. The monolithic specimen was made the same geometryegsittied specimens, and was
drilled and tapped for #8-32 UNF bolts.

The purpose of the specimens was to allow investigation @fregety of bolt parameter varia-
tions with all other factors remaining constant.

Bolt size - affects preload in the joint when nominally recoanded bolt torque is applied.

Washers vs no washers - affects the number of potentialicthdav microslip interfaces in
the overall interface.

Bolt torque - affects preload in the joint, which is also tethon bolt diameter

Number of bolts, or bolt spacing - affects the character espure distribution in the inter-
face.
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Monolithic

6-32 bolts

8-32 bolts

Figure 5.65.Generic, Small Bolt Specimens.

5.4.7 Force measurement

No joint specimen forces were measured in this particulaviac For axial loading in the speci-
mens, force is the product of mass and axial acceleratidmeadambbells.

5.4.8 Test Matrix

Three torque values were chosen for use with each size taiitd5.4.) First, a nominal torque
for each bolt had to be chosen. The recommendations forllatsta torque can vary widely
based on materials and applications. The nominals listegl tn@y not agree exactly with those
listed elsewhere, but they do represent values that areseptative of typical recommendations.
Lowest torques were chosen to be approximately 0.75 timeesdiminal torque for the given bolt
size. High torque values were chosen at approximately In2&stthe nominal torque. The other
consideration in choice of nominal torque was to avoid eaizgpthe recommended maximum
torque for any of the bolts and possibly inducing undesediittle failures of the bolt material.

A huge variety of parameter combinations was possible duhis study. Table 5.5 shows the
space of possibilities and shows the data that was actuatheged and that has been archived.
Due to practical and cost limitations, the entire matrix o$gible parameter combinations was not
tested.
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Table 5.4.Bolt Torque Definitions, in-Ib.

Bolt size | Low | Nominal | High
6-32 6 8 10
8-32 12 16 20

10-32 | 18 24 30

Table 5.5.Full Test Matrix and Availability of Data.

TORQUE>> Low
BOLTS>> 1123
Axial input AlA|A
Washers
Y-bending
Z-bending
Axial input AlA|A

Nominal High
1
A
N
N
N
A

Washers A
A
N
A
A
A
N

=
N
w

6-32

8-32 Y-bending

Z-bending
Axial input AlA|A
Washers

Y-bending
Z-bending

10-32

DD DD B D> N
DI DD D> w

Note: A = Data acquired and archived. N = Either 1) specimemga
ing was too high, and reasonable measurement not practrc) imter-

face pressure was low and therefore abundant macroslipamterface
suppressed almost all structural response.
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5.4.9 Investigation Results

The study provided numerous examples, many of them inalytiebvious, regarding how the
parameters combine to yield various energy dissipatiomesur The following subsections will
adequately illustrate typical post processed data.

In all cases, five energy dissipation curves were gatherelyzed, and plotted to illustrate
variability due to assembly and reassembly of the jointrfatee. Reassembly consists of removal
of bolts, realignment of joint interface, reinstallatioihbmlts, and application of desired torque.

5.4.9.1 Analysis

Again, analysis of dumbbell responses was in accord witimtathematical approaches described
earlier in this section. The transient response envelopgdiltered dumbbell axial modes were
all fitted with fifth order polynomials, unless otherwise eabt

5.4.9.2 Monolithic Specimen

Every jointed interface experiment performed has benefitma companion testing of a mono-
lithic solid specimen with replicate geometry and matstiaut without the actual joint interface.
This very useful practice was followed here. The resulthiefrhonolithic tests, in terms of energy
dissipation, are shown in Figure 5.66.

Purely Monolithic Specimen, Figure/5.66 The following plot of energy dissipation contains
the five tests of the dumbbell with the monolithic hardwargtatied. Notice how closely the five

curves agree with each other. The close agreement provel) thesembly variability in this case
is low, because there was no reassembly needed and 2) théneempie both input and dumbbell,

and the analysis algorithm as a whole provided a consiststiied for these tests.

The average slope for all curves is 2.00, which is consistetht the expectation of a linear
structure with linear damping limited to the material dangpiThe average linear damping for the
five tests of the monolithic hardware was 0.035% of critical.

Monolithic Specimen with Bolts, Figure/5.67 The monolithic hardware lacked the joint inter-
face, included threaded holes for three #8-32 UNF boltgallagion of the three bolts, at nominal
torque, actually increased the energy dissipation peedyglan almost imperceptible amount.

The blue curves, for the monolithic hardware including ot Figure 5.67 are only slightly
higher in overall energy dissipation per cycle than the lblaw bolt) curves. The difference
certainly is apparent upon close examination. Additionha bolts allowed a small amount of
extra energy dissipation due to interactions of the bokabrand bolt head with the monolithic
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Figure 5.67. Energy Dissipation, Purely Monolithic Joint.

(@) No bolts (black) vs monolithic with #8-32 UNF bolts in péaat

nominal torque (blue). (b) Magnified view of curve set.

specimen. The addition of the tiny amount of extra interigaet enough to cause the dissipation

to behave nonlinearly. The average slope of the blue cusv290.
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5.4.9.3 Jointed Specimens

Each of the following brief subsections illustrates theeefffof small bolt parameter combinations
on the overall energy dissipation in the jointed interfa€ach energy dissipation plot shows five
curves for each of the parameter combinations to illustratebility due to reassembly. Typically,
the plots include three variations on a parameter with akkoparameters held constant. Each plot
also shows the energy dissipation per cycle curves for tie pghonolithic hardware. All the data
have been plotted on the same scales for comparative purpdseal plot of all the data on one
axis concludes the plot display.

While studying the following sections, the reader shouldka mind the relationship of bolt
preload to the bolt size and the applied torque.

T=0.2PD (5.14)

where 0.2 is a bolt factor chosen for basic estimations dbpteforce in the limited range of bolt
sizes used. Table 5.6 lists the calculated preloads forahenmeters used in this study.

Table 5.6.Bolt Torque Variation, #6-32 UNF

Low (red), nominal (green), high (blue) torques
along with Solid (black).

Bolt | Diameter| Preload (Ib)| Preload (Ib)| Preload (Ib)
size (in) Low Nominal High
6-32 0.14 214 286 357
8-32 0.16 375 500 625
10-32| 0.19 474 632 789

Vary: Bolt Torque

Three #6-32 UNF Bolts, Figure 5.68 Variation of the installation torque for the #6-32 UNF
bolts illustrates a consistent trend toward lower energgidation for the highest torque. The
lowest torque also exhibits slightly more variability irsdipation. (See Figure 5.68.)

Three 8-32 Bolts, Figure 5.69 Variation of the installation torque of the #8-32 UNF bolts
also demonstrates a steady trend toward lower energy digsipfor the highest torque. The
lowest torque still exhibits slight more variability in exgg dissipation.
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Vary torque, three 6-32 bolts
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Figure 5.70. Bolt Torque Variation, #10-32 UNF.

Low (red), nominal (green), high (blue) torques along witbli®
(black).

Three #10-32 UNF Bolts, Figure 5.70 Variation of the installation torque of the #10-32 UNF
bolts again illustrates a steady trend toward lower eneiggightion for the highest torque. In this
case, the lowest torque exhibits equal amounts of variglmlidissipation.

There appears to be a type of asymptotic convergence ofyedmgjpation when the torque is
high because the nominal and high torque data are very sjimiiamuch lower than the dissipation
for the low torque cases.

Notice also in this case that the lower amplitudes of the mai@ind high torque energy dissipa-
tion curves are showing a slope that is fairly close to thahge the linear, monolithic hardware. It
is likely that below a certain force threshold, some boltadtjinterfaces can exhibit linear damp-
ing rather than damping arising from microslip. Microsligndping leads to energy dissipation
curve slopes greater than two.

Vary: Number of Bolts (Bolt Spacing)

Nominal Torque, #6-32 UNF Bolt, Figure 5.71 When #6-32 UNF bolts are torqued to the
nominally recommended value, the data show that three albtw less dissipation than the case
of two bolts. When only one #6-32 UNF bolt was used, the datddcoot be analyzed with the
logarithmic decrement technique because the dissipatamsimply too much. The axial mode
would dampen out almost as soon as it was excited.
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Vary bolts, nominal torque, 6-32 bolts
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Figure 5.71.Energy Dissipation Variation for #6-32 UNF Bolts.

Two bolts (green), three bolts (blue), along with solid @a

Note here that the case with two bolts also exhibits sligimtye variability in energy dissipa-

tion, probably due to the likelihood of a more variable cahizatch. Three closely spaced bolts
are more likely to have less of a microslip boundary at theeeafghe contact patch than the case

of two bolts that are spaced further apart, with everythisg eemaining constant.

Nominal Torque, #8-32 Bolt, Figure|5.72 Variation of the number of #8-32 UNF bolts,
torqued to the nominally recommended value, demonstragi@is shat three bolts allow less dis-

sipation than only two bolts. Similarly, two bolts allow fedissipation than only one bolt. The
case with two bolts exhibits much more variability in enedjgsipation than both the single bolt

or three bolts. Currently,

we have no plausible explandtothis behavior.
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Vary bolts, nominal torque, 8-32 bolts
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Nominal Torque, #10-32 Bolt, Figure 5.73 The character of these responses was slightly
different. The above data were generated using a fourthr palgnomial fit to the envelopes.

Variation of the number of #10-32 UNF bolts, torqued to thenimally recommended value,
clearly shows that three bolts allow less dissipation thag two bolts or a single bolt.

The variability seen in each case was relatively low. Peshibp load generated by a nominal
torque of a #10-32 UNF bolt in this hardware allowed a regdataontact patch boundary to be
achieved in all cases.

Note that as previously seen, there is a tendency for thevzilsehree bolts to exhibit linear
damping and a dissipation slope of two, below a certain ftroeshold.

Vary bolts, nominal torque, 10-32 bolts
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Figure 5.73.Energy Dissipation Variation for #10-32 UNF Bolts.

One bolt(red) Two bolts (green), three bolts (blue), alonthveolid
(black).

Vary: Washers

Three #6-32 UNF Bolts, Nominal Torque, Figure 5.74 When plain washers were added to
the three, nominally installed, #6 bolts, the overall egeafigsipation increased slightly, as did the
variability in the energy dissipation. This observationkemsense because the washers add more
interfaces that contribute both damping and variability.
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Washers, three bolts, nominal torque, 6-32 bolts

Energy Dissipated per Cycle (inch-lbs)

Force (lbs)

Figure 5.74.Effect of Washers.

Nominal torque, #6-32 UNF bolts: no washers (red) and washer
(blue), along with solid (black).

Three #8-32 UNF Bolts, Nominal Torque, Figure 5.75 When plain washers were added to
the three, nominally installed, #8-32 bolts, overall eyedgssipation decreased slightly, but for
reasons that remain unclear. The variability in the energgiplation did increase slightly with the
addition of washers, which is consistent with the obseovetifor #6 bolts and washers.

Three #10-32 UNF Bolts, Nominal Torque, Figure 5.76 When plain washers were added
to the three, nominally installed, #10 bolts, the overalirgy dissipation increased slightly. The
variability in the energy dissipation also increased byrg genall amount. This observation, again,
makes sense due to the additional interfaces that corgriimth damping and variability.
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Washers, three bolts, nominal torque, 8-32 bolts
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Vary: Bolt Size

Nominal torque, three bolts, Figure[5.77 The load in the bolt is related directly to both
applied torque and bolt diameter (Table 5.4). In genera, rtbminally installed bolts should
exhibit higher preload for larger sizes. In this case, teadrappears almost as predicted, except
for the fact that the #6 and #8 bolts yield very similar digsipn curves.

Different bolt sizes also have different bolt-head diamsgt@hich may influence contact patch
shapes and pressure distribution more than is realizeceimtirface. In turn, these differences
may have a more complicated effect on the energy dissiptteimis experimentally observed.

Vary bolt size, nominal torque, 3 bolts
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Figure 5.77.Nominal Torque, 3 Bolts.

#6-32 UNF (red), #8-32 UNF (green), #10-32 UNF (blue), alawith
solid (black).

Presentation of all data, Figure 5.78 When all of the above curves are plotted on a single-axis,
the amount of variability in the energy dissipation curvesather significant. The amount of
variation demonstrated is the most dramatic of all coltewtiof data presented in this handbook.
However, except for the case of the two, nominally instalkgl bolts, no single combination of
parameters has shown a large amount of assembly-to-agseartation, especially when com-
pared to that observed in the earlier experiments, suchea8@$ single-leg joints or System B
specimens.

It can be important to note that large amounts of experinligradserved variation in energy
dissipation per cycle for bolted joints actually might hateaightforward explanations. In this
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Energy Dissipated per Cycle (inch-lbs)

Force (lbs)

Figure 5.78.Complete Bolt Data Set.

particular case, the energy dissipation differences inothexall collection of data can be easily
explained by the relatively large parameter space of tagbelt size, bolt spacing and washers.
It is conceivable that large amounts of variation in othent®can be explained by unexplored
variations in similar parameters that are simply not as peeustood or quantified.

The data in Figure 5.78 have a bit of a banded appearanceTiodate might be a way to group
and differentiate (color) the data in a way that would pomah underlying relationship. One
possibility might be coloring the data according to bolesis shown in Figure 5.79.

The organization of data in Figure 5.79 does not show anyoaisvirends. However, when the
data are arranged and colored according to the preload fieohe can readily see an emerging
relationship.

Figure 5.80 illustrates the relationship between preloatieverall energy dissipation. All data
shown are for parameter combinations including only thr@léshusing preloads from Table 5.6.
The red curves are from experiments with the lowest boltoa@| and they consistently appear
at the top of the overall collection of curves. The green earite in the middle of the curve
collection, almost perfectly dividing the low and high pratl data. The blue curves consistently
make up the lower portion of the curve collection. There &adly a relationship between bolt
preload and overall energy dissipation.

Figure 5.81 shows the energy dissipation per cycle at 30 lbpaft for each of the parameter
combinations shown in Table 5.7. Energy dissipation at 38 [idotted against approximate bolt
preload as calculated by Equation (5.14) using informdiiom Table 5.6.

In general, the energy dissipation decreases as the prisloanteased. The data for parameter
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combinations including three bolts show less energy dig&ip than the cases with one or two
bolts because the three bolts generate the highest normalifothe interface.

Similarly, Figure 5.82 shows that the frequency of the axiable of the dumbbell goes up with
increased preload (given same number of bolts, again),hwkitogical. As the load in the joint
is increased, the interface becomes more rigid and morelglapproximates the stiffness of the
monolithic specimen, which had an axial mode frequency 6f198.
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Figure 5.82.Dumbbell Axial Mode Frequency vs Bolt Preload.
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Table 5.7. Summary of Average Slopes from the Parameter

Study.
Bolt Number| Bolt | Washer| Average
Size of Bolts | Torque Slope
6-32 1 10 N 2.43
6-32 2 10 N 2.55
6-32 3 6 N 2.61
6-32 3 8 N 2.77
6-32 3 10 N 2.56
6-32 3 8 Y 2.82
8-32 1 12 N 2.57
8-32 1 16 N 2.31
8-32 2 20 N 2.42
8-32 3 12 N 2.72
8-32 3 16 N 2.63
8-32 3 20 N 2.87
8-32 3 16 Y 3.07
10-32 1 30 N 2.37
10-32 2 24 N 2.15
10-32 2 30 N 2.09
10-32 3 18 N 241
10-32 3 24 N 2.48
10-32 3 30 N 2.57
10-32 3 24 Y 2.58
8-32solid| NA NA N 2.00

5.4.9.4 Energy Dissipation Curve Slopes

The previous subsection has shown that there is potentialrfderstanding the relationship be-
tween overall energy dissipation and preload in a boltestiate.

Another number used to describe the character of a nonlb@eed joint is the slope of the
energy dissipation-per-cycle curve as plotted in log-lpgce. As indicated earlier, this number
is an indication of the degree of damping nonlinearity tisgtriesent in the interface. A slope of
exactly two indicates linear, viscous damping. Slopestgrehan two indicate damping that is
amplitude dependent, with higher slopes indicating higimeplitude dependency. Typically, slope
values top out at, or slightly above, three.

Shown in Table 5.4.9.4 are average energy dissipation aloges for all the data that was
utilized in this section.
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Data not included in Table 5.7 was not conducive to analygishie modified logarithmic
decrement technique for one of the two following reasonsth&)specimen exhibited very high
amounts of damping at the axial mode, or 2) envelopes of psaks hard to fit due to proximity
of an adjacent mode, even with digital bandpass filtering.

The average of all the slopes in Table|5.7 is 2.55. The medaurewof these slope data is
also 2.55. The conclusion from this limited illustratiortlist we can assume a slope of about 2.5
or 2.6 even if we did not have other detailed knowledge of thtigular bolted joint. In all the
experimental work that has been done at Sandia on bolte$j@irslope of 2.5 has generally been
very close to the experimentally determined slope values.

20
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2 25 3 3.5
Slope, 2.0=linear damping

Figure 5.83. Slope Histograms for Table 5.7 Data.

Figure 5.83 shows a histogram of the slope values found iteT&f. The slope values do vary
within the entire space from two to three. This statistidatyre of the distribution might help
the experimentalist decide whether detailed experimesta@eded or simply choosing an average
value of 2.55 would suffice.

5.4.9.5 Summary

The purpose of this section is to provide some general backgras to the overall behavior of a
very simple and generic, bolted joint interface as the mastdyparameters affecting the joint are
changed. Lessons learned from this study include the fatigw

e Interface preload, in the form of bolt tension, is a majotdad the overall energy dissipa-
tion in a bolted joint.
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e The presence of washers under bolt heads tends to raiseheotiverall energy dissipation
of the interface and the variability in the dissipation.

e Compared to other, more complicated specimens, the vhiyabi energy dissipation in
these specimens is low, suggesting that the simple geowfdtrgse interfaces does not offer
as much opportunity for variability in the way the surfacestetogether. The AOS single-
leg joint, shown earlier, is an example of a complicatedrfate with more opportunity for
assembly-to-assembly variation.

¢ \With rare exceptions, for all of the bolted joint data coleztand presented in this handbook,
the slopes of the energy dissipation curves are betweenn?..8. In those exceptional
cases, (similar to other experimental observations oonally seen in the literature), only
a few experimental observations involve power-law slojes éxceed 3.0Typically, one
expects power-law slopes lying between 2.3 and 2.9.

5.4.9.6 Future Work Using these Data

Much data was collected in the process of this investigdfiable 5.5 on page 195) but not all the
data has been fully analyzed. The lessons learned predesriedre limited in the following ways
that also suggest areas appropriate for future work:

e Imaging and analysis of interface contact patches for av@,and three bolt arrangements.
The shape and distribution of contact patch probably vagsstantially among the three
cases.

e Analysis and understanding of more than the simple axiait@paction in the interface.
Data was also gathered, but not presented, in this 1st Bditemdbook, that will allow
thorough analysis of energy dissipation in the interface tubending modes in the joint.
Bending modes are expected to affect the behavior by motiificaf the contact patch due
to the moment in the interface.
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5.5 Analysis of Dumbbell Interface Data
Using Spatial Filtering Techniques

5.5.1 Data Analysis

There is no direct way to measure the energy dissipationmétipint. The measured acceleration
waveforms are complex and require some decomposition teratahd their character. The dumb-
bell design assumption is that the dominant energy digsipaiccurs by the axial sliding of the

joint. Because of the coupling between bending and axialanpit was necessary to isolate the
effects of axial motion. Axial effects within the dumbbed#ircbe isolated using spatial filtering.
Spatial filtering was investigated using modal filtering andr-parameterization.

For these studies, a joint representative of the primaryection between the Laterally Ori-
ented Subsystem (LOS) and the exterior aeroshell of theeBy& system was selected. This
interface is a flanged, screwed lap joint. Any loads appleethe exterior of the system must
be transferred across this bolted interface to excite th8.LBased upon previous research done
at Sandia/NM [49], it was conjectured that the primary epatigsipation mechanism would be
slippage in the joint - both microslip and macroslip. Consagly, the experimental test bed was
developed to facilitate the sliding of the facing surfacastpne another, exciting the mechanism
of interest. Because of the aluminum-to-aluminum intexfidavas important to minimize the num-
ber of large amplitude cycles that could cause damage arabildy in the results. It was decided
that a “dumbbell” impact experiment would best excite thdisgy dynamics of the system while
minimizing the damage to facing surfaces. Examples of ttexfaces specimens are shown below
in Figures 5.84 and 5.85.

5.5.1.1 Dumbbell Specimen Experiment

The initial concept of the dumbbell experiment was that tivalbell would represent an idealized
2-DOF spring, mass, dissipation model as shown below inrEi§B6.

In the modelK represents the stiffness of the joikt,is the mass of each end element &nis
nonlinear energy dissipation term. The response of thesys&l an axial excitation would be the
rigid body acceleration of the system and the ring-down efédlastic mode. The characterization
of the energy dissipation across the joint could be detezthivy the physical parameters of the
experiment and the ring-down of the axial mode.

Unfortunately, the physics of the dumbbell test specimersamewhat more complicated than
the idealized 2-DOF system above. The actual hardware ippates a twelve DOF system: six
rigid body modes and six elastic modes (ignoring the highegudency local modes). The six
rigid body modes are the system translations and rotatérsthe six elastic modes are the axial,
torsion and four bending modes. So, even in an idealizatidheohardware, an experiment must
be careful to excite and measure only the axial mode of istéhat represents the sliding of the
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Figure 5.84.Interface Specimen.

Figure 5.85.Cross-Section of Dumbbell Test Specimen.

facing surfaces. This is a controllability/observabiliiyoblem in which the aim is to only excite
and observe the axial mode.

The actual hardware does not behave like the idealized 1B-8Gtem described above. The
jointed test specimen is not symmetric and cannot be degigmbe symmetric. Consequently,
the lack of symmetry causes modes that are coupled axial andifig modes and are closely
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Figure 5.86.Idealized 2-DOF Dumbbell System

spaced. The resulting response cannot be analyzed diré@ttiéyresponse of the system must be
decomposed to track the individual modal responses of thiesy(at this stage consider only the
mild nonlinearities associated with microslip). The metha@onsidered for this decomposition
are: temporal filtering (including wavelets), and spatiéfing. As other efforts (Section 5.1.3)
addressed the temporal filters, this investigation is fedum spatial filtering.

5.5.1.2 Spatial Filtering

A spatial filter, allows observation of the contributionsti@ acceleration waveforms of the dy-

namics of interest and exclusion of the information fromeotlhess important dynamics. The first

attempt at spatial filtering was to use a modal filtering apphousing a pseudo-inverse method to
derive the modal filter parameters.

X®)} =[el{at)} (5.15)

{a(t)} = [e"{X(t)} (5.16)

Because of the limited frequency bandwidth associated thighmpact hammer and the use
of anti-aliasing filters, only the first twelve modes of thet®m were retained in the modal filter.
The rigid body modes were derived from the geometric definitf the test hardware, and the
elastic modes were determined from test data: low-levebohpesting and at-level testing with
the pendulum. As shown in Equation (5.16) the modal filtehis pseudo inverse of the mode
shape matrixj¢] ™.

As stated earlier, due to the inherent asymmetry of the,jaipure axial mode does not exist.
The axial and bending response is coupled. There are twelglspaced modes that contain con-
tributions from the sliding mode and a bending mode. Thesgdamnican be seen in the acceleration
response as a “beat” in the waveform in Figure 5.87 and meeelglin the Fast Fourier Transform
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(FFT) of the response in Figure 5.88. The contributions esétwo modes were isolated using the
modal filter with varying degrees of success. Ultimatelg fittered response was very sensitive

to small changes in the mode shapes and the nonlinearitg &ystem precluded using the modal

filter to isolate the desired response. A different apprahahwas not as sensitive to small changes
in mode shape was needed to extract the ring-down of the edupbdes.
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Figure 5.87.In-Axis Acceleration Response of Dumbbell Spec-
imen.
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Figure 5.88.Fast Fourier Transform of Acceleration Response.
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Over Parameterization and Modal Subtraction Those familiar with using time domain meth-
ods to extract modal response of real structures underggagifficulty and the frustration in using
it. In the frequency domain, the peaks that correspond tartbdes of interest are clearly ob-
served, but the time domain solution results in multiple p®deing estimated to properly fit the
ring-down of the individual modes. The cause of this is duentldl system nonlinearities and
signal processing effects such as leakage. This obsemvatsm widespread that modal processing
codes like I-DEAS generate convergence/stability pldtsaahg the user to pick the “best” modal
representation.

For this analysis the time domain code was used to curve fid#ha by including multiple
modes at the resonant frequency of interest. This approaek dot result in a predictive in-
put/output model of minimum order. It is simply a curve fit teetdata using a series of decayed
sinusoids of approximately the correct frequency that minés the error between the measured
data a series of analytical curves. The modes not assoaitkedhe dynamics of interest are
removed and the remaining decayed exponential responsassad to define the decay of the
mode(s) of interest. This method appears to work well; h@rdvecause of the closely spaced
nature of the modes in question, there are some issues wik separability.

Eigensystem Realization Algorithm Because of its familiarity, the Eigensystem Realization Al
gorithm (ERA) [57] time domain code was used to process tlwidual acceleration waveforms.
The output of ERA is in state-space form. The state-spacatems are manipulated to determine
the nonlinear mode decays. Initially, the curve fitting aédtions were performed interactively;
however, because of the large number of individual datalsetg) processed (over 400 data sets),
software was developed to process the data in a batch modey dflahe parameters used in the
batch process were selected based upon experience “fittiegfata interactively.

ERA falls in the general category of system identificatiazhtéques referred to as generalized
block Hankel decomposition. A principal input parametethis number of time points to use in
forming the rows and columns of the Hankel matrix. Ultimgtehe row space of the Hankel
matrix is the limiting factor, limited by computer memoryj bow long a data record can be used
in the curve fitting process. The number of poles selecteddrctrve fitting process is based upon
a unity normalized cumulative sum of singular values of tlamk&l matrix. The number of poles
retained is determined by a user specified parameter rglatithe value of the cumulative sum of
singular value curves. The value used in these analysesetts®9995.

Error Checking in ERA  Because the data was processed in batch mode, it was imptmortan
have an error metric associated with the quality of fit. Taekite this error metric, all responses
from the ERA state-space model were resynthesized. Nextgalar value decomposition of both
the resynthesized data and the original experimental dasgperformed. Because the response of
the system is dominated by the two coupled axial/bendingasgaithe first two singular values of
the response matrices are expected to correspond to tHelgamics. Correspondingly, the first
two columns of the left hand singular vectors will reflect rabtike response of the principal axial
modes.
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Figure 5.89.Resynthesized ERA Response Fit for First Singular
Value Vector.
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Figure 5.90. Resynthesized ERA Response Fit for Second Sin-
gular Value Vector.

Consequently, natural error metrics are the normalizeigreifices between the experimen-
tal and analytical left-hand singular value vectors. Theser metrics reflect the ability of the
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state-space model to reproduce the dominant axial dynasponse. Figures 5.89 and 5.90 are
examples of the comparison of the experimental and ERA thegized singular value vectors
demonstrating the ability of the state-space model to caghe desired dynamics. Interestingly,

these responses are very similar to the results obtainedghrthe use of the pseudo-inverse modal
filter.

The responses of over-parameterized modes of interesteceasbnthesized using the model.
Figures 5.91 and 5.92 show the resynthesis of the two ovarpeterized modes with their cor-
responding Hilbert transform envelopes (HTE). Ripple ia darly time response of the HTE pre-
cludes using it directly to extract the energy dissipatidinetter approach is to fit the HTE with a
series of monotonically decaying basis functions. Thetions selected are the decay envelopes
of the damped sinusoids that approximate the nonlineabresspof the mode of interest. Figures
5.93 and 5.94 show the HTEs and the basis functions for thentwtinear modes of interest. It
is apparent that the early time response corresponds, aéastly, to the heavily damped sinu-

soid (Basis function) and late time response correspondsiore lightly damped sinusoid (Basis
function).
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Figure 5.91. Filtered Acceleration Response for Mode 1.
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Figure 5.93.Basis Functions and Hilbert Envelope for Mode 1.
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With the HTEs and the basis functions determined, a leasdreguit of the basis functions
to the HTEs gives a smoothed version of the HTE. Figures 5n@%a6 show the resynthesized
nonlinear mode responses, their HTEs and the smootheansisi the HTEs which are described
in the figures as fits to the Hilbert envelope. The next stepasktraction of the damping factors
from the smoothed HTEs.
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Figure 5.95.Fit to Hilbert Transform Envelope for Mode 1.
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Figure 5.96.Fit to Hilbert Transform Envelope for Mode 2.

The following derivation extends the work by Resor [58]0aling the recursive extraction
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of the amplitude dependent critical damping ratio from aendy sampled decay envelope. The
decayed response of a SDOF system is

X (t) = Xe Ot gin(yt) (5.17)

with a decay envelope

Xe(t) = Xesbent (5.18)

Taking the logarithm of both sides

log(Xe(t)) = log(X) — ¢ (t) wnt (5.19)
and discretize by looking at the discrete time points

kAt =t, for:k=0,1,2,...n (5.20)

The difference of the logarithm of the envelope for tilkedk + 1 yields

log(Xe((k+1)At)) =log(X) — ¢ ((k+1)At) wn ((k+ 1) At) (5.21)

Rearranging Equation (5.21) to solve fpfk+ 1) results in the following recursion equation

log (Xe (k) —log (Xe(k+1)) K

Atan(k+ 1) —¢Mi3 (5.22)

¢(k+1)= o1

The starting point for the recursion equatiorkat O is

c(1) = 1290%e(() —log (X (k + 1))

5.23
At (5.23)

The derived recursion equation allows estimation of themagratio from the smoothed HTE
for each of then time points. Figure 5.97 displays the calculated criticainging ratios for the
two nonlinear modes for a particular system input.

Calculation of Energy Dissipation The energy dissipation per cycle for each of these single
mode responses can then be calculated from the decay eav&iam Thompson [52], the energy
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Figure 5.97. Critical Damping Factor.

dissipation per cycle for an SDOF spring mass damper sysa@be approximated as

D = 27 kX (5.24)

For the system with two masses, the dissipation is doubled

D = 4 kX (5.25)

where ( is the time varying critical damping ratio,
k is the dynamic stiffness,
and X s the amplitude of sinusoidal displacement of one of thesess

Assuming that the natural frequency of the system is coh&tam particular mode, and that

the acceleration amplitude can be determined from the stbmie derivative of the displacement
leads to Equation (5.26).

A
X~ (5.26)
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A further assumption is that the response frequency is theadrequency of the system.

_./k
W=14m (5.27)
k = ma?

Substituting Equations (5.26) and (5.27) into EquatioB%pgives an expression for the energy
dissipation per cycle expressed as a function of the aatearenvelope and critical damping
ratio.

_ AZmmA

D 7

(5.28)

Plotting energy dissipation per cycle as a function of thredacross the joint on a log-log plot
(Figure 5.98) shows curve slopes between 2.3 and 2.5 imgicatonlinear damping mechanism
consistent with the results by Gregory and Resor [49]. Whigeprocedures described herein are
complex, it does eliminate distortions caused by tempditakdi and uncertainty associated with
wavelet transforms.

Mode 1
Mode 2

Dissipation
S

10 10° 10° 10*
Force Across Joint

Figure 5.98.Energy Dissipation per Cycle vs. Force Amplitude.
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Chapter 6

Performing Controlled, Bolted Joint
Transient Experiments on Electrodynamic
Shakers

Danny L. Gregory and Brian R. Resor

The purpose of this section is to discuss issues that arsenimolling transient inputs to hard-
ware for the purposes of model validatibThe challenge is to impose a prescribed acceleration to
the test specimen so that the resulting system responseecamnipared that of a computer model
for the structure subject to the same imposed acceleration.

Tests were performed on an Unholz-Dickie, T2000, electnagdyic shaker in which tests were
controlled either by a Spectral Dynamics, Jaguar, shockvameation control system, or by an
in-house control package. (The hardware arrangement wrshoFigure 6.1). The test method
was first approached the same as in a typical shaker shodhk tgkich it is acceptable to control
the chosen input location only to the given Shock Respongset&pn (SRS). Normal guidelines
for shaker shock testing proved inadequate for this workeflessons are shown to demonstrate
the intricacies of shaker shock testing and associated toatontrol the test input in a way that
acceptable hardware responses can be gathered for moideligal purposes.

6.1 TestBackground

The test of interest is a shock consisting of various exptialgndecaying, sinusoidal components
designed to match a desired SRS. The overall level of thdexati®n input was scaled to exercise
the bolted joints over an approximate force range reprasieatof an intended application. The
level of the input that reproduces the intended loads indhmeg is different for the mock hardware
than it is for actual hardware due to differences in actutihsss and damping values between the
two systems. The desired input for the mock hardware is @dtin Figure 6.2.

The objective of the experiments is to provide a prescritmxleration input to the base of

1This chapter is taken largely from [59].
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Figure 6.1. Test Hardware with Bolted Joints Circled.

(a) Single bolted joint on a shaker head with large reactioass) (b)
three bolted joints as attachments for a piece of mock aawspard-
ware on the head of an electrodynamic shaker, and (c) an SD@péd
mass, stiffness and damping simplification of either syégmr (b).
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Figure 6.2. Reference Shock Input for Mock Hardware.
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the test hardware that is independent of the dynamics of éinéware configurations placed on
the shaker. Furthermore, the input must be accurate andtedpe so that meaningful statistics
regarding randomness associated with the joints for thépleihardware configurations and their
assembly can be quantified. The enforcement of acceleratitine base of the test hardware
provides a close approximation of a fixed-base conditiohdahaws the boundary conditions for

the computational model to be realized.

This hardware exhibited properties that made it a very ehgihg test. A basic shaker shock
control algorithm is open loop and assumes a linear systehe algorithm also assumes only
one control location, and so choosing that location can Ibg weportant. From the beginning,
the nonlinear nature of the test item was well known, as wasémsitivity of reference locations
defined at the base.

Regardless, there are advantages to performing this exgetion a shaker. The true input for
this environment does actually look like a waveform complasfedecaying sinusoids, so measur-
ing responses to a different input, such as a haversine, ataasrappealing for model validation
in this case. Shock inputs as seen in Figure 6.2 cannot bedeped exactly with any other shock
test method (e.g., drop table or resonant plate). The etbatiamic shaker also easily allows high
input levels to be achieved in a repeatable manner.

6.2 Basic Shaker Shock Control

A simplified representation of a shaker and test item is shiowfigure 6.3. To calculate a drive
signal, the system must be accurately characterized widmafer function that relates the control
system drive voltage signal for the power amplifier to theetaration that is created and measured
at the control location. There are several dynamic featuwrése system that can contaminate the
inputs and responses if they are not properly controlledfitist axial resonance of the armature,
back electromagnetic force (EMF) damping in the coils, tteeffree resonant mode of the test
item and armature, and the nonlinearity of the test item.

The estimated system transfer function is calculated duhie system characterization simply
as

~ Rw) response ¢
H (w) = C(w) calibration pulse V (6.1)
Next, the drive is calculated in the frequency domain using
D [ I
S(w) (w) _ desired pulse g Vv 6.2)

H (w) FRF  g/V
The drive pulses(t), in Equation|(6.3) , can be found by performing the convolutietween
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Figure 6.3. Shaker and Test Item.

(a) Simplified representation of a shaker and test item dodtiations
of two important modes of the shaker system: (b) free-fre@mance of
the armature and test item and (c) fixed-free resonance degtetem.
Arrows represent an estimate of motion in each resonance.

the desired pulsel(t), and the inverse impulse response of the syst&R{t), with IFT denoting
the inverse Fourier transform. Note that in the actual gapgiton of this theory, the discrete Fourier
transforms are used and issues of aliasing, periodicityspectral leakage must be addressed.

s(t) = convolution(d(t),IR) wherelIR (t) =IFT <ﬁ) (6.3)

Problems arise in calculatirgft) when the IIR cannot be calculated cleanly. As seen in the
above equation, the estimateldfw) is in the denominator. Frequency intervals where the am-
plitudes are very small (i.e., notches) amplifies any naidé (i) in the calculation of thélR(t).
Dividing by H(w) in the range of the noisy notches is similar to dividing by aniver close to zero
in that it yields large amplitudes in IIR. The IIR can be contaated by notches and noise in the
transfer function, and can lead to a poor estimate of thedignal.

6.3 Test Control Issues

The hardware in this test has little material damping (onditer of 0.2% of critical). Most of
its damping is generated by the joint under investigatiohis Bcenario can be desirable so that
the effects of the joint damping tend to dominate the resp@msl are more easily detected and
measured.

Amplification of the axial mode associated with the hardwareigh in this case. It causes a
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deep notch in the system characterization transfer funeti@ frequency that represents the fixed-
base mode of the test item relative to the control locatiadifionally, the nonlinear nature of the
joint causes low coherence in the transfer function in tieaity of the fixed-base mode of interest,
and results in a noisy estimate of transfer function in tlognitly of the notch. These features lead
to difficulties in controlling the shaker shock test well agb that it can provide useful information
for model validation because clean and repeatable acteleraputs are desired.

6.3.1 Baseline Tests

Figure 6.4 shows the transfer function, the calculatedediand the measured response for a first
round of tests. The noisy notch in the transfer function 8014z is associated with the fixed-base,
axial mode of the test item, the primary mode of interest f@reising the joint interfaces. (Note
that base-driven resonance occurs at the frequency of ted-fizse modes.) The problematic
notch causes frequency smearing in the 1IR which, in tureates a non-causal (meaning that the
input begins before zero time) drive calculation duringehevolution operation (Figure 6.5.) The
end result of the contamination is obvious in Figure 6.5 wihenresponse actually initiates prior
to zero time. The fact that the contamination frequency catithe 1400-Hz, axial mode of the
test item makes matters worse. A small amount of drive atftegtiency will cause a significant
response in the structure. This type of behavior is not dddim model validation experiments
because the model will not include those effects.

3
o ¥ H teeeek

iDAxial armature resonance

T

Free-free resonance~

£

H e ]
T‘--.. ).

H B~ A _//

Noisy noteh ~—_

Freguenty, HI

Figure 6.4. System Characterization Transfer Functibify).

6.3.2 Hanning smoothing

Having smoothing of the transfer function near the probleegidencies can be used to fix the
frequency smearing in the drive signal [60]. The smoothipgration can be done several times
to achieve desired results. For this test, approximatelsn20othing operations were performed to
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Figure 6.5. Input and Output Signals.

(a) calculated drive signal,($) and (b) measured response on the test
item.

arrive at the transfer function seen in Figure 6.6. The shingtoperation is defined as

1 1 1
F= ZFm—1‘|‘ éFm‘F ZFerl

where F is the quantity that is smoothed.

Amplitude and phase of the transfer function are the smalodju@ntities in this case.

(6.4)

Figurel 6.7 shows the new drive signal and measured respasgectively. Notice the lack
of any contaminating frequency components. Smoothinglgreaproved the apparent quality of
this test by eliminating the artificial drive at the frequgraf the notch. Considering the typical
shaker shock test metric, the shock response spectruntethisvas well behaved and the input

specifications were realized.

[Hw)I, gV

Frequency, Hz

Figure 6.6. Hanning-Smoothed Transfer Functidt(w).
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Figure 6.7. Improved Input Signal and Response.

(a) New drive signal, @) and (b) measured response on the test item
using the drive signal that has been corrected.

Upon closer examination, it is apparent that modificatianghe transfer function due to the
smoothing operation also changed it at other frequenasyducing other errors in the drive
calculation that make the drive unable to fully control threvanted modes of the test item and
shaker system. Figure 6.8 illustrates the issues. Fiesfjthd-base mode at 1400 Hz was not fully
excited. There is a notch in the input spectrum at that frequeSecond, the armature resonance
at 2200 Hz was present in both the input and response. Thiedirée-free mode of the shaker
armature and test item at 1330 Hz is significant in both thatiapd response. This mode is easily
identified by measuring the response of the system to a hammérwhen the shaker is at rest and
supported by its flexures. The additional damping that caimtpeduced into the response of the
hardware due to the action of these resonances combinetheifiresence of extra damping from
electromagnetic forces on the armature is not acceptalaenodel validation that is designed to
evaluate the energy dissipation due only to the joints.

6.3.3 Issues

The responses measured from the above described expesjméanth include information about
the shaker system, cannot be used for input to a model thatadenodel the actual shaker system.
The model under validation is likely a true, driven-base slad only the test item and its fixture,
and has been designed to isolate effects of the physicsesesit- the bolted joints.

There are problems in recreating the proper stiffnessdsgsrsetup in an associated analytical
model. The variability in stiffness of the bolted joints sas the driven-base axial mode of the
experimental hardware to vary by as much as 10%. This véitialsi quantified experimentally
by performing tests on multiple hardware combinations,thed also including it in the analytical
model of the hardware. The input that is reproduced in theexgents must match exactly the
reference input that is applied to the model so that in bosesahere is no contamination due to
shaker structural dynamics. High quality test input cdnsdighly desired for the purposes of
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Figure 6.8. Frequency Domain Representation of Test Response.

Domain elements show achieved input, reference input, amcier
tap.

model validation.

6.4 Dealing With Test Control Issues

During subsequent testing, certain aspects of the tesp sedwe modified. The initial testing
revealed that the fixed-base mode of interest was close guérecy to the undesired free-free
mode of the shaker armature/test item combination. Lackaderfrequency distinction creates
difficulties calculating the correct drive signal.

Measurements also indicated that the base of the test iteasmuotarigid at these frequencies.
Acceleration gradients were present around the base ofxiuedi These gradients created diffi-
culties in picking the location to define as the input, beeaudifferent input would be calculated
depending where the control accelerometer was locatedeoineibe.

Adapter plate To address these issues, an 18-in wide adapter plate 1hckand weighing
approximately 70 Ib was added to the top of the armature. Tinatare weighs 100 Ib, while the
test item and fixture weigh a total of 25 Ib. The addition of #uapter had two major effects.
First, it shifted the complete system fixed-base mode anal axmature resonance in a manner
that allowed more separation from the fixed-base mode.

Once the peaks and notches are better separated, the esifidatv) is more closely matched
in the vicinity of the fixed-base modal frequency and noistchshown in Figure 64 on page 231.
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Average Control Scheme The test also was controlled by the average response ofdifernt
locations at the fixture base. This was accomplished by ifigetlie response signals through a
summing amplifier. Most shaker shock control algorithmdaased on a single input, single output
model using only one signal as a desired putke). Through use of the summing amplifier, the
controlled signal is the average of three individual measwents, equally spaced around the fixture
base. This scheme worked well largely because the expeaanstup was axisymmetric. One
must be careful and thoughtful when performing time-syanbus averaging of structural motion
to avoid undesirable results. In the end, averaging thealdotations in this axisymmetric setup
is an excellent way to provide consistent inputs to eaclewdfit test item.

Drive Update A form of drive update can be the final tool used to ensure gepdoduction of
the reference input. Updating the drive after each pulseniayato add a kind of feedback loop to
the normally open-loop shock control algorithm.

There are two ways to update the drive [60]. One method imsborrecting the drive based
on an error signal derived from the difference between th@shceturn waveform and the desired
waveform. The correction factor is derived in the frequedoynain based on the error spectrum,
and then applied in the time domain to the drive signal. Haxel much of the error comes
from nondeterministic sources, then this drive updatertieghe can go unstable, causing a highly
erroneous drive calculation. Even though the hardwareimtést is nonlinear, it behaves in a
fairly consistent manner during each pulse and the expetsrizenefited from this technique. A
second method is to update the system transfer functioneaith pulse. This tends to account for
nonlinearities in the structural response, especiallgé¢htbat are amplitude dependent and cause
changes in the system transfer function from initial lowelgests to the final full level tests.

The Jaguar control software that was used for this teszesila combination of these two
techniques. Because this test is performed on mock hardivare is little risk of damage by
multiple pulses applied at nominal levels. By applying riplét pulses to the structure and updating
the drive after each pulse, the input can be recreated vegyately. Figure 6,9 shows an example
of the quality of repeatability.

Final results In the end, nine combinations of hardware were each tested thifferent times
using the techniques described here. The inputs were edpedh each separate test, and the
effects of unwanted modes of the shaker system were eligtdresich time. Figure 6.10 shows the
quality of reference pulse reproduction for all tests.

6.5 Conclusion

This section has addressed several issues that arise iffdhet@ gather high quality shock re-
sponses for the purposes of model validation using elegtraic shaker input. To run the best
test possible, one must first understand the basics of thieydar shaker shock control algorithm.
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Figure 6.9. Example of Benefits with Drive Updates.

Pictured is the reference input spectrum along with theahgulse (af-
ter system characterization) and 15th pulse (utilizingzdriipdate).
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Figure 6.10.Time and Frequency Domain Plots.

Shown are the reference pulse and all 27 controlled inputs.
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This hardware exhibits properties that caused problentsicalculated transfer function. The
notch causes frequency smearing in the drive and genenafted inconsistent controllability
between different test hardware.

The variability in stiffness of the bolted joints causes fiase-driven axial mode of the hard-
ware to vary. The variability is also included in the modedl @ one of the important features of
interest when trying to understand or model jointed int@a Inputs that are reproduced in exper-
iments must exactly match the reference input that is apppiehe model with no contaminating
effects from test equipment structural dynamics.
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Chapter 7

Quasistatic Load Testing of Bolted Joints

Brian R. Resor and Brendan R Rogillio

7.1 Background and Introduction

Experiments utilizing quasistatic loading of jointed iriéees, in theory, can yield much useful
data describing the important parameters of a jointedfeter Quasistatic loading often can be a
useful experimental technique because associated mgaelmbe relatively easy to accomplish.
Characteristics that have been studied, and that are iedtlindthis chapter, include elastic bilinear
stiffness, macroslip force, bolt pinning behavior, anétiehships with bolt preload. Attention to
detail is essential in the design and implementation of #peeemental measurements to ensure
that the results are useful and meaningful.

This section illustrates examples of quasistatic expertaienvestigations on two, simple,
single, bolted joint elements that yielded useful insigttibithe quasistatic loading regime. The
first is a simple flat lap joint that has the joint interfacanelwith the applied load. The joint also
includes an instrumented bolt so that the preload in thefatdte due to the bolt can be known.
The second is an inclined lap, bolted joint, including a eattomplicated geometry. The complex
nature of this bolted joint gives rise to load displacementes with a much more complicated
character.

7.2 Quasistatic Experiments

Attention to detail is also important in the design and impdatation of the experimental measure-
ments associated with quasistatic load testing of boltedfaces. Often, load frames are utilized
for characterization of material properties for loads u@tal including failure of the material.
Forces and displacements, as well as associated stragrtgparally rather large. Instead, the ma-
jority of tests performed on bolted interfaces and disctissehis section are performed at low
loads and with very small displacements.
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7.2.1 Choice of Load Frame

The experiments shown in this section were all performed 28,800-Ib force, MTS, servo hy-
draulic uniaxial load frame. Smaller load frames are supdn very large load frames for this
work. It will be shown later in this section that the loadsasated with initiation of macroslip

and bolt pinning are, relatively, very small. Small capaeiuipment is desirable for single joint
element testing.

7.2.2 Force Measurement

Because the forces associated with these experiments gréove it is also important to use a
force transducer with a full range that is not excessive so tie force measurements are not
below the noise floor of the measurement. A 3,000-lb forceegeas used in all the experiments
shown in this section.

7.2.3 Displacement Measurement

Often it can be hard to find a clean and robust method to ingnanhe joint specimens to yield
useful and accurate data. When testing singular jointfaxterelements as described here, the in-
stallation is relatively straightforward because ther@dequate space around the region of interest
for extensometer installation. It is important to note titaéhment locations of the displacement
transducer for future reference. The measured displadearestrain can be very sensitive to
transducer location if large strain field gradients are gmes the hardware.

The displacement measurements for this investigation mewte by two different methods: 1)
a mechanical extensometer and 2) a Linear Voltage Displasemansducer (LVDT). The earlier
experiment utilized the mechanical extensometer. It giéldseful information, but there was a
noticeable amount of noise in the measurement. Later expets utilized the LVDT. The LVDT
yielded very clean, low noise, measurement signals.

7.2.4 Fixtures

It is important to install these specimens into the load #ama way that promotes natural align-

ment of the two mating sides of the interface. As discusseaather sections of this handbook,

interface behavior can be very sensitive to side loadingltang of the surfaces relative to one

another. In this case, spiral washers were used in line Wweéhspecimens and the force gage to
enable the best possible fit.
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7.3 Quasistatic Load Tests of a Flat Lap Joint

The simple flat lap joint has a joint interface that is in linghathe applied loads from the load
frame. The joint also includes an instrumented bolt so theftreload in the interface due to the
bolt tension can be known and also varied. Figure 7.1 shosvextperimental setup for the flat lap
joint experiments.

Figure 7.1. Quasistatic Load Test Frame Setup.

Shown are the flat lap joint, instrumented single bolt (iclohg force
transducer), and mechanical extensometer. The graphiderright
highlights the orientation of the specimen.

7.3.1 Demonstration of Bolted Joint Interface Behavior at Hgh Loading

Most work in this handbook deals with understanding of nmstpoand macroslip in jointed inter-
faces. However, if a bolted joint is loaded with enough foroere extreme effects occur on the
load curve. Figure 7/2 shows actual experimental datatifiting the various types of bolted joint
behavior. Starting with no load and zero displacement, égeon of microslip is relatively small
and stiff (high slope) compared to other types of behaviat #ine seen in this plot. This hardware
then moves into a rather distinct region of macroslip, whbkeecontact patch in the interface be-
gins to reach a point where it is mostly slipping. As the sHegrse in the contact patch become
high enough that friction is fully overcome, the whole iriéee begins to slip. Within the region
of macroslipping, there are relatively large increasesspldcement for small increases in force.
It should be noted that experiments invoking large amouhtsaxroslip will quickly deform the
surfaces of the interface in an adverse manner. Such exgetsrshould be done only after other
data is gathered at lower forces. Finally, as the empty spaiveeen the edge of the bolt hole and
the edge of the actual bolt comes to a close, the surfaceaatarid a new force enters into the
picture. At this point, the stiffness of the load curve is @med primarily by the effective shear
stiffness of the bolt.
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Figure 7.2. Applied Load vs Extensometer Displacement.

Example is a flat lap joint undergoing all stages of behavioiofoslip,
macroslip/sliding and bolt pinning.)
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7.3.2 Macroslip Force Threshold

The threshold of macroslip force depends on the preloadtieabolt is applying to the interface.

Figurel 7.3 shows load curves for eight different bolt prdkaln all cases the initial linear elas-
tic stiffness is relatively consistent. The occurrence acroslip is at a distinctly different level

for each preload. Also notice on this plot the apparent nreasent noise in the displacement
measurement of the mechanical extensometer.
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Figure 7.3. Tensile Force vs Extensometer Displacement.

Example is a flat lap joint with instrumented bolt; plots indé several
bolt preloads.

The macroslip forces for each bolt preload can be determamedthe data plotted to show
the relationship. Figure 7.4 shows the data along with agsitrdine fit of the data, which passes
through zero. The slope of this curve, 0.63, is the effedtietion coefficient for the interface.

7.4 Single-Leg, AOS, Quasistatic Load Tests

The inclined lap bolted joint, known in this handbook as tH@SAsingle-leg, contains a rather
complicated geometry, and so the contact in the joint iateris not as simple and straightforward
as for a simple flat joint. Similar tests were performed onrtime combinations of stainless steel,
AQOS, single-leg specimens to help us understand the betaivé@ch. The tests utilized the same
equipment and setup as the flat lap joint tests, and are sééguire 7.5. The AOS, single-leg tests
utilized an LVDT for displacement measurement. Compardtieéanechanical extensometer, the
LVDT yields cleaner and higher quality measurements of thalkdisplacements.

Figure| 7.6 shows the load curves for selected, AOS, siragjeabrdware combinations. In
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Bolted Lap Joint: Macroslip Force vs. Bolt Force
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Figure 7.4. Force (tension) at Macroslip Initiation vs Bolt
Preload.

Figure 7.5. Test Setup for Quasistatic Loading of AOS, Single-
Leg Joint.
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keeping with typical recommended practice, each comtnatias disassembled and reassembled
multiple times to aid our understanding of assembly valitgbiThe parts were taken apart and
reassembled three times.
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Figure 7.6. Tension and Compression Quasistatic Load Curves
for AOS, Single-Leg Combinations A-1, B-2, C-1 and C-2.

It is rather important to also note that these plots were iggeé by combining the data from
tension tests and compression tests on one axis. The teargiocompression test were performed
independently because of the issues that variability infitttare introduces as the load passes
through zero between tension and compression.

Figure 7.6 shows that the different combinations of harévean exhibit rather different load
curves. Each of the hardware combinations behave basiaallgne might expect, with some
differences that are due to part-to-part and assemblyti@m These specimens do not exhibit
the apparently clean and simple linear stiffness that wawsHor the flat lap joint. Also, these
specimens clearly exhibit a bilinear stiffness and ardestih compression. Higher stiffness in
compression is reasonable due to the fact that the inteidanelined relative to the applied load.
There is a coupling effect between applied load and interfaeload, and as a result the interface
pressure in this specimen tends to increase in compressibdexrease in tension.

In almost all cases, the threshold of macroslip in the jarirly obvious, with the exception
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of hardware combination B-2 where the macroslip threshettbt visible in compression. This is
likely due to lack of alignment of the experiment hardware.

Figure 7.7 contains load curves for all nine combinationsartiware. The variability arising
from different parts and assemblies influences the results.
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Figure 7.7. All Tension and Compression Quasistatic Load Data
for AOS, Single-Leg Combinations.

As always, it is good practice with jointed interface expents to also test a monolithic spec-
imen having the exact geometry as the jointed hardware.r&ig® shows the load curve data for
these test runs, and these indicate possible issues widxgeziment setup.

The tension data, after a small initial displacement reafignt, is very linear and repeatable.
The compression data indicates potential problems withesiesetup. The stiffness of this hard-
ware should be linear in compression as well as tension,heutlata indicate otherwise. This
hardware is known to be linear so it is likely that there wasabfem with either the instrumen-
tation or the hardware alignment for this test. One posgibd that there was bending motion in
the specimen that was unaccounted for and that was affetiengeasurement.

Neglecting the other potential imperfections in this téisg slope of the solid load curve in
tension is linear and easily measurable014t6x 10° Ib/in. Keep in mind that this measured
stiffness applies only to the material that is between trgedangth of the LVDT. A different
stiffness value would be measured if the gage length wasidangsmaller because this hardware
contained rather large strain field gradients.
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Figure 7.8. Monolithic, AF& F Single-Leg Load Data.

Load vs force curve for tension and compression of the saiioho-
lithic, AOS, single-leg. The tests were each performedra¢gig.

7.5 Other Work

Other quasistatic test work has been pursued at Sandiafartheof multi-axis loading of slightly
larger structures. Figure 7.9 shows a picture of a threg{aaid frame that has been designed and
manufactured. This load frame is able to apply simultanepiasistatic loads to component level
hardware in an effort to understand coupled loading of mpiggioint interfaces.

7.6 Summary

With these techniques, basic information about the joimiégtfaces can easily be obtained. Per-
haps the most valuable measurement of bolted joint behévadrcan be accurately determined
using quasistatic loading is the threshold of macroslip.cidslip threshold is very difficult to
measure directly during dynamic experiments.

Little time has been allocated to the development of clearabust techniques for quasistatic
loading of jointed hardware, and opportunities for impmoest are numerous. There is a need
for better, more robust fixtures for the experiment setupallg, the scheme should show success
first by making sensible measurements of a monolithic speeim both tension and compres-
sion. Then, there would be more trust in the other measurentieat are being made with jointed
hardware.

With a clean, robust and gap free experimental setup, onkel @gp measure the hysteretic
behavior of the joint loading through both tension and camspion. This information would allow
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Figure 7.9. Multiaxis Quasistatic Load Frame.

more accurate measurement of quasistatic energy digsipati

Since analytical modeling of the interface contact pataoiming into wider use, validation of
models with quasistatic load are valuable for this purp@deen the models are actually exercised
with quasistatic loads, rather than dynamic loads. A cleahrabust quasistatic experiment would
serve as a valuable model validation tool in the future.
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Chapter 8

Experiments on Component Hardware

Danny L. Gregory and Brian R. Resor

This section describes a bolted joints experiment thathtv@gomultiple, discrete joints em-
ployed in a single component level simulation. The jointdeminvestigation in this structure are
System A, AOS joints - the same joint that was discussed sixtelly when studied individually in
Section 5.3. That hardware is shown in Figure 8.1 and disclissdetail later in this chapter.

A series of experiments is performed on the three-jointadtgire to gather a variety of data
describing nonlinear structural dynamics of a componergkmepresenting System A-1 AOS. The
first set of data consists of a sinusoidal, steady state dignaput into the mock hardware. The
input is achieved by performing sine sweeps over a bandwidtdompassing the fixed-base axial
resonance. (Corresponding investigation of individuaitin Chapter 3 of this report required
the used of a large reaction mass on the end of the specimesitgio the shaker.)

Next, transient excitation tests are performed on an eldgtramic shaker. Two types of tran-
sient experiments are performed. Each used the same equipme means of control, but each
was meant to reproduce different input waveforms.

The first waveform is generically called a tailored transiBlme purpose of the tailored transient
is to excite the physics of interest in the mock hardware.hla tase, the nonlinear behavior of
the bolted joints are tested by tuning the energy in the paolaemanner that excites the first axial
mode of the hardware. A wavesyn component accomplishesctii@ton, where the amplitude
and number of wavesyn half cycles were chosen in a manneopitiatizes response levels of the
hardware for validation.

The second transient test is representative of a wavefatmibre closely resembles an actual
shock that might be seen by hardware in a real test or in agtgalThe second transient is called
a blast simulation because the pulse contains componentsl@ple frequencies. The levels are
scaled such that approximate loads in the joints do not exitexse required for macroslip.

Multiple hardware realizations and combinations are testece again in both transient tests.
Nine configurations of hardware are tested and each assefaisEssembled three times. This
combination resulted in 27 sets of response data. The bylieid were reassembled after each
transient. For the tailored input, response ring-downsewsstprocessed to determine energy

249



Figure 8.1. Mock Hardware.

Mock hardware from left to right: (a) Single-leg solid andrjted, (b)
Three-leg solid (monolithic) hardware representing a mée¢iS and
truncated base attachment location, and (c) One pair oftgadnrmock

hardware.
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dissipation of the axial mode.

As an exercise, the response of this structure was predisied a finite element model with
joint models populated by parameters deduced from sirgjekperiments. Blast simulation was
performed with the knowledge that joints of the three-lefjg&atically indeterminate structure
were preloaded differently than the single-leg experimersed to parameterize the joint models.
The single-leg specimens were conformal and self-aligmimgie the three-legged structure had to
be compressed mightily to close the joints. The test sequesas chosen such that combinations
of hardware were sampled evenly to prevent bias in resutisa@wear on the parts.

Finally, it is important to point out that all data in this seo are calculated to yield energy
guantitiegoer leg It is an important distinction because the hardware castthiree discrete joints.

8.1 Hardware

Test specimens capturing the local geometry and overal$ miaihe connection and actual hard-
ware for System A-1 AOS were fabricated as shown in FigureAciual mating components of a
full scale system consist of both titanium (bottom) andrdéass steel (top), but both halves for this
study are made from stainless steel so that a monolithiégrepaccould be fabricated and used for
baseline dissipation experiments and to quantify unknavathment compliances at the base.

The oversize hole in the base attachment location along avidtk of a positive alignment
feature,such as a locating pin, enables significant vanaii installation alignment to occur unless
special care is taken. The oversize hole in the leg and tleeaiction of the interface and the
bolt head with the hole is a suspected major source of vanati the response of the system
for different assemblies of the same joint. For this reaslo® AOS is assembled randomly each
time and the bolts are tightened in a random order. Randoemdsyg means in this case that the
alignment of the AOS mock on the legs is made to look good to#ied eye, the same process
that would be used in regular production assembly. Aftedspothe bolts were tightened in random
order. First, they were each tightened snugly. Then, they wWghtened to the specified torque of
85 in-Ib.

The three-leg specimens with bolted joints approximatkgtyesent an SDOF system. The three
joints of the specimen represent an equivalent nonlingargm the system while the AF&F mass
mock represents the rigid mass (Figure 8.2).

8.2 Joint Force Determination

The axial force in each of the three joints is assumed to balggdistributed and directly pro-
portional to the mass times the axial acceleration of the A@Ss. For example, a sine dwell
where the 12-Ib AOS mock is controlled at 100 Hz and 100 g, tineefin each leg would be

251



I

Figure 8.2. Simplified Model of SDOF Experiment.

approximately 10 12/3 = 400 Ib.

8.3 Response Measurements and Energy Dissipation

An expression (Equation (5.6) ) for energy dissipation pale of a single degree of freedom
system with massn when the frequency of forced harmonic motionws= w, was derived in
Section 5.1.2.1 and is repeated here as Equation (8.1).

D = 2 KA? = 2 M A2 (8.1)

where ( is the fraction critical damping,

M is the system sprung mass,

K is the linearized system stiffness

Ais the amplitude of oscillation acceleration
and  w?=K/M.

The three-leg hardware is not perfectly axisymmetric. Tihgpified model implies that for
a perfectly axial input to the base of the AOS the responskealgib be perfectly axial in nature.
The small geometric asymmetry of the structure results ileadt a small amount of bending
deformation from axial excitation. Also, Equation (8.1ases a rigid mass mock. Because the
deformation - and hence the kinetic energy - is distribuledagthe height of the specimen, the
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hardware is not perfectly representative of a true SDOF vigfid mass. In fact, measurements
indicate that there is a seven percent difference in opgratisplacements between the bottom
surface and top surface of the AOS mock at the axial mode gbtheed assembly. Though the
mass mock is not perfectly rigid, the approximation an SD©still pretty close and will be used
in this investigation.

With all the above in consideration, the overall accelerativaveform of the mas®m, is
determined by time synchronous averaging of six separajesgdhree placed on the top surface
of the AOS mock and three on the bottom surface. All gages iaeated to measure in the axial
direction. Also, all the gages are located either right riextr right above an AOS leg. Each
individual axial acceleration measurement contains a @apt of acceleration from the elastic
deformation of the mock AOS and also from bending effectstduesymmetry. Averaging of all
six gages helps eliminate the contributions due to theielastl bending effects and to ensure that
the averaged motion of the mock AOS represents the acdelerdtits center of mass.

8.4 Excitation

The excitation for the experiments is provided with a T20@bbltz-Dickie electrodynamic shaker.

A Spectral Dynamics 2560 Vibration Control System is usegktioerate and control the excitation
waveforms used in the experiments. The control system vgasusled to acquire the magnitudes
of the sinusoid fundamental through the use of an on-boandxess filter. The techniques for

data acquisition and analysis are similar to that desciiin€hapter 3.

8.5 Experimental Results
Steady State Sine Vibration Experiments

Experiments are performed to measure the energy loss perfoy@a sinusoidal input force over a
range of loads: 100, 300, and 500 peak pounds with the spebidik torque of 85 in-lb.

8.5.1 Solid-Leg Baseline Experiments

As a standard practice in this program, a solid (no boltatt$dipiece of hardware is manufactured.
It looks exactly the same as the jointed hardware, but is iitbro It is used to baseline repeatabil-
ity of the three-leg experiment attachment boundary condés well as to quantify miscellaneous
dissipation mechanisms.

The dissipation measurement results for the solid thrgdvedware are shown in Figure 8.3
for four different runs through the set of loads. The dataliersolid single-leg is very repeatable,
which is what one expects from a linear structure withoututheertainty of a bolted connection.
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The average slope of the solid specimen energy curves is th@@ating that their behavior is
linear. Linear behavior is exhibited by energy dissipatiarves with slopes of exactly 2.0.
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mean slope = 1.99
3 \
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10+

Energy Dissipation per leg, inch-lbs

10 I L . I I . . IR |

Force per leg, Ibs

Figure 8.3. AOS Solid, Three-leg Hardware, Steady State Energy
Dissipation.

8.5.2 Jointed Experiments

Figure 8.4 shows a plot of all 27 energy curves from the jairiteee-leg hardware experiments
along with energy dissipation curves for the three-legdsbérdware. Note that the jointed hard-
ware exhibits greater variability in energy dissipatioheTointed hardware also exhibits increased
average slope, averaging 2.30, indicating nonlinear iehav

The population of calculated slopes is illustrated in Fgg8r5, showing the power-law dissi-
pation sloped to lie, fairly evenly, between 2.2 and 2.4. iidéiiest to note is that a slope of 2.30
is lower than all previous experiments on the AOS inclingajtant (including single-leg steady
state and single-leg dumbbell experiments). Previousrerpats at the single joint level yield
slightly higher slopes closer to 2.6. The difference shawdtlbe too surprising: the single-joint
experiments were designed to cause a flush contact acrogsirthenterface while it would be
very surprising to have that kind of contact among the thog&g in the statically-indeterminate,
three-legged structure.

Figure 8.6 shows a comparison of jointed three-leg dissipgenergy dissipation per leg) and
jointed single-leg dissipation. When the three-leg hardvemergy dissipation is compared to the
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Figure 8.5. Three-Leg Fits.
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single-leg they are generally similar. Upon close exanmmathe three-leg hardware tends to have
less variation in dissipation. The three-leg data alsogd¢ndexhibit an overall lower slope than
the single-leg data. The mean slope of the three-leg hasdelatea is 2.30 while the mean slope of
single-leg hardware data is 2.55.
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Figure 8.6. Leg Configuration Hardware Comparisons.

Comparison of energy dissipation data for three-leg hamsteady
state experiments to single-leg hardware steady statédissn exper-
iments.

8.5.3 Use of The Sinusoidal Dissipation Data

This energy dissipation data is stored for potential useradevjoint model calibration data. How-

ever, something is disturbing about this data set. In orderatculate{ at each load, a single

reference point had to be chosen. The chosen point was atalkersarmature center insert. This
location was chosen after discovering the high sensititgneasured, and resonant frequency

to reference locations. While the armature center insatlegical location to choose due to its
symmetric nature and due to the fact that it is below all labjtents, the authors believe that there
might still be unknown dynamics affecting the measuremégtwhen referencing the data to this
point.

Basically, the fact that the overall slope of the energyigason curves is low is unsettling
because it tends to hint at the presence of an extra linesipdt®on mechanism in this setup that
is not present in other experiments. Discussions in the sestions describe energy dissipation

256



measured during transient excitation tests. Those datmare sensible to the authors and also
happen to agree more closely with data from the single-lpgements.

8.6 Experiment Results
Transient Experiments

Transient tests are performed on the electrodynamic shakerder to gather response data at
elevated bolted joint loads. (See Figure/8.7.) Two diffecamtrolled, transient inputs are applied
to the base of the mock AOS base attachment location fixtyra:tdilored wavesyn pulse with a
single frequency component and 2) a frequency rich pulsgosed with decayed sinusoids.

Figure 8.7. Test Fixture Arrangement.

Photo of test fixture setup both with (left) and without (tjgbxtra
adapter plate.

Vibration shakers provide a versatile and controllabldtation source for validation experi-
ments but there can be challenges in gathering high quabtyetnvalidation responses from these
tests. This subsection will discuss the challenges andwhileshow the results from each type of
transient input.

8.6.1 Shaker Shock Control Issues

The issues that have been described in Chapter 6 are dieggilicable to this experiment. This
test hardware exhibited properties which made it a verylehging shaker-shock test for electro-
dynamic shakers. There are three significant reasons falifffealties: 1) shaker shock control is
achieved using open loop control, 2) the control algoriterhased on linear assumptions, and 3)
the control algorithm gets feedback from a single point.
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8.6.2 Structural Tuning and Control Location

Initial tests reveal that the frequency of the fixed-base emafdnterest, the axial mode, is near the
undesired free-free mode of the shaker armature and test Tiis creates difficulties calculating
the correct drive signal. Measurements also indicate tke bathe test item is not rigid at these
frequencies and there are acceleration gradients aroendase. These gradients created diffi-
culties in picking the location to define as the input becaudédferent input would be calculated
depending where the control accelerometer was locatededinetbe.

To address these issues an 18-inch adapter plate with a thigkness weighing approximately
70 Ib was added to the top of the armature. The armature wdigbdb and the test item and
fixture weigh a total of 25 Ib. The addition of the adapter t&uifthe system free-free mode and
axial armature resonance in a manner that enabled moreasepadrom the fixed-base mode.

With the peaks and notches separated, the estim&téwf is better in the vicinity of the fixed-
base modal frequency and the noisy notch associated withtareresonance. The addition of the
adapter plate also provides a more desirable boundary tommdh that it enforces a more fully
fixed surface at the bottom of the fixture. The more rigid baskices the acceleration gradients
making the assumption of uniform base acceleration motistieaPreviously, the surface was not
fully supported because it rested on discrete points at @aanhture insert and so the base flange
was unsupported between the inserts. The extra plate sr@atere consistent boundary condition
for the computational model, which assumes a fully rigidace at the base.

8.6.3 Input Averaging

Second, the test was controlled on the average responseeefdifferent locations at the fixture
base using a summing amplifier. (See Figure 8.8.) The shockatalgorithm is based on a
single-input and single-output model. It expects only dgea as a desired pulsé(t). Using the
summing amplifier, the controlled signal is the average ehindividual measurements, equally
spaced around the fixture base. The effect is the same agegeirathe time domain of the analog
signals.

This fixture exhibits sensitivity in the quality of the cooltto the control location that is chosen.
In other words, as one moves the control location around #se the notch associated with the
fixed-base mode of the hardware shifts slightly due to thetfeat the fixture base is not totally
rigid, even with the addition of the adapter plate. Coningllon the time average of multiple
locations tends to average out these effects and, in thés easables the calculation of a very good
drive signal. The calculated drive signal does a nice jolootmlling the test.

Additionally, also because of the the large gradients ataime base of the fixture and the
nature of part-to-part variability, it is impossible to ds® one control location that works well for
all the different hardware combinations. Averaging thetoariocations proved to be an excellent
way to provide consistent inputs to each different test item
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—— Leg locations . Control locations

Figure 8.8. Transient Testing Control Locations.
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8.6.4 Drive Update Algorithm

The final tool used to ensure good reproduction of the reter@rput was a form of drive updating.
Updating the drive after each pulse is a way to add a type afofeek loop to the normally open
loop shock control algorithm.

There are two ways to update the drive [60]. One method imsborrecting the drive based
on an error signal derived from the difference between theshceturn waveform and the desired
waveform. The correction factor is derived in the frequedoynain based on the error spectrum
and then applied in the time domain to the drive signal. HaxelW much of the error comes
from non-deterministic sources, then this drive updatbr@gie can go unstable and can cause a
highly erroneous drive calculation. Even though the hardviia this test is nonlinear, it behaves
in a fairly consistent manner during each pulse and the @xpets benefited from this technique.
Another method is to update the system transfer function @ach pulse. This tends to account for
nonlinearities in the structural response, especiallgetthat are amplitude dependent and cause
changes in the system transfer function from initial loneleests, to the final full level tests.

The Spectral Dynamics Jagffaontrol software that was used for this test uses a combimati
of these two techniques. Usually in vibration testing anraest results from subjecting the test
hardware to multiple full level pulses in order to get a petrfdrive pulse. However, this test was
performed on mock hardware so there was little risk of dam#&yeapplying multiple pulses to
the structure and updating the drive after each pulse the imas recreated extremely well. Figure
8.11 shows an example of the quality of repeatability.

8.6.5 Experiment Setup

There were six gages on each mock AOS during transient gestinee on the bottom surface of

the mock (single-axis gages) and three on the top surfadeeahbck (triaxial gages). All gages

were installed in the vicinity of a leg location. The gageshat top of the mock were installed

such that the lateral measurements were made in directwrssponding to radial and tangential
alignment. Three axial gages were also installed at thedfdbe base attachment location fixture.
(See Figure 8/9.)These base waveforms were processedhsiithe average of all three was used
as the control variable.

The three base gages were not installed close to the legeathghey were installed at loca-
tions mid-circumference between each leg. Doing so redocethmination of the lightly damped
axial mode of the hardware in the control waveform.

The base accelerometers are averaged using an analog syiiamatifier. The three signals
were combined with weighting factors of 0.33 and the outpgna from the summing amplifier
was used for the control signal.
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Figure 8.9. Transient Testing Hardware and Instrumentation.
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8.6.6 Transient Experiments on Monolithic Hardware

Damping of the monolithic three-leg specimen is extremely. IAs a result, the challenges faced
in running acceptable shaker shock inputs discussed inrdwegois sections were magnified. No
acceptable tests could be performed on the monolithic #egéardware due to the inability to
compute a clean drive waveform with the inherent lack of dappFor this reason, response data
of the three-leg hardware to the transient environmentstiavailable and is not discussed here.

8.6.7 Wavesyn Pulse Excitation

It is often desirable to selectively excite specific dyna€a structure in order to study specific
behaviors. Almost all the techniques earlier in this Chapte designed with that goal in mind.
The harmonic excitation experiment is a very nice techniguexcite a single frequency of a
structure in a controlled manner.

In the case of this three-leg hardware we have shown abovehhawonic experiments can
again be used to selectively excite the axial mode of thedanel Figure 8.10a shows how focused
the energy in a single tone sine wave can be. Example showatually a sine waveform with a
rectangular window (no window). A steady state harmoniatnp even more focused.

The goal is to design a transient input that can be appliduetstructure by the electrodynamic
shaker and will also excite only the axial mode of the har@waleither a half-sine or a haversine
input, as would be generated by a hammer or other impactagicit would be acceptable. These
inputs contain a rather broad distribution of input enelggtighout frequency. Figure 8.10b shows
how the energy in the frequency domain of the half-sine im@weform is widely distributed. Such
an input to the three-leg hardware would definitely excite¢hed additional bending modes of the
structure. Their participation is unwanted in this invgation.

A combination of two waveforms works well. A simple wavesyige with only one frequency
component will focus the energy at a desired frequency. Tineber of half cycles in the wavesyn
determines the width of the energy band in the frequency dambocreasing the half cycles
approaches an approximation of a steady state sine waveed3#tg the number of half cycles
approaches an approximation of a single half-sine pulse.

Figure 8.10c shows the reference waveform for the singtpigacy wavesyn pulse used in this
test series. The chosen pulse has five half cycles. Fivexjateises the energy on a particular
bandwidth, but at the same time is wide enough to adequaxeljeethe axial mode of various
hardware combinations that demonstrate noticeable \@riat axial mode resonant frequency.

The energy in this pulse is focused around 1400 Hz to exo#tdixlked-base axial mode of the
mock AOS hardware. The response of the hardware to this is@linost entirely composed of
transient ring-down of the fixed-base axial mode. The pulas @ontrolled for 80 milliseconds
so that the responses could decay to a low level. Maximunt foices were in the range of 200
to 500 Ib during the ring-down. Response waveform data ocwguoutside the controlled pulse
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Figure 8.10. Time and Frequency Domain Representation of
Transient Pulses.

(a) sine wave with rectangular window, (b) half-sine pulsel &c) five
half cycle wavesyn pulse; the chosen reference waveforimgoit to
the three-leg hardware. Overall amplitude is arbitrary awds scaled
to achieve desired response levels.
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duration of 80ms are not applicable to model validation beedhey include stiffness and damping
effects of the free-free mode of the test item and shakertansma

Three assemblies each of nine hardware combinations wstedtéo this input. A total of
twenty seven response ring-down data sets were gatheratdtysis. The shaker transient tests
were conducted according to practices in Section 6. Theatap#ity and accuracy of the input
was very good. (See Figure 8.11.) These response data vpeeseatative of a true fixed-base
boundary condition.

30 T T T T
e controlled input
reference pulse
20 | -
10+ -

acceleration, g's
o

N
o
T
|

_30 | | | | | | | | | | |
-1 0 1 2 3 4 5 6 7 8 9

time, seconds -3

Figure 8.11.Reference Wavesyn Pulse Reproduction.

The repeatability of the peak input level for the test waseigat. Figure 8.12 shows a his-
togram of peak input level. The average peak input level wWia8 @ and the desired reference peak
input was 25 g.

Figure[ 8.13 shows an example response of the mock AOS to aswaymilse input. Note
that the response level is very high compared to the inpet ldwe to the fact that the energy in
the pulse is tuned to a frequency that is very close to the fibeest axial mode of the hardware
resulting in significant amplification.
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Figure 8.12.Wavesyn Peak Input. (Avg. =24.9 g.)
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Figure 8.13.Mock AOS Response.

(a) Example of a response of the mock AOS to wavesyn pulseaingu
(b) Zoom in on example response.

The effect of the control algorithm’s ability to enforce teven-base boundary condition is
readily visible. After a pulse duration of approximatelyOlths, the damping of the response
increases. The higher damping is associated with additerexgy dissipation due to backwards
electromagnetic forces working against the shaker armatuthe field as the armature and test
item resonate in the free-free mode of vibration.
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Figure 8.14.Mock AOS Response.

(a) Histogram of axial driven-base frequency and (b) Histog of
achieved peak mock AOS response amplitudes.
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Figure 8.14 illustrates the variability in the driven-basgal frequency that was measured for
each run of the hardware. The average frequency of the dhase axial resonance is 1402 Hz.
Also notice that the variation in response amplitude vagigte a bit more that the input amplitude.
This is partly due to variation in damping and stiffness i klardware realizations. The response
of the mock AOS to this input was very clean. The response aaitained little influence from
modes other that the driven-base axial mode of the hardwEnes enables use of the modified
logarithmic decrement technigues mentioned in Sectiorfd.talculation of energy dissipation
data (Figure 8.15).
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Force per leg, Ibs

Figure 8.15.Three-Leg Transient Ring-down.

Energy dissipation curves of the three-leg hardware transiing-down
to wavesyn input. Only loads between 200 and 500 Ib per jamt a
shown.

Figure 8.16 illustrates the variation in dissipation cusi@pes. The mean slope of all curves is
2.65. This value is a little higher than the single-leg expent results and also higher than seen
in the three-leg sinusoidal experiments.

As stated earlier, the quality of the steady state sinuseidergy dissipation data that were
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Figure 8.16.Wavesyn Energy Dissipation Slopes (Avg. = 2.65)
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gathered from the three-leg hardware on the shaker ardlgliginestionable. The three-leg tran-
sient data, on the other hand, agree better with energypdissin expectations. This test appeared
to control well and accurately represent a fixed-base baynatandition with no apparent addi-
tional damping or stiffness contamination from the shakestesn. The authors believe that the
wavesyn ring-down energy dissipation data are more acetinan the sinusoidal energy dissipa-
tion data.

10

Energy Dissipation per Cycle per leg, inch-lbs

10°L ‘ ‘ S

Force per leg, Ibs

Figure 8.17. Single-Leg Sinusoidal and Three-Leg Transient
Wavesyn Comparison.

When compared in Figure 8.17, the range of three-leg ringrdeurves are within the range
of the single-leg curves. This is reassuring since two difietests provide consistent results. As
seen previously, the damping and stiffness of the shakeel@stromagnetic field can contaminate
the response if the test is not controlled accurately (FE@uL3).
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8.6.8 Simulation of a High-Amplitude Transient

The tailored transient wavesyn input was designed to gatinengy dissipation data of the multiple
jointed mock hardware for the purposes of model validatibtihe single joint element in a three

joint configuration. The next input to the mock three-legdvaare is meant to serve purely as a
model validation activity in which the input environmentaher generic.

The input is representative of a short, high-amplitudediemt (“bang”) and the simulation
contains components of decayed sinusoids at multiple &egjes. The energy distribution in
the pulse is meant to approximately represent the profilerttight be expected in System A-1
system. The overall level of the input is chosen to genenapecximate peak loads in the joints
that corresponded to the levels at which the joints had belrrated and validated. Levels are not
meant to exceed 500 Ib per leg. Joint forces higher than 58fklexpected to induce macroslip in
the joint, a phenomenon that was not yet meant to be part ®ptuniticular experimental activity.
Figure 8.18 shows the reference input for the “bang” simomat

Using all the same transient shaker test techniques desldritSection 6, all nine combinations
of hardware are each tested three different times (the dgiats were reassembled three times
for each hardware combination) using the techniques desthiere. The inputs are repeatable for
each separate test and the effects of unwanted modes ofakergystem are eliminated in each
case. Figure 8.19 shows the high quality of the referenceema@production for all tests for this
shock.

Figure 8.20 shows the range of responses to this input. Iy #ae, the waveforms actually
overlay quite well. However, what is not obviously visibleahe differences at later time due
to the varying stiffness and damping found in the differestchvare realizations. This should be
anticipated due to the inherent variability in each systenfiguration. Each hardware realization
will have a slightly different frequency and damping andsendifferences will cause the response
time waveforms to be increasingly different as time incesas

Figure 8.21 shows the range of responses in the frequencgidoithe variation in frequency
and amplitude for the axial mode of each hardware realizasioisible at about 1400 Hz.

The average axial frequency for this test was 1403 Hz (coenyjwat 402 Hz for wavesyn tran-
sient input). The fact that both the wavesyn and decayedtestang frequencies agree is nice
positive confirmation both tests were controlled well anel dinven-base boundary condition was
properly enforced.

270



Acceleration, g's

SRS MMAA, g's

20

15 :

10 - .

N
()]
T

|

0 10 20 30 40 50 60 70 80

10 :

10°
Natural frequency, Hz

Figure 8.18.Reference “Bang” Waveform Input.
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Figure 8.20.Mock AOS Response to “Bang” Simulation Input.
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8.7 Summary

This section has summarized the experiments and data usedlioration and validation of a
System A-1 AOS three-leg bolted model for extension of thglstleg model into a multiple joint
configuration.

The first set of calibration experiments consisted of a sid#d, steady state dynamic input
into the mock hardware. Nine configurations of hardware vieséed, each was assembled and
disassembled three times, and three load levels were ukelcdmbination resulted in 81 sets of
energy dissipation data, or 27 different energy dissipatiarves.

Subsequent tests consisted of transient excitation apdmes on an electrodynamic shaker.
Two types of transient experiments were performed. Eactl theesame equipment and means of
control, but each was meant to reproduce different inpuefaawms. Again for both transient tests,
nine configurations of hardware were tested and each asséfdisassembled three times. This
combination resulted in 27 sets of response data.

These calibration and validation data provide the statistoundation from which probabilistic
bolted joint models can be calibrated, validated, and degglonto system models to predict the
response of System A-1 AOS to modest and very high loads.
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Chapter 9

Influence of Contact Pressure on Response

Brian R. Resor

Geometric features with characteristic lengths on therartiéne size of the contact patch inter-
face are partly responsible for the variability observedxperimental measurements of structural
stiffness and energy dissipation per cycle in a bolted }oiiihe behavior of bolted interfaces is
known to be nonlinear and highly variable and has a largesfiethe overall energy dissipation of
a structure during dynamic response. Experiment respafisesninally identical hardware show
that the structural stiffness of the tested specimensvagiaip to 25% and the energy dissipation
varies by up to nearly 300%.

A pressure sensitive film can be assembled into interfacgsrdéd structures to gain a quali-
tative understanding of the distribution of interfaciaégsures. The resultant pressure distributions
suggest that there are misfit mechanisms that may influengaatgpatch geometry and as well
as structural response of the interface. These mechanistuglé local plateaus and machining
induced waviness. The mechanisms are not consistent amwssally identically machined hard-
ware interfaces. The proposed misfit mechanisms may be/ pastbonsible for the variability in
energy dissipation per cycle of joint experiments.

9.1 The System A, AOS Bolted Joint

The first bolted joint under investigation in this sectiopistured in Figure 9.1. Nonlinear behavior
unique to this bolted joint comes largely from the naturetsfinclined interface and its varying

contact patch during loading. The joint is also unique it itesurface is not flat because its
interface has a small amount of curvature correspondinggaylindrical shape of the component
level hardware. The bolted joints are the major load path the hardware that they support.
Behavior of the bolted joints should be understood and neatlatcurately to adequately predict
the response of internal subcomponents due to externaisinpu

Several experiments have been devised at Sandia Natiobarataries to provide data for
model development and have been discussed earlier in ttis Tde specific data used in this

1This chapter is taken largely from [51].
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Figure 9.1. Joint Interfaces.

(a) Example of a single bolted interface and (b) Example oltiple
joints in a single experiment.

discussion are found in [50]. The experimental technigeesido gather the response data shown
later in this section are all described in this handbook. firseis performed on an electrodynamic
shaker and uses harmonic forcing to excite the structureeadesired frequency. The second con-
sists of a simple dumbbell configuration, while the thirdargorates multiple joints into a single
experiment and is discussed in another section of this Bolted joints tend to exhibit two types
of variation in response: 1) part-to-part, or machiningat#on, and 2) assembly variation, which
comes from taking hardware apart and realizing slightlied&nt response behavior upon reassem-
bly. Throughout this bolted joint, model calibration andidation process, several realizations of
nominally identical hardware were machined and tested soout understand variability in re-
sponse character due to part-to-part differences. Threge plasingle-leg tops and bottoms were
fabricated. By combining pairs, we prepared a total of niaktvare combinations for testing. In
this section, one top and three different bottoms of thegghlardware are also examined for a total
of three hardware combinations, all made from stainless.ste

A pressure sensitive film was assembled into the interfatdsegointed structures to provide
insight into the distribution of contact pressure in the immaty conformal surfaces. See Figure
9.2. The resultant pressure distributions definitely sagtiet there are misfit mechanisms influ-
encing contact patch shape and magnitude, as well as sabistgponse of the interface. These
mechanisms include local plateaus and machining inducgthess, but are not consistent across
nominally machined hardware interfaces.

A calibrated torque wrench was used to apply a nominally isterst preload to the bolt during
each assembly through torquing each of the 1/4-in diametks o 85 in-lb. The Pressur®X
pressure film used in this study is sensitive to pressures Ird00-7,100 psi and is manufactured
by Sensor Products, Inc.
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Figure 9.2. Pressure Sensitive Film.

(a) Pressure sensitive film installed in joint interface gbylas viewed
immediately after removal from joint interface.

9.2 Interface Pressure Imagery

The pressure sensitive film was scanned into electronic flearcontrolled manner so that the im-
age data could be analyzed electronically. Figure 9.3a shiog&vrraw scanned image, as viewed in
Matlab. Pink dye darkness is basically directly related sgmtude of contact pressure in the in-
terface. Figure 9.3b shows the spatial distribution of gues intensity with pressure magnitude in
the third dimension. For this qualitative study the exaesgure values have not been determined.

Figure 9.3. Contact Patch Imagery.

(a) Raw scanned image, (b) mapping of color intensity in dhre
dimensions and (c) filtered and simplified image of contattipa

Representative interface prints for each of the nine harele@mbinations are shown in Figure
9.4 below. The three tops are labeled A-C, while the bottomdadeled 1-3.

Even though all the pieces were manufactured using the sacmmitjues and to the same
drawings, there is a difference in part C that has causediitact patch to take on a different
shape with more pressure toward the outside edges of thiéaicee Simple bolted joint concepts
would suggest that the contact patch in the vicinity of théemal directly underneath the bolt head
is annular for mating surfaces that are nominally conforriakn parts A and B exhibit variations
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Figure 9.4. Interface Prints for Nine Combinations of Single-Leg
Hardware.
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in contact patch shape from what might be expected theatigtisecause the center of the contact
patch is generally shifted toward the top of the bolt holédad of being centered about the bolt
hole.

Figure 9.5 shows a close-up view of one of the interfaceshimitmage the waviness of the
surface due to machining can be seen. At a much smaller sisategh not as visible in this image,
are also actual machine tool marks from the cutting of théasar The roughness of the surface
was specified on the drawing for all these joints, and the fiaatlware did meet specification.
Therefore, one might assume that the variation seen in #usqmight be representative of typical
part-to-part variation.

0.1r
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Figure 9.5. Interface Print for Hardware Combination Al.

Most of the joint combinations exhibit qualitatively similcontact patches when the joint is
taken apart and reassembled. Sometimes, though, upoemdagshe interface comes together
inconsistently. Hardware combination A3 is an example of fhat did not tend to assemble
together in a repeatable manner as seen in Figure 9.6.

9.3 Structural Dynamic Experiments on the AOS Leg

The hardware of Figure 9.2 has been used extensively at &aladional Laboratories in many
experimental activities. The ability to view the qualitaiimage of the contact patch motivated

279



Figure 9.6. Assembly Variation in Hardware Combination A3.

us to investigate effects or anomalies observed in thetstialocdynamic response that might be
attributable to certain features in the contact patch. Tidirfgs are very revealing.

9.3.1 Harmonic Excitation and Stiffness Observations

Harmonic excitation experiments were performed on thelsiteg hardware so we could collect
data for possible use in calibration of a whole-joint modddis experiment very accurately simu-
lates an SDOF system with nonlinear damping and stiffnesaehts. As a part of the process, the
resonant frequency of the experiment was determined aifigaepeak interface load levels. The
experiment was repeated five times with all nine combinatmhardware. All curves are shown

in Figure 9.7.

As expected, the bolted joint interface for combinationguding tops A and B exhibit am-
plitude nonlinearity with stiffness decreasing as loadeases in the joint. Note that all hardware
combinations including top C clearly exhibit a qualitativdifferent behavior than the rest.

Until the interface prints were viewed, there was no expiandor the discrepancy in behavior
that top C was exhibiting. All hardware was machined to th@esarawings using the same
techniques. The unique behavior was attributed to papatovariability (which is still arguably
a good assumption). It is common for stiffness measurenwmeminally identical bolted joint
hardware to vary by as much as 25%.

9.3.2 Transient Excitation and Energy Dissipation Observaons

Transient excitation experiments were also performedgtsia same hardware combinations [49,
50]. A final product of transient ring-down postprocessitfiglb the experiments is a set of 45
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Figure 9.7. Single-Leg Resonant Frequency.

The plot shows the complete data set of 45 individual curves.

energy dissipation curves that are plotted as a functiowm@kfin the joint interface. See Figure
9.8. The data is organized into two colors: black are the 3@esuassociated with single-leg tops
A and B and red are the 15 curves associated with single-fe@to

The overall energy dissipation for the hardware combimatithat include single-leg top C is
lower than energy dissipation of combinations that incliogbes A and B. In fact, there is very little
overlap between the two clusters of curves.

Again, until the contact patch images could be viewed, thhane no reasonable explanations
for the energy dissipation differences in those combimatiaf hardware. It is common for energy
dissipation measurements on nominally identical boltedtjbardware to vary by as much as
300%.

An attempt is made here at explanations of the observati@isate being made with respect
to energy dissipation. When top C is used, the contact painhists of a much smaller contact
area than the other assemblies. Given equal preloads, thact@ressures will be significantly
higher when top C is included. The extent of the microslipd(éwence dissipation) could be
much reduced. Also, the kinematics on the interface willigaificantly different than the other
assemblies. Highly localized contact pressures may aingtne interface in such a manner that
different modes of deformation occur within the structu¥er example, stronger coupling between
the lateral loading and bending response could result,esetmight even be special participation
of torsional modes.
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Figure 9.8. Single-Leg, Transient, Dumbbell Energy Dissipation.

9.3.3 Observations of Energy Dissipation Curve Slopes

When a straight line is fit to an energy dissipation curvehsagthat in Figure 9.8 in log-log space,
the slope of the line is indicative of the magnitude of noséinbehavior that is exhibited by the
joint. A slope of 2 indicates a perfectly linear joint elemeas is the case when monolithic steel
specimens are tested. Slopes as high as 3 are commonly ethséepending on the nature of the
joint interface.

Table| 9.9 illustrates the average slope value for each ohithe hardware combinations as
measured from the energy dissipation curves obtained inghmonic excitation experiment. This
experiment is slightly different from the transient extita experiment in that a single load level
can be exercised at one time as opposed to a whole range sf load

The slopes of energy dissipation curves associated witlCtape generally not as high, but
still are well above 2.0. This information would suggesttttiee degree of damping amplitude
nonlinearity in hardware that includes top C is not as highs mMentioned earlier, Figure 9.7
suggests the same conclusion because stiffness is not@sddey on input forces.
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Figure 9.9. Power-Law Slope.

Average slope of energy dissipation curve for the nine hardwombi-
nations in the dumbbell experiment. (A1=1, A2=2, A3=3, Blett.)

9.3.4 Recalibration of Stiffness for Multiple Joint Experiments and Model-
ing

When researching the intricacies of jointed interfacess gxtremely valuable to also analyze
hardware that has exactly the same geometry in the vicifdithe joint, but without the inter-
face. In other words, fabricate a monolithic specimen thhtlats linear elastic behavior with the
same nominal geometry. The interface is only added to thererpnt once the properties of the
monolithic hardware are quantified. Using this techniqtiés easier to understand the specific
contributions of the nonlinear joint interface to the oviebehavior of the hardware. Monolithic
hardware is available for both the single-leg and threesl@mples used in this study.

The monolithic hardware is especially useful for underdtag the overall elastic stiffness of
the joint element. Figure 9.10 illustrates simplified dymanepresentations of the single-leg and
three-leg hardware. When focusing on the axial mode of ébeHatter can be approximated very
well using equations of SDOF systems with appropriate edent stiffness values. The equivalent
stiffness depends on whether springs are in series or itiglaxéh each other.

Stiffness valuesk; andkjy, in the single-leg calibration hardware can be determineenithe
resonant frequencies are known. An assumption of the wjpbotemodeling approach used to
date is that the calibration stiffness of the joikj;, can be used in the multiple joint component
model in the place okj3. One would hope that a validation of that multiple joint mbagainst
a corresponding multiple joint experiment would then becessful. However, during the valida-
tion exercises with this particular hardware a large diganey in joint stiffness (Table 9.1) was
discovered.
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Figure 9.10.Experimental Schematics.

Simplified representations of the (a) single-leg and (b¢¢hleg experi-
ments including stiffness elements.

Table 9.1.Experimentally Determined Joint Stiffnesses

Approximate Single-Leg Harmonic Experiment Joint Stifag
kj1=8.8 x 16 Ibs/inch
Approximate Three-Leg Hardware Joint Stiffness:
kj3=4.9 x 1® Ibs/inch
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It is clear that using the parameters derived from the sitegjecalibration experiments would
yield a three-leg model that would be much stiffer than thaadhree-leg experiment. At the time
of the initial experimental work there was, again, no goga@xation or obvious correction for the
discrepancy. Instead, a recalibration of the stiffnestéthree-leg hardware was done so that the
validation exercise could continue without too much ertids more desirable to have the ability to
accurately predict the stiffness of a multiple joint intexé by performing experiments, or simple
analysis, on single joint elements. The use of the pressmsts/e film to image the contact patch
in this hardware helps to explain the differences in joitgiface stiffness that have been observed
and that have caused issues around validation exercigpgef.11 shows the interface prints for
three-leg, hardware top A2 with three-leg bottom 2. (Prfatshardware combinations including
bottoms 1 and 3 are very similar to those shown and so are notshere.)

Figure 9.11.Three-Leg Interface Print.

Example interface print from three-leg hardware: (a) ravnaige of Leg
1, (b) processed image of Leg 1, (c) Leg 2 and (d) Leg 3.

Comparison of interface prints in Figures [9.4 and 9.11 showxlusively that the contact
patches are not similar for the two cases. Again, the joidtiaterface geometry for both single-
leg and three-leg hardware are nominally the same, and g efetfails of the contact patch are very
different. Also notice that the machined surface for thedhleg hardware is much smoother than
was achieved for the single-leg hardware.

With this insight available, one would not necessarily ext@estiffness value derived from a
single-leg calibration experiment to successfully applg imodel validation of a three-leg config-
uration.

9.4 Flat Lap Joint Interface

The flat lap specimen under line loading is a seemingly singte interface (Figure 9.12). One
would expect the contact patch to be centered under the iloadwith decreasing pressure away
from the line of application. However, measurement of th&act pressure distribution shows that
reality is quite different from theory.
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Figure 9.12.Flat Lap Joint Pressure Film Assembly.
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Application of force in the interface to generate this imggeas challenging because there
are two cables, one on each side of the specimen, that amagesl one at a time. The pressure
film used in this investigation records peak pressure. Toerethe experimentalist must use care
to ensure that one side of the interface does not experieessve load due to uneven torquing
during preload application and removal.

Figurel 9.13 shows the distribution of pressure in this fat@ for one assembly. Note that
the majority of contact pressure is actually not directlgemmeath the line of application of load.
Instead, the majority of contact pressure is at one end amukadide. The extra pressure at the side
could be due partly to uneven distribution of load betweentto cables. Regardless, the fact that
the sides of the specimen can experience such high pressutradicts the theory or assumption
that the contact pressure is concentrated below the load.

Region of ine
cortact influence

Figure 9.13.Contact Patch Imagery.

Contact patch imagery of the flat lap joint combination Al.i\/Arrow
and black arrow point in same directions, for orientatiorrposes.

Even though this joint specimen was designed to be flat, ifapigons cause a majority of
pressure to actually be away from the loading line. The #iydhigher pressure under the loading
line is faintly visible and is marked with the dotted line.salnotice faint indications of machining
marks that run perpendicular to the load application line.

9.5 Conclusion

The AOS bolted joint has been a useful specimen for studyiagnonlinear behavior of the inter-
face because of the complex nature of its geometry. Thisrgegseshown the dramatic effects that
the subtle differences in interface contact patches caa tiastructural dynamic response proper-
ties of nominally conformal surfaces. The variations thiat@bserved in the cases studied here are
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truly caused by part-to-part variation in identical mamifiging processes. One could argue that
the variations are real and need to be accounted for in thel@@went of a model that can predict
the corresponding variability in structural response.

An example pressure image of the flat lap joint is shown, agamonstrating how actual con-
tact pressure can vary from what is assumed or theoretiaaligipated. Only two examples of
joint interface geometry were shown in this section: onéwitsimple geometry and one with a
complex geometry. Inside both, there are important hidd#aild describing the interface interac-
tions. Imagery of the contact patch is a valuable tool in ingipesearchers understand the nature
of both contact and micro- or macroslip in the interface.

Future work with respect to contact patch imagery will bedssed within the next chapter.
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Chapter 10

Experimental Work: Closing

Danny L. Gregory

10.1 Summary of Experimental Work

In addition to the traditional quasistatic load frame tagtithree dynamic experimental approaches
for investigating mechanical interfaces and bolted jolrdge been discussed with representative
data for several experiments. The first approach is to us8ith&lass Device (BMD) concept
to configure an experiment that can be modeled as an SDOF artzetaviors of the system at
resonance exploited to measure the energy dissipationfimutiwe stiffness of the joint. Utilizing
properties of sinusoidal excited structures, the harnsooifithe forcing frequency have been shown
to contain the information about the nonlinear mechanigntise joint. The second approach is to
use the transient response of the two mass (dumbbell) cotocegercise the joint and use the free
decay of the system to measure the energy dissipation dimekss of the joint. The instantaneous
rate of the free decay of a particular mode of the dumbbeliesyscan be used to evaluate the
nonlinear response of the joint. The third is shaker drivandient excitation to a structure with
bolted connections. The shaker driven excitation can alonultitude of candidate excitations to
be applied to the structure for the purposes of bolted jdwaracterization as well as for model
validation. All techniques have been shown to provide Valleiansight and measures of response
for investigations of bolted joints.

Measurement and signal processing techniques to isoldtgemntify key measures of joint
behavior have been discussed. These techniques incluttaditenal techniques for development
of hysteresis curves for harmonic excitation as well asriggles to estimate the nonlinear restor-
ing force in a mechanical joint. A modified logarithmic denent technique, applied to the free
decay envelopes from transient excitation, to estimatétantaneous rate of energy dissipation
was also demonstrated. Spatial filtering techniques tatsahe response of each of the modes of
the system participating in the system ring-down have atéembntroduced.

Techniques for contact pressure measurements using prFessuositive film have been dis-
cussed with example results. The results are very reveahidgdemonstrate the large variability
in the contact pressure for nominally identical structuissicated to the same specifications.
The film images can be post processed to provide rapid fudl-fjealitative information and with
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careful processing, quantitative data for the contactgumesin a mechanical interface. It is recom-
mended the use of this or similar techniques become an aitpgrt of any bolted joints research
effort.

The solid equivalent joint has proven to be invaluable iniauestigations. It has enabled the
experiments to be evaluated for repeatability, assessofiime boundary conditions, and quantifi-
cation of sources of energy dissipation without the preserfithe joint. The solid equivalent joint
results allow the energy dissipation due to the joint to bé&aigd. Similarly, the effective stiffness
of the joint can be estimated by measuring the frequencgreifices between the solid and jointed
interface results.

These experimental techniques provide useful results éidioly are not the only way of
experimentally investigating the behavior of mechanic&tiifaces, bolted or otherwise. Many
variations on the basic techniques described here can lisi@red as well as completely differ-
ent approaches. The myriad of possible bolted joint condigoms provides endless opportuni-
ties to develop new experimental approaches, measuremesignal processing techniques, and
analysis tools to gain insight into the complex physics eisged with the dynamic behavior of
mechanical joints.

10.2 A View for Future Experimental Work

As discussed in the introduction to the handbook, the pkyessociated with microslip behaviors
in mechanical joints span several length scales, from matdeto the full assembled structure. To
fully capture the physics and to develop constitutive medeht span the inherent range of length
scales, experiments are needed at all these length scaleanéed measurement techniques and
strategies are needed to obtain enhanced informationdw &étle complex interface mechanisms
to be observed or inferred. New signal processing and asdigsls need to be developed to
provide measures of the joint behaviors that can help rexedidefine the underlying physics of
the interface dynamics. Some future areas of work prompgetdcurrent research are discussed
below.

10.2.1 Experiments at the Asperity Level

Experiments at the asperity level might be useful to deteertine constitutive behavior of mating
surfaces . Experiments and measurement techniques actiesare difficult and expensive to
devise and use of such data to deduce continuum-level aceerfonstitutive models would be
problematic, but success of this enterprise could leadediption of joint behavior at the macro-
level without the need for calibration experiments at theesdength scales. Perhaps emerging
Micro-electro Mechanical Systems, (MEMS) technologies ba exploited for the purposes of
these difficult experiments.
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10.2.2 Improved Measurement Techniques

The inherent inability to directly observe the contact Zehén the interface requires the use of
indirect measurements to infer the physics in the interfatéhe current research described in the
handbook, point measurements were employed and the glegabmse (total energy dissipation
and total stiffness) of the joint were measured. The abiditgbtain improved spatial definition of
the external deformations in the vicinity of the joint couaprove the inference of deformations
internal to the contact region(s). Some measurement tgagbsithat may provide enhanced spatial
information include: (1) Full field relative displacemeneasurement techniques such as Holo-
graphic Interferometry (Holometry) and Electronic SpedRhttern Interferometry (ESPI) [61, 62]
can be used directly for quasistatic loadings or can be egpplia time average mode for harmonic
vibration loadings. (2) LDV [63] can also be used to obtai@ tielocity field in the vicinity of the
joint under harmonic vibration loadings. (3) Thermoelasthaging [64] might be used to mea-
sure the stress patterns in the vicinity of the joint undentoaic loading. These optical techniques
provide enhanced spatial resolution but must have linegbitsivailable to the area of interest and
special steps must be used to resolve three dimensionalineeaants.

10.2.3 Macro-Scale Multi-Dimensional Loadings

The macro-scale experiments described in the handbook ceerfegured to very selectively in-
troduce a one-dimensional shear loading into the jointsenhiaintaining a near constant normal
force. In real field environments the normal force in a medw@rjoint is time varying depending
upon the dynamic modes participating in the response oftthetare and the resulting forces re-
alized in the joint. The microslip in the joints are creatgdshearing forces that generate the slip
zone(s) in the interface for a given surface pressure fietiéncontact region(s). Simultaneous
bending and transverse loadings of the interface will myitii& contact region(s) and the resulting
contact pressure distribution in the interface, and thasgh the slip zone(s) and the microslip
occurring in the joint.

Experiments are needed to provide more generalized loadingimple joints to guide devel-
opment of more generalized joint constitutive models tleabant for time varying normal forces
in the joint. Experiments that can introduce controlledd(@ameasurable) combinations of load-
ings (shear, bending, normal, etc.) are desired to providebasis for model development and
validation.

The dumbbell configuration can provide multi-dimensiowalding to the joint by selectively
exciting certain vibration modes of the system. The modaligpation in the response can be
adjusted by selecting the excitation location. For examgheaxial hammer impact applied off
center of one of the masses will excite the axial and certaimdimng modes depending upon the
impact location. The free decay of the system then becomaseaosition of the modal responses
participating in the ring-down. Special signal procesdiaghniques are required (such as the
spatial filtering discussed in Section 5.5 ) which can isothe response of each of the modes of
the dumbbell.
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Multi-axis shaker systems are becoming more common forenmental simulations and re-
search purposes. These systems can be used to providdleontmmbinations of shear, bending,
and torsion loadings into an experimental structure. Jaiperiments configured with an inertial
mass, similar to that used for the BMD experiments, can besiemed with the multi-axis shaker
systems. By properly controlling the inputs to the testdtrte, selected combinations of load-
ings can be applied and the response of the structure measucbaracterize the behavior of the
joint(s) under coupled loadings. Creative measurementsail processing techniques will be
required to capture the multi-dimensional loading(s) ayakanic response of the structure and to
isolate the contribution of the joint(s).

10.2.4 Piezoelectric Actuators and Washers

Experiments incorporating piezoelectric devices mightcbafigured to provide complex time
varying loads into a mechanical interface to simulate threegaized loadings of a joint in a built-
up structure. Piezoelectric washers have been used inimgres by Nitsche and Gaul [65] to
actively control the damping in a bolted joint by varying tn@mal force. This concept could be
extended to purposely provide a time varying normal presguthe joint at selectable frequencies
and levels. The addition of piezoelectric actuators coutvide excitation forces/moments to the
joint through various configurations. This could simuldte generalized loading effects at a local
level in a joint without the complexity of multi-axis loadjs in built-up structures. Techniques to
minimize and account for the additional interfaces intrmatliby the inclusion of the piezoelectric
devices must be considered.

10.2.5 Advanced Signal Processing and Data Analysis Tools

The traditional time and frequency domain measurementigndligprocessing techniques can pro-
vide valuable information about the dynamics of mecharni&rfaces. However, further signal
processing or calculating other measures of the respongacaide additional insight into the un-
derlying physics in an interface. As discussed in Sectiénthe use of spatial filtering techniques
can decompose the transient response of the experimentetiuse into each of the participating
modal responses. Further processing of the free decayogresedf the individual modal responses
and measures of response in these generalized coordinaygs ovide further insight into the joint
dynamics.

Another signal processing technique that seems to holdipeofaor investigating mechanical
joints is the Harmonic Wavelet Transform (HWT) [66, 67]. TH&/T provides a time-frequency
domain measure of the response of a structure. The frequesalution is approximately logarith-
mic and variable, the frequency resolution — time resolupimoduct is almost constant. Integration
along a frequency line at all times results in an estimatidh® magnitude squared of the Fourier
spectrum at the specified frequency. Integration along a tine at all frequencies yields an
estimate of the instantaneous mean square time value. Thimg spectrum is a discrete ap-
proximation of the instantaneous spectrum. When HWT isiag@fb the transient response of a

292



structure, the instantaneous spectrum allows the nomliresponse to be observed as the response
decays. The time-frequency map of the response of a joititedtsre provides a unique measure
of the response to provide insight into the development atidation of future joint models.

Further exploration of techniques, discussed in previtapters, to estimate and characterize
the nonlinear restoring force of a joint seems to hold prerfosfuture joints research. By isolating
the nonlinear restoring force for various mechanical jaimnfigurations, candidate constitutive
model forms can be hypothesized and compared to those meeasiarying parameters of a
joint, such as preload, contact geometry, or surface fiaistl,observing changes in the nonlinear
restoring force can provide insight into the underlying gibg governing microslip in mechanical
interfaces.

10.2.6 Experiments on Multi-Jointed Structures

Experiments on various configurations of multi-jointedustures are also needed to provide ex-
perimental results to assist in the development of modepyoaches for built-up structures. As
constitutive models are developed at the various lengtlesthey must ultimately provide useful
results in real engineering applications. This will regumodel predictions for the response of
structures with a multitude of mechanical joints. Theseeexpents will provide benchmark data
to test robustness, computational efficiency, and accuwbcgndidate joint models integrated into
a full structural dynamic model. Experiments on assembiratires will add size, complexity
and challenges for the experimentalist to perform corgtbéixperiments and acquire meaningful
data.
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Chapter 11

Whole-Joint Models

Daniel J. Segalman

Once enough experiments are performed to characterizeitits pf interest, and once a con-
stitutive form is selected and parameters are found thabdejge the data, there is still the issue
of integrating that constitutive model into a structurahegnics model.

The challenge here is connecting a one dimensional equeaiitnthe FE kinematics - an
essentially three dimensional world. This is the same rmobihat is encountered regularly in
connecting spring elements to plates, shells, and solidsother flavor of this problem is that
regularly addressed by analysts in connecting plates ail$ $tthree dimensional element blocks.

The mathematics of this problem are still challenging adtear twenty years of concerted effort
in the mathematics and applied mechanics worlds. The isgussnphysical stress singularities
and retarded mesh convergence appear important to thoseuwaities more for philosophical
than practical reasons. The singularities are integraiolé the uncertainty in loads and boundary
conditions, along with the intrinsic variability in joinesponse, so dwarf discretization error that
engineering analysts do not mind living with a few matheo@tanomalies, if they notice them at
all.

The approach employed in this handbook for coupling one d#io@al joint models with three
dimensional, FE, component models is comfortably withim ¢kass of tools used by the general
analysis community, though care must be taken to use th@agpiconsistently.

We refer to this class of constitutive model, coupled with kinematics defined in this chapter,
as awhole-joint modebecause the whole-joint is represented by a single equiticeach of the
six degrees of freedom available to the joint.

11.1 Whole-Joint Kinematics

For the sake of discussion, consider the measured propeftigystem A, AOS, base attachment
location joint shown in Figure 11.1. The specimen is sanbadcbetween a shaker and a large
mass. A force transducer is placed in line and an accelessngeplaced on the reaction mass.
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As indicated in the experimental sections, energy dissipatan be deduced from the effective
damping at resonance, and the specimen stiffness can beeatkefilaom resonance frequency. How
are these properties to be introduced to the FE formalism?

Figure 11.1.System A Single-Leg Assembled Into the BMD.

Joint properties specimens are obtained using the BMD. Goispn
of data from jointed specimens with data from correspondi@gsure-
ments on monolithic specimens yields dissipation and damgs# prop-
erties that are attributed to the joint.

Unfortunately, the two key difficulties here are substdntia

1. The experiments yield integrated properties of the wkgktem - the joint, the rest of the
specimen, and the compliances of attachments. How the poagerties can be deduced
for these experiments and others conducted on monolittécisens is discussed in the
experimental chapters of this handbook.

2. The joint properties that are measured are scalar mappirfgrce and displacement, while
FE descriptions of the components are intrinsically threeedsional. Some method is
required to bridge the one-dimensional joint models andhhee dimensional FE meshes.

It is this second issue that is the focus of this section.

11.2 Rigid Surface Kinematics

The approach described here and employed in the rest ofdbiswkent is common in FE modeling
of large structures with small contact patches. The teclais|to define a rigid surface (geometric
patch) on each side of the interface and to slave each rigidcguto a single representative node.
This concept is suggested in Figure 11.2. The joint coriatéunodel then couples the forces (and
moments) and displacements (and rotations) of those tweseptative nodes. In commercial FE
code, one usually defines the rigid surfaces using rigid efes(such as RBE3) or multi-point
constraints (MPCs).
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The solution presented here degrades the field kinematibg @ihite elements in the neighbor-
hood of the interface so that it is consistent with the scaddure of the joint constitutive model.
These two rigid surfaces are connected by six, scalar, itoing equations (one for each relative
degree of freedom) relating displacement and conjugate$orin general, we have experimental
data along only one axis, so we employ the associated aatistitmodel along just those degrees
of freedom. The remaining degrees of freedom are connegtethbtever constitutive behavior
seems plausible or appropriate.

Note that the approach presented here is more rigorous thahisvoften done in practice by
FE analysts. When dealing with coarse meshes, the analygaistispring connect two nodes on
opposite sides of the interface. If the analyst has no imerdf refining that mesh and plans to
tune the spring anyway, then the analyst will ignore that poted result of applying a point load
on a surface because it will not converge as the mesh is refinethe method discussed in this
section, because a geometric patch is treated as rigidsraddeny refined mesh that are on that
surface will also be connected rigidly, so a unique probldénnear elasticity is defined and the
numerical solution should converge to the exact solutiothefelasticity problem as the mesh is
refined.

Figure 11.2. Schematic of Nodal Constraint in the Whole-Joint
Method.

The scalar constitutive behavior is coupled to the FE dispiaent and
traction fields by constraining the FE nodal displacemem®ach side
of the interface to move rigidly.

11.3 Definition of Joint Properties

It is important that the simplified kinematics employed far 8E analysis are used consistently. In
the following, the use of these kinematics in dynamics ofted structures is illustrated by showing
how they are employed in FE analysis to reproduce the expeatsrfrom the joint properties that

are deduced.

The experimental sections demonstrated the manner in vdaitzhcollected on jointed speci-
mens can be compared with that collected on correspondimgplititic specimens to deduce joint
properties. These comparisons yield values for effectwuat jstiffness and joint energy dissipa-
tion, each as a function of force amplitude. There will bessabtial discussion in later chapters
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on how to identify appropriate constitutive models and tdeduce model parameters from the
experimental data.

Consider the monolithic specimen shown in Figure 11.3.

T

Ca

CA
Figure 11.3. Schematic of Monolithic Specimen.

The use of an FE model for the monolithic specimen is emplayed
deduce the connection compliances.

The net complianc€y of the specimen is that intrinsic to specim@n and that due to its
connections to the testing devi€g. ComplianceCy is known from experimentCy, is calculated
from FE analysis, yielding repeatable estimates for trechthent complianc€s = Cy —Cy. Ca
will be used later.

Next, consider the representation of the monolithic speairas an assemblage of lap joint
components whose contact surfaces are made rigid (Figudg. 1The rigidization of those op-
posing surfaces adds constraints that stiffen the systeran @dditional compliand&g must be
placed between the representative nodes to recover theliames of the monolithic specimen.
Fortunately, FE analysis of the half-lap components yietslaplianceC, ;1 andC, , for the left and
right components. The compliance that must be placed betweetwo surfaces to recover the
compliance of the monolithic specimenGg =Cy — C. 1 —Cpo.

Now an FE model is constructed for the jointed specimen bgrtirgg the joint constitutive
model in the bipartite model for the monolithic specimen.
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Figure 11.4.Rigid Interface Construction.

Rigid Surface

A compliance g is placed across the rigid surfaces to compensate for
Figure 11.5.Inclusion of the Interface Constitutive Model.

the stiffening due to rigidization of the surfaces.
The joint properties are incorporated in the FE model for gpecimen

by inserting the joint constitutive model into the model tlog mono-
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11.4 \Verification

To verify that all of the parameters have been derived ctyrand to assess how well the con-
stitutive equation captures the properties of the joing, dieduced compliances, the constitutive
model, and the FE models for the two halves of the joint arel tiggeproduce the original lab-
oratory experiment. First, the test on the monolithic spexi is reproduced. This demonstrates
that compliance€a andCr have been computed correctly. Performing the correspgrdist on
the jointed specimen next provides some measure of fidglitytbch the joint constitutive model
captures the joint response.

Rigid Surface  [ErErIIEEIIannnIic,
‘/ LILILILILILILILI'II:I:I:I:I:I:I:I:I MBMD
Imposed 7\ e e e
Acceleration ATz ch k"""' )
R == Rigid Surface
é \\\\\\\\\\\\\\\\\
Rigid Surface  Frrirrrisiorrir s rrrdC,
J L'L'L'L'L'L'L'LI'I|:|:|:|:|:|:|:|:| MBMD
Imposed 7\ e e EE R
Acceleration | s ch &"""' )
I s Rigid Surface

Figure 11.6.Adequacy Test for the Compliance Estimates.

The adequacy of the estimates fot, Cr, can be obtained by per-
forming an FE analysis of the original experiment on the miibinic
specimen. Some estimate of the adequacy of the constituigel re-
sults when the corresponding calculation for the jointeégmen is
performed.

11.5 Other Possible Kinematic Assumptions

The kinematic simplification employed here has advantagesnplicity and clear definition. As
mentioned above, a unique solution to the FE problem can pectad as the mesh is refined.
There are some disadvantages that should be noted as well.

One disadvantage is that as the mesh is refined near the tfwentigid boundary condition
results in the nonphysical stress singularity mentionex@bThis singularity appears to be com-
mon to all problems when attempting to connect one dimemsioomponents to two or three
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dimensional structures. Although these anomalies areigoifisant in terms of the engineering
calculations, it is worthwhile exploring other strategies

There are analogous tools devised for simulation of spotisvgb8] for instance), and these
might merit investigation for what they can provide in terofigase of use and computational effi-
ciency. Also, there has been some work at Sandia recentiyaring the constraint on rigidization
on each side of the interface. Itis still to be determinedtivbieany of these alternative approaches,
when applied to a monolithic specimen can be guaranteectld fyite Cr.

This area is still a fertile field for investigation.
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Chapter 12

Constitutive Modeling for Joints

Daniel J. Segalmén

12.1 Introduction

The constitutive behavior of mechanical joints is largelgponsible for the energy dissipation and
vibration damping in built-up structures. For reasonsgifrom the dramatically different length
scales associated with those dissipative mechanisms anknigth scales characteristic of the
overall structure, the interface physics cannot be cagttirough Direct Numerical Simulation
(DNS) of the contact mechanics within a structural dynanaiealysis. The difficulties of DNS
manifest themselves either in terms of Courant times tleabaters of magnitude smaller than that
necessary for structural dynamics analysis or as intrectaimditioning problems.

The only practical method for accommodating the nonlin@dnre of joint mechanisms within
structural dynamic analysis is through constitutive me@ehploying degrees of freedom natural to
the scale of structural dynamics. In this way, developméobostitutive models for joint response
is a prerequisite for a predictive structural dynamics béjta

A constitutive equation is required that maps arbitraryisghistories forces or displacements)
into the energetically conjugate quantities (displaceasienforces). In general the parameters of
that model must be deduced from a small number of physicalimenical experiments of narrowly
defined sorts. In the SNL experience, these calibrationrexpats have been primarily harmonic
excitation (on such equipment as the BMD) or ring-down expents on a dumbbell configuration.

There are many admissible constitutive model forms thaldoa@produce the available experi-
mental data to within the inherent uncertainty. Howevesrérare a few measures of merit to cause
us to prefer one constitutive equation over another:

1. How well is it able to reproduce simultaneously the mogtontant qualitative properties
of joints? In most engineering problems, the most imporfaoperties are the strongly

Much of this chapter was taken from Reference [69].
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nonlinear dependence of energy dissipation on the amplitdicharmonic loading, the sig-
nificant but less dramatic decrease in joint stiffness waddl amplitude at small loads, and
the manifestation of macroslip at very high loads.

2. Is the numerical evaluation of the constitutive equaéffitient and stable?

3. How many parameters must be deduced from experiments2rhkgwetter; it is highly
desirable that those parameters should be deduced fromlargmder of experiments so
that other data remains for comparison with model predistio

4. Is there a well conditioned process for deducing the mpdeimeters from limited experi-
mental data? This last feature requires that a unique paeaiset be deduced from a set of
data.

5. Is model integration into a structural level FE code pcat?

Only one class of constitutive model is explored to any deptthis handbook. This con-
stitutive model satisfies all the above conditions reasiynakll and additionally lends itself to
mathematical analysis. Certainly other researchers wil fither models just as good as the one
presented in this handbook, but the value of those modelbedemonstrated only after thorough
testing against experiment and implementation in simaatof real structures. The editor, having
experience in constitutive modeling of several flavors, &lasady asserted that the community
guest for constitutive equations should emphasize qualigy quantity.

12.2 Iwan Models

The class of model that is employed here is that of Bauschi2§é, Prandtl [30], Ishlinskii [31],
and Iwan [33, 32] model. For convenience, it is referred tthis handbook as the lwan model.
This class of model is mathematically equivalent to a paralystem of Jenkins elements. 12.1.
Though Iwan introduced his constitutive models for metak#d-plasticity, they have since been
used to model joints [70, 71], and the work reported hereesldrs how that model-form can be
exploited in a systematic manner to capture the importapaeses of mechanical joints.

Mathematically, the constitutive form of the model is [32] 7

Fo = | “kp(§) [u(t) — (t, §)]dd (12.1)

where uis the imposed displacement,
F(t) is the applied force
f)((f)) is the population density of Jenkins elements of streggth
k is the stiffness common to all of the Jenkins elements

and X, (f)) is the current displacement of sliders of strength
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Figure 12.1.Parallel-Series Iwan System.

A parallel-series lwan system is a parallel arrangemenpohgs and
sliders (Jenkins) elements.
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The slider displacements(t;¢) evolve from the imposed system displacemaett):

o~ [ U if Ju=Xt, )| = @/kandu(u—X(t,¢)) >0
Xt 9) _{ 0 otherwise (12.2)

It is assumed(0, ¢) = O for all @. Note that Equation (12.2) guarantees that- X(t, )| < @/k
at all times.

Noting that all lwan models - even those without unifokm are Masing models, and all
Masing models can be represented by lwan models with unikpthrere is no loss in generality in
employing identical stiffnesses among the Jenkins eles{8i.

The parametek can be removed from the above equations through the foltpeiranges of
variable:

0=0/k (12.3)
p(@) = K*p(ko) (12.4)
X(t, @) = X(t, ko) (12.5)

Equations[(12]/1) and (12.2) now become

FO)= [ po)utt) - x(t.g)]d (126)
and
. u if Ju=x(t,@)|| = g andu(u—x(t,¢)) >0
X(,9) :{ 0 otherwise (12.7)

which guarantees thdtu — x(t, @)|| < .

The new quantities have different dimensions than themaigines. Thougkp has dimensions
of force, ¢ has dimensions of length. Similarly,has dimensions of force butp has dimensions
of force/lengtt?. The dimensions of the external loads and displacementiedpp the joint
remain unchanged.

Two overall parameters for the interface can be expressednrs of the above integral system.
The force necessary to cause macroslip (slipping of the evimtérface) is denoteBs, and the
stiffness of the joint under small applied load (where Sipfinitesimal) is denoteldt. Macroslip
is characterized by every element sliding:

u(t) —x(t,9) = ¢ (12.8)
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for all ¢, so Equation (12.6) yields

Fs=/0m<pp(cv) do (12.9)

Because no elements have slipped at the inception of loa@@ittg= 0) Equation((12.6) yields

Ky = /Omp(fm do (12.10)

12.3 Response of lwan Models to Small and Large Force

Experiments involving large monotonically applied forcas indicate the force necessary to ini-
tiate joint macroslip but, for reasons explained belows iery difficult to obtain any other mean-
ingful detail on joint response from quasistatic experitserOn the other hand, resonance ex-
periments do enable the measurement of dissipation pee oyith reasonable precision even at
relatively small loads [46, 7]. Additionally, with propealibration, those experiments can be used
to obtain effective stiffness as a function of load amplkgudt is shown below how each sort of
experimental data can be used to determine the parametsaodllel-series lwan model that can
capture both quasistatic and dynamic behaviors.

12.3.1 Small Amplitude Oscillatory Loads

When a joint is subject to small amplitude oscillatory latdoads, the dissipation appears to
behave as a power of the amplitude of the applied load. Giy)ehe exponent of that relationship
is a number lying between 2.0 and 3.0. Goodman [74] pointéthatithe Mindlin solution [11, 75]
for the energy dissipation resulting from oscillatory faldoads imposed on two spheres pushed
together yields a power-law slope of 3.0 in the regime of statdral loads.)

In Figure/ 12.2, that power-law slope is represented -a¢3vherey is a negative number of
small magnitude-{1 < x < 0). Mathematically, this is expressed as the following:

D(Fo) = uFg X (12.11)

where D is the dissipation per cycle resulting from a harmonic load o
amplitudery

and  x andvu are selected so that Equation (12.11) matches experimental
data collected at small force amplitudes.
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slope=3 + y

Log10(Dissipation/Cycle

Logl0(Force)

Figure 12.2.Energy Dissipation Under Harmonic Loading.

The dissipation resulting from small amplitude harmonadimg tends
to behave as a power of the force amplitude.

The dissipation per cycle associated with oscillatory dispments(t) = upsin(t)) applied
to a Jenkins element of strengghis the area within a parallelogram shaped hysteresis looipda
height 2p and base Rup — ¢@). The dissipation integrated over all Jenkins elements is:

D= /OUO 4luo — @|pp (@) do (12.12)

One major simplification made possible for histories whéee displacement is bounded by
a small valueunay (i.e. |u(t)| < umay) is that the integral of Equations (12.6) and (12.7) can be
simplified to

F)= [ p(@ut) -xt.9)dg+ut) [ p(e)de (1213

= K7 u(t) + O(Umax’) (12.14)

where O() is the notation for quantities that are on the order of their
argument as the argument goes to zero [76].
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Expandingo(¢) as a

p(@) = ¢X (a0+ap+ag?...), (12.15)

and substituting Equations (12.11), (12.14), and (12416) Equation/(12.12), and matching lead-
ing terms, we find

_ U(KT)PX(2+ X)(B+X)

pl9) = 1 ¢*+0(¢"%) (12.16)

for small @ [72]. This approach provides something of the characten®ppulation distribution
that is necessary to yield a power-law-type dissipatioraisei.

12.3.2 Large Monotonic Loads

Considering large monotonic pulls €Qu), Equations/(12.6) and (12.7) show that

u(t) 00
F(t)=/O Pp(@)de+u(t) u(t)p(fp)dcp (12.17)
The tangent stiffness is
of _ u(t)/w (9)d (12.18)
I u(t)P @)dp :
from which lwan derived
@ =—p(u) (12.19)
oz P '

Because the second derivative of force cannot be measutie@my resolution for most joints
at small displacements, the above is at best useful onlafgeldisplacement experiments.

Figurel 12.3 sketches the monotonic force-displacementeciar a canonical lap joint. We
anticipate that the force saturated—gtand interface displacemeung, corresponding to complete
breaking of interface bonds.

Some comment should be made about why it is necessary to gutssforce displacement
curves for joints in structures that we typically encouniiére key is that the interface mechanics
cannot be viewed directly. The interface region is actedyaxbternal loads conveyed through an
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Beginning of Macroslip

RS

Force

Pinning by Shank of Bg

Microslip Regime

-

Displacement
Figure 12.3.Monotonic Pull of a Lap Joint.

The monotonic pull of a simple lap joint shows the force sattes afFs
as the displacement passes a critical value.

elastic structure. Additionally, kinematic measurememesof the net displacements of that com-
posite system - not of the joint. Particularly vexing is ttieg elastic subsystem is generally much
more compliant than the interface until the latter has beetetl into the vicinity of macroslip.

This insightis illustrated in Figure 12.4, showing largastic deformations taking place in a lap
joint specimen long before serious slip occurs at the joAstsuggested by the drawing in Figure
12.5, the force-displacement plot looks nearly linearlding applied force almost reaches the level
necessary to induce macroslip of the joint. The nearly linegion is dominated by the compliance
of the elastic part of the system and the response of thdanteis almost entirely obscured. Once
the force is nearly sufficient to cause macroslip, it is theafrinfinite) compliance of the interface
which dominates. Though such experiments do identify theefmecessary to initiate macroslip
of the joint, they are not very useful to achieve resolutiartiee force-displacement response of
the interface itself.

It should be said that for some structures in which jointgesent a major source of stiff-
ness degradation of the structure, Levine and White [70pvedrle to deduce lwan parameters
by examining distortion of nominal frequency response esras excitation frequency increased.
This technique is an illustration of deducing joint propestindirectly through observation of the
integrated behavior of the full structural dynamic resgons
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Figure 12.4.Single Lap Joint Deformed Meshes.

The numerical predictions of a finely meshed system comtgiaisin-
gle lap joint illustrate how interface displacements arscoioed by the
large compliance of the elastic response of the attachedb®iesn In
the figure at top, both sides of the system are clamped, aawbking
stretched horizontally. In the figure below that, the leftesis clamped
and a zero slope boundary condition is imposed on the right.

Resulting Force

Imposed System Displacement

Figure 12.5.Constitutive Response of a Jointed Elastic System.

Typically the force displacement conditions on elastidesys contain-
ing joints are dominated at low loads by the elastic compkaiRegion
A). As the applied load approaches that necessary to imngtcroslip,
the force-displacement curve begins to flatten (RegionBijnacroslip
the force-displacement curve is exactly flat (Region C). dthlg useful
information about the joint available from such experinsastidentifi-
cation of the force necessary to initiate macroslip.
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Figure 12.6.Lap Joint Density Distribution Function.

A spectrum that is the sum of a truncated power-law distiglouand
a Dirac delta function can be selected to satisfy asympbai@avior at

small and large force amplitudes.

12.4 The Four Parameter lwan Model

The above observations may be summarized

e at small displacements the population denpity) behaves as in Equation (12.16)
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motivating us to consider parallel lwan systems having agrdew population distribution termi-

nated by a Dirac delta

(12.20)
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Substitution of Equation (12.20) into Equation (12.6) gl

F(t) = /O T ) = X(t, 0)]REX dg+ SIU(t) — X(t, Ghna)] (12.21)

Referring to Equation (12.9), the macroslip force for thsteyn becomes

Pnax
Fs = [ oplo)de (12.22)

R 2
= +a2X) + Sfhax (12.23)

3 Refax | X +1
= canax<x+l>[x+2+ﬁ] (12.24)
where "
_ Rinax"

B=S/ (ﬁ) (12.25)

The dimensionless quantify is the ratio of the joint stiffness due to thg term in Equation
(12.20) to that due to thé function term. It will be shown below thg® does strongly influence
the shape of the log-log curve of dissipation vs force amgétin harmonic loading, and the shape
of the force-displacement curve in monotonic loading.

It is notable thaR andSeach have fractional dimension - not desirable qualitie®mstitutive
parameters. On the other haRgldoes have the desirable features of having integral diroersid
being measurable. Equation (12.24) can be inverted to $ofve by employing Equation (12.25)
to expressSin terms offs:

ZFXZS(()[(S i;)%) (12.26)
and
(o) (5
X+2
Referring to Equation (12.10), the interface stiffnessldd@ computed as
. +1 +1
<r= [ plo)do= (Fj( e s (F:( e (14+6) = %Zj((;i%) (12.28)
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The stiffnesKt can be estimated from resonance experiments in a manneiaesbelow. Be-
causeKt can be estimated from experiment and involves no fractianas, it is also a desirable
parameter.

Equation|(12.28) can be solved f@fax:

Pnax = M (12.29)

Kt (B—f—i—ié)

which is substituted in to Equations (12.26) and (12.27)efing our model completely in terms
of a preferred system of parametef&s, Kr, x,3}. The first two of these are measurable and of
integral dimension, while the last two are dimensionless.

12.4.1 Monotonic Pull and Hysteresis

Though, as discussed above, performing meaningful moroforil experiments on a jointed

structure is not feasible, it is worthwhile to express thedéedisplacement curve that would re-
sult if the experiment could be performed on the joint aloflkis is particularly true because the
original parallel-series lwan model was presented in teshtke properties of such a curve.

Substituting the equations for monotonic pull into Equasi¢12.20) and (12.21), transforming
to the preferred parameter set, and normalizingrbgbtains

(Bx+2B+x+2—sT1)
Bx+2B+x+1

f(s) = F(S@max) /Fs = > (12.30)

wheres = u/@nax. Note that the only parameters of this dimensionless cug @and 3, them-
selves dimensionless. The above function is plottedxfer —1/2 and for three values @@ in
Figure 12.7. This figure shows that smaller valueg @orrespond to larger amounts of curvature
prior to macroslip, but greater discontinuity in slope as ttmposed force approaches that nec-
essary to initiate macroslip. In fact, examination of Equai12.21) shows that 8 — « the
response of the model to monotonic load approaches thatiof ke senkins element.

The smoothness - or lack of smoothness - of the transitiam fpartial slip to macroslip is
indicated by

_ B(x+?2
Bx+2B+x+1

f'(s=1) (12.31)

and the transition is sudden unlgs- 0.
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Backbone Curves for Three Values off3
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Figure 12.7. Dimensionless Four-Parameter Monotonic Force-
Displacement Curve.

The dimensionless force-displacement curve for monotoulicor the
four-parameter model fgy = —1/2 and for three values ¢.
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As Peng [71] points out, parallel-series lwan models satls# Masing conditions postulated
for plastic materials. The first Masing condition, whichuadty is due to Masing, is that if the
virgin material is monotonically deformed to some state #&h subject to cyclic deformation at
that same amplitude, the following symmetries will exist:

o the “forward” part of the hysteresis curve will look like tleading (“backbone”) curve, but
stretched along each of the displacement (strain) and {stoess) axes by a factor of two,
and translated to terminate at the tip of the backbone curve.

o the “return” part of the hysteresis curve will look like trevard part, but be reflected along
each of the displacement (strain) and force (stress) axes.

The second condition states that the equation of any hysteesponse curve is obtained by 1)
applying the Masing hypothesis using the latest point oflilog reversal and 2) requiring that if
an active curve crosses a curve described in a previous, ¢iieleurrent curve follows that of the
previous cycle. These two conditions constitute the exddridasing rules[77]. With these rules,
the response to any load history can be computed from théobaekcurve and a record of all load
reversals. (Among the ramifications is th&t is twice the slope of the hysteresis curve just after
reversal.)

Mathematically, if the joint is cycled between dimensi@dextensions/umnax = S and—sp,
then on the extensional branch, the force-displacemereaumitl behave as:

S+

fe(s) = —f(sp) + 2f( ) (12.32)
and will behave on the compression branch as:
-s
fo(s) = F(s0) —21(2 ) (12.33)

Using the extension curve for the four parameter Iwan moti€lquation [(12.30), maximum
extensionsy = %, X = % and two values of3, one obtains hysteresis loops indicated in Figure

12.8.

12.4.2 Oscillatory Response

For reasons discussed above, quasistatic experimentsabamot provide adequate data to charac-
terize joints. Good supplemental data can be obtained bgirdimresonance experiments [46, 7].
In these experiments, a jointed specimen is anchored onr@hieyea large sprung mass, and is ex-
cited on the other end by an electromagnetic shaker actinggh a force transducer. The shaker
is driven to excite the system through resonance and to doaoiaus levels of force amplitude.
Because this is a resonance experiment, the energy dissifpe&tr cycle can be deduced from the
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Hysteresis Curves for Two Values of

Backbone |
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Figure 12.8.Dimensionless Four Parameter Hysteresis Curves.

The dimensionless hysteresis curves for the four parametelel for

X = —1/2 and for two values g8 are shown in gray. The maximum and
minimum extensions are set tg8of that associated with the inception
of macroslip. The corresponding curves for the unidirecl@xtension
of a virgin material (backbone curves) are shown in black.
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force amplitude measured at the force transducer and tledesatton measured at the reaction
mass|/[46].

Additionally, the joint stiffness at each force amplitudande estimated in the following man-
ner. From the resonance frequency and the known mass, ondedage an effective compliance
of the mechanical system. That compliance is the sum of thgtance of the force transducer,
the compliance of the elastic part of the specimen, varittaslament compliances, and the com-
pliance of the joint. The sum of all but the joint complianseleduced by performing a resonance
experiment on a nearly identical, unjointed specimen (nm&chfrom a single piece of metal). The
compliance measured with the unjointed (monotonic) speciis nearly always force independent
and is assumed to be elastic. One subtracts that elastidiemegfrom the effective compliance
measured with the jointed specimen to identify the comgkeanf the joint:

1/K (Fo) = Cexa (F) —Ce (12.34)

where K(Fp) is the effective joint stiffness at force amplitubig
Cexp (F) is the compliance deduced for the system with the jointed
specimen,

and  Cgisthe compliance deduced for the system with the unjointed
specimen.

The parameteKs is the stiffness of the joint under zero load and is approxéthan a practical
manner by th& (Fp) found at the lowest driving force employed.

Direct solution of Equations (12.21) and (12.7) for a probkgpecified byF = Fysin(t) would
involve solution of a difficult, nonlinear integral equatioAn alternative approach is to specify
u(t) = upsin(t) and then to solve for the resulting dissipation and pealkeforc

Noting that the maximum displacement of Jenkins elemenstrehgthg is x(t, ¢) = ug — @,
we observe that foug < @gnax the dissipation per cycle of such elements (84— @)@. The net
dissipation per cycle is exactly that given by Equation{22. For the density function of Equation
(12.21) and folg < @nax the dissipation per cycle is

AR 3
F& B+1)(x+1)
— 4rXt3 (S 12.36
r (KT) <<B+§—1§>2<x+2><x+3>> (12:3)

wherer = U/ @hax-
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Next, observing that the maximum force seen in each cycleasforce current during the
maximum displacement in the cycle:

Ug @nax
Fo = A Pp(@)de+Uo /u p(@)de (12.37)
0
= u(S+R - 12.38
SR T2 (12:39)

Equation((12.38) is nondimensionalized by dividingRgy

(B+1)—rX"/(x+2)
B+(x+1)/(x+2)

Fo/Fs=r (12.39)

The experimental quantity most easily measured is digsipatD, as a function of applied,

lateral-load amplitudefy. Examination of Equations (12.36) and (12.39) affords thioWwing
observations:

e Asug— 0,

By
Fo— I gt (x7g = UoKr, and

dlog(D)/dlog(Fo) — x + 3.

e ASUp — @ax
Fo — Fs, and
dlog(D)/dlog(Fo) — (x +3)(B+X53)/B.

A plot of dimensionless dissipation per CyCﬂEKT/Fg, vs normalized force amplitudgy/Fs,
is shown in Figure 12/9 fox = —1/2 and three values @. As expected, we see that for small
force amplitudes Fy < Fs/2, and all values of the dissipation per cycle behaves as a power-
law. Also for values of3 substantially greater than 1, the dissipation appearsue pawer-law
behavior over the full range of force amplitude. Asymptatiwlysis of Equations (12.36) and
(12.39) ag3 — = shows that this should be the case.

Equation|(12.38) helps express the secant stiffness & &arglitude oscillation:

o Fo o I’X+1
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Dimensionless Dissipation for Four Values of 3
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Figure 12.9.Dimensionless Four Parameter Dissipation Per Cy-
cle.

The dimensionless dissipation per cycle as a function ofmiatized
force for the four-parameter model fgr= —1/2 and for three values

of B.
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12.5 Identifying Parameters

Of the four parameterss, KT, X, andf, the first can be determined experimentally or estimated
via statics and an assumed value for Coulomb friction. Tioersé, K, might be estimated by
extrapolating specimen stiffnesses obtained from resmndawn to a zero load state, though that
approach magnifies the experimental uncertainty. It is #terdhination ofy andp that is partic-
ularly challenging.

The following approach is the most robust and most reliabgvang unique parameters. In
this approach the dissipation data is simultaneously fit theewhole experimental range in a least
squares sense, and the measured stiffness is matched apsorma the midst of the range of
applied load. This result is achieved by employing inner aumigr iteration loops. The inner loop
employs Equations (12.86) and (12.39), and an estimate fa¢t to deducey (Kt ) andB(Kr) that
will reproduce the measured dissipation per cycle over tipeemental load range. This is done
most easily with a canned optimization technique, suchasabeilable with Matlab’$minsearch
tool [78]. (One subtlety is that each comparison of the foarameter model with the experimental
data requires solution fax x, 8, Fo/Fs).) The outer loop consists of a Newton iteration to identify
Kt so that when the parametd¥s Kr, x (Kt), andB(Kt) are employed in Equations (12.39) and
(12.40), the stiffnesK (Fyp) is correctly predicted at some load in the middle of the eixpental
data.

Figures 12.10 and 12.13 show reasonable fits to experimaisgpation when the automated
method is exploited. In the first case, (Figure 12.10) thesfitoi data from a bolted leg of a
component mass mockup (Figlre 12.12) of a System A substricthe dissipation data appear
to lie on a straight line when plotted in a log-log manner. Plagameters used to fit that data
are indicated in the figure caption. The valueFgfemployed was deduced from statics and a
postulated coefficient of friction of 0.5.

The log-log plot of dissipation vs lateral force for the ARglproblem is nearly linear, but that
is not the case for the stepped specimen shown in Figure 1ZHdugh this is a geometrically
simple specimen, the dissipation data (shown in Figure3)Zhow substantially more curvature.
The qualitatively different response might be due to thelgesingular normal tractions at the
edges of the contact patch. In this case, there was no uejbggecimen constructed, and it as
impossible to know how much of the specimen compliance toilzsdo the joint, soKt was
arbitrarily assumed to be three times the specimen stgfne@gh only the inner iteration being
employed. The joint parameters of the fitting curve are iatdid in the figure caption.

In the case that all data has been collected well below theaslije force, the dissipation
behavior will appear to be power-law in nature. A good fit tatttlissipation can be obtained with
any value forFs substantially above the experimental loads and apprepvi@ues off3 and x.
Of course, when using a joint model for loads that may apgraaacroslip, it is appropriate to
employ the best possible estimate Fgr

A listing of the Matlab code developed for the purpose ofaoting parameters for this four
parameter model, along with an example of running the cogeoi&ded in the appendix.
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4-Parameter lwan Model Fit to Case: AFF1 Joint
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Figure 12.10.Four-Parameter Model Fit to Dissipation Data.

Dissipation data was gathered from a single-leg of a computomass
mockup. In this case, there is almost no curvature in thddggplot
of dissipation per cycle vs force amplitude, consistentivatpower-
law relationship. The dimensionless parameters employee:vyw =

—0.632 andB = 3.68.
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Figure 12.11.Stepped Lap Joint Hardware.

A stepped specimen shows qualitatively different dissgpethan a sim-
ple half lap joint. The difference may be due to the near dargtaction
that develops at the edges of the contact patch.

Figure 12.12.Leg Section of the Mock AOS.

To the left is an FE mesh of the full leg section, in the middi¢he
actual leg section in the test apparatus, and to the righsketch indi-
cating the interface being modeled by the four parameterainod
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4-Parameter Iwan Model Fit to Case: Stepped Joint
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Figure 12.13. Four-Parameter Model Fit to Stepped Specimen
Dissipation Data.

In this case, there is appreciable curvature in the log-log @f dis-
sipation per cycle vs force amplitude. The dimensionlesarpaters
employed werex = —0.304 and3 = 0.613.
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12.6 Alternate Ilwan Formulations

Restricting the model to only four parameters requiresifziog fidelity in reproducing experi-
mental data. This problem is illustrated in Figures 12.1d/82.15. Those figures show the joint
energy dissipation and joint stiffnesses of nine nominalgntical specimens of the kind shown
in Figure 12.10. The identification method outlined in theyious section was employed to de-
duce parameters to match the data of specimen B-2. The @issigurve is matched very well
qualitatively and quantitatively. The model’s plot forfBiess as a function of load amplitude does
go through the data point employed in the parameter ideatiific, but the model’s curve is much
flatter than most of the experiments.

Dissipation of AFF Joint Pairs
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Figure 12.14.Dissipation of AOS Joint Pairs.

The thick dotted line is the dissipation of the four paramdvean
model, calibrated to reproduce the dissipation curve wdblity and
to match the stiffness of a load of 400 Ib.

The inability of the four parameter model to capture the shafihe stiffness vs load curve is a
result of restricting the model to four parameters. In ourfparameter model the stiffness declines
at a modest slope and drops suddenly to zero when the deltidnin Equation(12.20) kicks in.
This can also be seen in monotonic pull (Eq (12.18)) wherdaahgent gradually decreases with
displacementi until u exceedsp, hoxmax and the tangent stiffness instantaneously drops to zero.
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%107 Stiffness of AFF Joint Pairs, Model B—-
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Figure 12.15.Stiffness of AOS Joint Pairs.

The thick dotted line is the stiffness of the four-paramétem model,
calibrated to reproduce the dissipation curve with fideditgl to match
the stiffness of a load of 400 Ib.
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Reconsideration of Equation (12.18) suggests that a srapstiffness vs load curve, one con-
sistent with a continuous tangent stiffness, would be abthusing an expression fpf @) such
as the following.

ps(@) = [H(®) — H(@nax— 9)] [Rcox + S(@nax— <p)A] (12.41)

The above equation, which has been studied recently by themand Jerry Rouse of Sandia,
demonstrates very favorable properties in terms of magcbath dissipation and stiffness curves.
The cost of the additional parametgi) {s that there is no clear mapping between model parameters
and characteristic features of the experimental data, laaidoine must devote much more of the
experimental data to parameter identification, leaving fesvalidation.

Many other density functions for parallel-series Iwan medan be suggested, and the author
encourages the reader to explore other low parameteralistms.

12.7 Discretization

Equations/(12.6) and (12.7) are sufficient to solve for thedaesponse of the above Iwan system
once one has the constitutive parametés Kr, x and ). It is useful to discretize the integral
in Equation|(12.6) in the following manner. One breaks upitierval (0, ¢ghax) into N intervals
whose lengths form a geometric series:

A@ni1 = alA@y forallm+1<N (12.42)

wherea is a number slightly greater than one {la) and @gnax is determined from Equation
(12.29). That the sum of the intervals must be the wholevater

N

Z A = @hnax (12.43)
m=1
permits us to solve
Agm=a™ Agy (12.44)
where L
a —
A= [(ﬂnax N J (12.45)

Consider one sample point, characterized by slide strepgtht the midpoint of each interval
Agm. At that sample point, the evolution &f,(t) is computed per Equation (12.7). For quadrature
purposes, the coordinates of the left and right hand of eabmterval areg ,, and @ m respec-
tively.

The force is evaluated by a discrete version of Equatior6j12.

F(t) = %1 Fn(t) + F5(t) (12.46)
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where

e | R et 0] O a0l =
R [u(t) —xn(®)] i u(t) —Xm(®)]] < @
Fs = Snadult) ~ Xs(0)] (12.49

@5 = @nax andxs and eachky(t) evolve per Equation (12.7). Appropriate valuesRoandS are
determined from Equations (12.29) and (12.26) and Equaib2.29) and (12.27), respectively.

Note that the above quadrature reproduces the valués farEquation((12.23) exactly.

The discretization discussed here is illustrated by theltesf a C++ code that imposes cyclic
deformation on a four parameter Iwan system, and calcuthtesnergy dissipation once steady
state is achieved (always on the second cycle). Those ncaheailculations are compared with the
analytic expressions of Equation (12.36). In Figure 12d&the amplitude range. OFs < Fy < Fs,
integration over the responses of as few as 10 Jenkins eteif\es 10) appears to be sufficient.
Satisfactory results were achieved in all exercises usahgeg ofa = 1.2 andN = 50. This choice
is certainly overly conservative.

0
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Figure 12.16. Dissipation Prediction Comparison.

Comparison of dissipation prediction of Equation (12.3Gjhwthe
quadrature of Equations (12.46) - (12.48).

The question arises as to whether there is analytic guidambew many Jenkins elements are
necessary. The simplest criteria are:
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In a monotonic pull, the stiffness degradation fré&n down to zero at macroslip should
occur without too much discontinuity in the stiffness slope

mn?x{p(gqn)A(nn} < Kt (12.49)

The maximum term in the above sequence is that associatedheitiast increment, so the
condition is

R < Kt (12.50)

- X N
aN ) 11T aN e - 1) a4y
aN—1 qN_1  nax

For largeN, this condition becomes

(éii) ((a +2)1();()§fl_ 1)) <1 (12.51)

For ranges ojfy and considered above (@ x < 1 and 0< 3), values ofa on the order of
1.1 or 12 appear to cause Equation (12.51) to be satisfied adequately

The sliding forces associated with the weakest elementdlistide at a force well below the
smallest increment of foralFy,;, between the reversals to be captured:

24X 24X
G1" 91
R—————— < ARy 12.52
21 x min ( )
This becomes a condition that
o — X+2
R (Qﬂnaxm) /(X +2) < AFmin (12.53)

The quantity on the left goes @as X+2N explaining why Equatiori (12.53) appears to be
satisfied with fairly modest values df.

12.8 Conclusion

The four parameter model presented here appears to be eapallpturing the dissipation behav-
ior found from harmonically loaded experiments on lap jsicdonducted so far. Further, the tools
have been demonstrated to deduce the necessary model eEmsawieéh only modest effort.

Though the results presented here provide some reasontioriem, comparison with more

sophisticated experiments should be made. Among thoseimgrgs could be multi-frequency

experiments such as discussed by Segalman [72] or randamtivib experiments as performed
by Smallwood for his hysteretic model [79]. Such experirsembuld be necessary to validate this
four parameter model in ranges and types of loadings otla@rtthose used to calibrate it.

The delta function in Equation (12.21) causes the forcptdé@ment curve to have a disconti-

nuity in slope as the joint approaches macroslip. Becawse thoes not appear to be any precise

329



data on this transition, it is unclear whether the slopeafifiouity is a problem. The discontinu-
ity can be removed by replacing the delta function by an iratielg singularity at the expense of
adding one more parameter. A model of this type has been stegbjie [73].

Finally, constitutive equations of the kind developed hare “whole-joint” models. Such
models may capture the response of the joint for the classaafsl from which model parameters
were deduced, but they give little insight into the microspios taking place. Also, it is not yet
clear how to integrate joint data taken from qualitativelfedlent load types - such as tension and
moment loads - into models of this sort.

Over that longer term, more sophisticated approaches rewt\eloped that better incorporate
the distribution of tractions and displacements that dgvelynamically around the joint, and that
do not presume a specific nature to the joint loading.
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Chapter 13

Modeling of Threaded Joints using
Anisotropic Elastic Continua

Daniel J. Segalman and Michael J. Starr

13.1 Introduction

This chapter is different from the previous ones in thatstdsses a modeling effort that preceded
any significant experimental program. The theme of this weeaik to assess whether the threaded
region of a threaded connection could be approximated bypekhif equivalent anisotropic ma-
terial. Results of this modeling effort are intended to pdevguidance in simulating threaded
connections within large structures. Also this modelingrefis intended to provide guidance on
future experimental efforts on threaded connections.

Studies of threaded connections have become ubiquitoasémt technical literature due to the
advancing capabilities of FE tools. In most cases, thedgsasare validated through comparison
to the broadly accepted theoretical work of Sopwith [81] #mel experimental work of Goodier
and Hetenyi [82, 83].

Finite element models have become accepted tools for thgmdes screw threads and the
development of design codes for mechanical and structpications [84]. Implicit in the ap-
propriateness of such analyses is sufficient discretizatidghe model mesh to capture the physics
of contact between adjacent threads and to capture adégtraesingular behavior at the thread
root.

Threaded joints are not only a major component of the mechhimitegrity of the structure, but
they are also a major path for mechanical energy flow throbghsystem. From the perspective
of structural dynamics, the energy flow through a threadéd je generally a more important
consideration than mechanical energy dissipation becauséelieved that there is very little
energy dissipation in tightened threaded connectionse (88] for an example.) Very finely
meshed, quasistatic FE analysis of joints can lend insigatjoint mechanics, but fine meshes are

IMuch of this chapter has been taken from Reference [80].
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impractical for direct use in structural dynamics modelitygically requiring impractically small
time steps [86].

Rather than using finely meshed individual threads, a reseosrto replace the threaded region
with an equivalent medium that captures the manner in whatdiically indeterminate equilibrium
is achieved in the joint and quantitatively represents thamer of mechanical energy transmission
through the joint. Bretl and Cook [87] employed an axisynmiaegechnique to replace the thread
zone with a layer of elements with orthotropic propertielseif numerical results agreed well with
theoretical and experimental results, but requireé gmiori assumption of zero normal stress in
an assumed direction.

In this paper, a simple, low order modeling approach thaturap the general behavior that
would be manifest by a very finely meshed FE model of the tle@adgion is explored. The ap-
proach is similar to that of Bretl and Cook in that a narrowisagncluding opposing thread pairs
is replaced by a homogeneous, continuous material withidigs material properties. However,
rather than assuming a principal direction and normal stcesdition to employ an orthotropic
model, anisotropic elastic properties are deduced by panfg a set of FE simulations involving
homogeneous boundary conditions on a finely meshed, ckasditt thread pair unit. This sys-
tematic method of arriving at effective material propextieads to easy implementation within an
FE code. The resulting linear model provides an otherwisssimg link in the linear structural
dynamic analysis of systems connected by threaded ass=mbli

The next section explains the motivation and theoreticaelbgpment of this approach. The
remainder of this chapter illustrates the technique thinoaget of two dimensional, numerical,
bolt-pull simulations.

13.2 Theoretical Construction of Equivalent Homogeneous ld-
terial

When performing failure analysis, highly discretized gedmnes may be inescapable, although
engineering judgment may be used to concentrate inveistigan local regions of expected high
stresses and strains. Structural dynamics analysis, oothtie® hand, endeavors to capture the
manner in which the local geometries and physics yield aajlodsponse. Complex interfaces,
notably threaded connections, require significant numbeedements to capture the physics of
the mechanical interaction. The core problem of integgatinicro-mechanical analysis of thread
interactions with structural dynamics lies in the fundata#y different spatial (and temporal)
scales associated with each. This difficulty manifestdfitséwo ways.

1. The myriad tiny elements needed to capture the geometryatailed mechanics of each
thread pair define a time scale through the Courant-Frieshievy condition that is orders
of magnitude smaller than those characteristic of the dycsuwf the structure as a whole
[88]. Regardless of the number of processors availablegatialyst, time integration asso-
ciated with each joint element domain will involve time stdpat are orders of magnitude
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greater in number than dynamic analysis of similar str@gwithout joints. If this difficulty
is addressed through implicit integration, the problem ifiests itself through prohibitively
bad matrix conditioning. In this sense the problem has mootwith the size of the ele-
ments than with the number of elements.

2. Attempting to capture the full unilateral contact medharof each joint pair during the
structural dynamics analysis requires solving the couypiedlinear, contact problem across
each opposing element surface pair. Such problems areydarty difficult, because they
converge slowly and in a manner exacerbated by the numbestehfpal contact pairs in-
volved.

In the method presented here, the above difficulties areiredted by replacing the whole
threaded region by a continuous equivalent material. &igiément modeling of this equivalent
material could involve elements roughly on the scale of tredd pairs rather than on the scale
necessary to micro-model such pairs, thus obviating theiéissie raised above. If some of the
nonlinearity intrinsic to thread mechanics (such as foicél energy dissipation) are to be captured,
an appropriate, equivalent nonlinear material would basgel In that context, the nonlinearity
would be embodied in the nonlinear properties of a small remolb finite elements representing
the threaded region. For example, an anisotropic, ela#stic, constitutive model might be em-
ployed for this purpose. In this manner the second of the ellifficulties is circumvented. If,
however, the primary interest is the elastic behavior oftthheaded zone as it affects structural
dynamics, an equivalent, anisotropic, elastic mediumfiscgent. This is the approach presented
here.

The theoretical construction of equivalent material props begins with the definition of the
thread pair unit cell. Figure 13.1 shows a cell of the repredere thread pair, the associated
fine FE mesh of the cell, and an equivalent material mesh o$#énee cell. The micro-meshed
thread pair is placed in a large mesh containing an arraynfasithread pairs (Figure 13.3). The
boundaries of this large periodic mesh are then subjectedtmnberN, of different displacements
consistent with homogeneous deformations. Here, St. \fsnauinciple is assumed to assert that
the resulting deformation field in the middle thread pairmsikr to that which would result if the
thread pair were part of an infinite array of such thread pgidote that St. Venant’s principle
is applied to the far-field, elastic portion of the problenot to the inelastic near field.) From
the static solutions of each of tiN displacements, equivalent homogeneous stresses anusstrai
are deduced. The mathematics of these calculations aresdist in Appendix sections C.0.1
and C.0.2, respectively. Finally, the constitutive parsrgof an equivalent, anisotropic, elastic
material most consistent with the above ensemble of stredsstrain pairs are deduced. The
manner in which this optimization is achieved can be fountth@éAppendix section C.0.3.
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Figure 13.1.Unit Cell for a Representative Thread-Pair.

13.3 Applications in Two Dimensions

13.3.1 Constitutive Formulations

The general approach introduced in this manuscript istitatisd in this section for a problem of

two dimensional, plane elasticity (plane stress or plarerst In the most general case of elastic
anisotropy, there are 21 material parameters to identifi/jrbothe case of two dimensional plane
elasticity, there are only 3 significant stress componamds3ssignificant strain components, so the
number of necessary parameters reduces to 6:

Oxx Cl CS C5 Exx
Oxy C Co Gy Exy

Though it may be that the equivalent material response idynedhotropic, further reducing
the number of parameters, the use of general anisotropyigsarsto avoid having to identify the
principal directions.

The quasistatic, FE code JAS3D [89] was used in the calonatliscussed here, with its three
dimensional, orthotropic, material model extended to awoodate full anisotropy. The choice of
plane stress or plane strain elasticity is implementeduthinahe choice of boundary conditions
applied to surfaces normal to tlkegy plane.

Axisymmetry is accommodated at the cost of just a little mmeplexity. The thread pitch
is assumed small relative to the distance of the thread zame the axis of symmetry and the
circumferential direction is assumed to be a principal maltdirection. The equilibrium equations
involve the three stresses discussed above and the gygbsthe circumferential direction. Given
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the above assumptions, the elastic constitutive modeltiseofollowing form:

Oxx C G Gs Exx

Oy | _ | G G GCe Eyy 13.2
oy | ~ | Cs Co Ca xy (13.2)
06 Cr 9o = Ux/T

For simplicity of presentation, the rest of this article dses on problems of plane elasticity,
but the methods employed apply similarly to problems of axisetry.

13.3.2 Plane Elasticity Threaded Bolt Experiments

The ability of the equivalent material to replace threadediets was explored for the two, canon-
ical, threaded bolt configurations in Figure 13.2. The getoyren the left, Case 1, approximates
the case of a bolt in an infinite substrate. The geometry orighg Case 2, is similar to the “clas-
sical” bolt/nut geometry that is frequently reported in literature. The threads are of the buttress
variety with the assumed material properties of an alumiallay (E = 69 GPa and = 0.33) and
the boundary conditions are those of plane straip=€ 0).

Applied vertical Applied vertical
dlsp\acemem Ay =3175 pm d\splacement

No vertical
dlsp\acemem

No hcr\zontal Mo honzontal
dlsplacement dlsplacement

Mo out-of-plane No out-of-plane

displacement displacement
¥ \/ No vertical
displacement
x
z
Case 1 Case 2

Figure 13.2. Simple, Plane Strain, Bolt-Pull Test.

Configuration of test designed to exercise the equivalentemah
model. Case 1 approximates that of a bolt in a large block. eC2as
is consistent with the boundary conditions of a tighteneld/inat sys-
tem. The model is cut along its plane of symmetry.

This geometry has a large number of threads, making an ajppatinn of periodicity plausible.
Thread dimension is small compared to the distance from xiseead symmetry, supporting the
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plane strain geometric assumptions. In applying this neethounit thread pair (or unit cell) is
defined so that the identified thread region can be treated assembly of stacked, unit thread
pairs. A unit thread pair is highlighted in its test matrixdigure 13.3. The associated FE analysis
of the unit thread pair requires sufficient geometric resoiuto contain all of the pertinent features
necessary to capture the important interactions amongétb.t

Figure 13.3.Thread Test Model.

The finely meshed, thread test model for determining matergper-
ties in plane strain. The center thread pair is the cell on ahhihe
material parameters are calculated.

The thread pair is loaded by applying displacements upohdbedary surfaces of the matrix.
Figure[ 13.4 shows the four loading cases considered forlai@wng the material constants: two
extensional cases and two shear cases. For each case, tbhdd-Es employed to find the stress
and displacement fields over the whole structure from whehetquivalent (mean) homogeneous
stress and strain fields are deduced in the region of the sepiaive thread pair. Equivalent
elastic constants are then calculated in the manner disdussthe previous section, assuming
perfect adherence (welded conditions) on each screw thmeadiace.
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/\ =3.175E-03 mm

Figure 13.4.Thread Load Cases.

The four load cases employed to develop the equivalent rabaper-
rameters.
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With the equivalent elastic properties now defined, a dagteent- controlled experiment,
where the top surface of the bolt head depicted in Figure Wadisplaced upward 3.178n,
was performed for three, unique, thread representatiorsotth sets of boundary conditions. Two
of the thread representations employed identical meshgsré-13.5) and the actual screw thread
geometry, but differed in the application of the contactdiban across adjacent threads. The two
contact conditions were: frictionless across contactimgrfaces, and welded across contacting
interfaces. These two cases serve as bounds to the stifesggmse of the bolt/block system. The
number of elements employed in the mesh for these cases Wa$heRagonal elements, of which
1219 were located in the thread region. Most of the 5090 eMsnautside the thread area were
required to accommodate the transition from the very finemosgd in the threads.
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Figure 13.5.Finely Meshed Thread Model.

The finely meshed, thread model employs 6309 hex elemeihitd 240
of those elements located in the thread region.

The third thread representation was that of an equivalentjrmuous, homogeneous, anisotropic,
elastic material. Several different meshing schemes, initleasing degrees of coarseness (de-
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creasing degrees of fineness), were employed for compandgbe screw thread geometry results.
Figure 13.6 shows a mesh of intermediate coarseness, wagh754 hexagonal elements, with
230 of these elements located in the thread zone.
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Figure 13.6.Equivalent Material Model Mesh.

The coarsely meshed, equivalent material model used fopanson
in the following plots employs 1754 hex elements, with 23thade
elements located in the thread region. The thick solid lingke insets
are planes of discontinuity within the equivalent material

An important feature of this equivalent, anisotropic, miatenesh is shown in the insets of Fig-
ure 13.6. The equivalent material approximation is onlydyabere the thread loads are nominally
periodic. This assumption breaks down at the extreme baigsdaf the threaded region, and the
voids between the threads must be accommodated explititly.result is achieved by introducing
“cuts” in the mesh at physical locations of non-contact fhracede the first thread interface and
that follow the last thread interface. These cuts are indctan the insets with solid black lines.
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Discontinuous displacements are admitted across theapjispximating the free surfaces around
the voids.

For the boundary conditions of Case 1, a comparison of théigirens associated with each
of the three, described, thread representations is showineimext five figures. The mesh of
Figure 13.6 was used for the equivalent material model. reid3.7 shows the resultant vertical
reaction force for each thread representation as the tdpedidlt head is subjected to an imposed
vertical displacement. For the small displacements imghdbe response in each instance appears
linear with effective stiffness values of (AM/m) 12.17, 12.96, and 12.90 for frictionless screw
threads, welded screw threads, and the welded, equivalatdgrial model, respectively. The latter
underestimates the effective stiffness of the welded stnesads by less than 0.05%. The welded
equivalent material and the frictionless interface wereexpected to agree as well, and indeed,
these two sets of predictions differ on the order of 6%. Tliledince in effective stiffness values
for the screw thread meshes with different contact conaltegppears to be broadly consistent with
those numerical results reported by Chabaan and Jutras [84]
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Figure 13.7.Force vs Displacement Plot.

Three material cases are shown: finely meshed, welded thyéaely
meshed, frictionless threads; and coarsely meshed, wetdpdvalent
material. The displacement is measured at the nodes whereifh
placement is imposed.

These results raise the intriguing possibility of devisamgappropriate, nonlinear, constitutive
model to capture the behavior of the frictionless simulagioDevelopment of such a nonlinear
model could be the topic of future study.

340



Figure/ 13.8 shows a plot of the shear stress along the madefrthe mated screw threads
and through the middle of the equivalent material. The arigipositioned at the bottom of the
thread stack. Of course, for the meshed screw thread chses)ear stress trace necessarily passes
through an interface, whereas the equivalent materialnsimoous. The oscillatory period of the
shear stress along the screw threads corresponds to thetyeoperiod of thread pairs. The shear
stress in the equivalent material appears to match thedm&ritle shear stress at the top and bottom
of the thread stack. The shear stress also matches well meha sense along the interior thread
region. Figure 13,9 illustrates this matching more diseet the shear stress is integrated along
the length of the thread stack. Again, the origin is locatetthe bottom of the thread stack. The
equivalent material model matches well with the weldedgwdhread case. The oscillations in the
screw thread models reflect the periodic nature of the ga@discontinuities along the thread
stack.

[ Frictionless Thread Model

— - Welded Thread Model

— Welded Equivalent Model
I I

5 10 15 20 25 30 35
Location, mm

Figure 13.8.Shear Stress Comparison.

Shear stress along the mid-line of the thread region for éhmeate-
rial cases: finely meshed, welded threads; finely meshetdiofiess
threads; and coarsely meshed, welded, equivalent material
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Figure 13.9.Integrated Shear Stress Comparison.

Integrated shear stress along the mid-line of the threadbrefpr three
material cases: finely meshed, welded threads; finely meétettbn-
less threads; and coarsely meshed, welded, equivalentialate
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The next two figures show results along the mid-line of thé &lwdft, the plane of symmetry in
the model. Figure 13.10 shows the vertical displacemerdagasction of axial coordinate. Figure
13.11 shows the normal stress along the bolt shaft as a fumatiaxial coordinate. In both figures,
the origin is located at the bottom of the bolt and the veltieshed line at 31.5 mm indicates the
position of the top of the threads. In both figures there isdigoatching between the welded screw
thread case and the equivalent material model.

35
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-+ Frictionless Thread Model
— - Welded Thread Model
— Welded Equivalent Model

I I I
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Location, mm

0 I I I I

Figure 13.10.Vertical Displacement Comparison.

Vertical displacement along the symmetry plane of the boldehfor
three material cases: finely meshed, welded threads; finelshed,
frictionless threads; and coarsely meshed, welded, etenvanaterial.
The vertical dashed line corresponds to the location of thigdm of the
bolt cap.
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Figure 13.11.Normal Stress Comparison.

Normal stress along the symmetry plane of the bolt modehfeetma-
terial cases: finely meshed, welded threads; finely meshetiphless
threads; and coarsely meshed, welded, equivalent matefiaké ver-
tical dashed line corresponds to the location of the bottdrthe bolt
cap.
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Figure/ 13.12 shows a comparison of the calculated forgalatiement results between the
welded thread model and three realizations of the weldetvalgnt material with different levels
of mesh coarseness. The legend on the right hand side of tire 8gows the unit cell associated
with each line style used in the figure. From top to bottom,uhi¢ cells are: the welded thread
model, fine equivalent mesh (4330 total elements, 803 imtteat region), intermediate equivalent
mesh, and the coarse equivalent mesh (436 total elemenits t68 thread region). It is apparent
that the force vs displacement curves for all four cases aamtifatively similar. The effective
stiffnesses (19 N/m) for the four meshes are, respectively, 12.96, 12.80,2and 13.00. As
expected, the reported stiffness increase for the morselyaneshed cases is due to discretization
error. However, the stiffness difference is less than 0.%¥wvben the threaded model and the
coarsest equivalent model, despite a reduction of the nuaileements in the threaded region by
a factor of nearly 20.

Legend
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Figure 13.12.Force vs Displacement Plot.

Four different mesh cases: welded thread model; fine eqeivahate-
rial; intermediate equivalent material; and coarse equerg material.
The legend associates each case with a corresponding litieiforce
vs displacement plot.

For the boundary conditions of Case 2, the shear stressodisdn through the center of the
thread stack is shown in Figure 13.13. This shear stresshdison, as compared to that of Case
1, (Figure 13.8) suggests substantially different loadrithstions along the threads. It is often
reported as a “rule-of-thumb” that the first several threzdsscrew carry the majority of the load.
This is indeed true for the boundary conditions illustrdtadCase 2.

It was Sopwith’s [81] examination of threaded joints subjedooundary conditions similar to
those of Case 2 that led to the often repeated “rule-of-tfiuintmically, conditions for which the
rule is in error are implicitly stated and theoretically popted in that same paper. Indeed, general
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Figure 13.13.Mid-line Shear Stress Comparison.

Shear stress along the mid-line of the thread region for tvatemal
cases: finely meshed, welded threads and coarsely mesh&tkdwe

equivalent material.

applicability of the “rule-of-thumb” is clearly contradid in Figure 13.14. This figure plots the

fraction of the total load carried by the threads for the laamg conditions of Figure 13.2, where

the first thread is that closest to the bolt head. The figurgoemes the results for the welded thread
model and the welded equivalent model for both boundary itiondcases. For Case 1, the load
is distributed essentially linearly along the length of biwdt, while for Case 2, the majority of the

load is carried by the first several threads. The load digiob agrees, quantitatively, very well

with similar results reported by Chaaban and Jutras [843urfei 13.14 also includes an overlay
of Sopwith’s theoretical result. There is good agreemehtvéen Sopwith’s result and Case 2,
provided that the appropriate triangular thread parameter used within Sopwith’s derivation.
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Figure 13.14.Screw Thread Load Distribution.

Fraction of the load carried by the threads along the thregatk for
the two boundary condition cases illustrated in Figure 13.Be welded
thread model and welded equivalent model are shown for bates:
Sopwith’s derivation overlays the results for boundaryditon Case

2.
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13.4 Conclusions

A technique has been introduced in this paper for derivingv@dent material models to repre-
sent threaded connections. The illustrations have cahtameplanar elastic response of simple
geometries, but the technique can be applied in direct mrartnemore complex materials and
geometries.

It should be noted that it is not necessary to assume thatgheadent material is elastic.
In particular, by accommodating the elastic/hardenirasiit nature of the metals that make up
the thread cell, appropriate numerical experiments enmpdpincremental deformations can be
performed to deduce the parameters of an equivalent élastitening-plastic material. This in-
elastic model suggests a systematic method for predictictld failure loads of threaded joints.
Specifically, the kinematics deduced from the coarse etgnvanodel could be mapped onto the
nonlinear, finely meshed, thread pair unit cell. A quasisgmulation employing those kinematic
boundary conditions could then be compared against a setalffiailure criteria.

Three dimensional analyses similar to the two dimensiones@erformed here would be nec-
essary to accommodate large thread depth-to-radius pngbl8uch work is planned for a future
study. Because these are relatively small problems, tlee@éed three dimensional, FE analyses
and post processing of the results would not be prohibitiVee resulting axisymmetric mate-
rial would have one more material parameter than was theinake two dimensional problems
discussed above.

Additionally, if experimental data indicate that signifitgenergy dissipation can take place
in a threaded joint - FE calculations on this issue were iokhaive - dissipative models may be
employed. lwan models could be considered since they havieadiavell in other contexts ([72],
[69]). The suitability of this approach is still an open gties.

Finally, it is important to emphasize that the analysis @nésd here provides linear approxi-
mations for threaded connections. Though it has value ealistructural dynamics, it cannot be
employed in problems of load reversals sufficient to overegreload nor will it be helpful in
problems of torsion (finite rotation).
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Chapter 14

Verification Test Suite for a Candidate
Nonlinear Quasistatic Contact Code

Daniel J. Segalman and Michael J. Starr

14.1 Introduction

Even though there is no resolution on the most appropriatgdinal constitutive equations and

there is little experience using advanced frictional ciomigste models in finite element contact

analysis, one still looks to using finite element packagesbtain insight into interface mechanics.

Of course, obtaining meaningful insights is contingent lbose packages being able to provide
mathematically correct solutions.

Verification of finite element code with respect to a class @bems addresses two issues:
1)are the algorithms employed in the code capable of proditbie correct approximations to the
solutions of governing equations of that problem class?23rw fine must problem meshes be
in order for the numerical solution to approximate the esatwtion? An affirmative answer to the
first question is necessary for the finite element code to b&ilat all in investigating frictional
contact. Understanding of the second issue is necessasgtihe code effectively.

The calculations presented in this chapter were perforrsgdya version of the SIERRA [90]
code Adagio [91], developed under the Department of Ensrg@vanced Computing Initiative
(ASC)[92]. Similar calculations were performed with twonemercial code and results of those
calculations are presented in the Chapter D of the Appendix.

Included in the following is a listing of six essential cocttgproblems that any quasi-static
code must be able to solve in order to engender confidence iabitity to solve other, more
difficult, contact and sliding friction problems. Additialty, the results are included for each
problem from computational analyses run using Adagio-ctggantact in a serial environment
(runs in the massively parallel environment are still umdgr) For our purposes, the solutions to
these problems must also be captured by any candidatapdisti-interface model. This list is
not intended to be all inclusive, but should serve as a te@mta the minimum set of solvable
problems. All of the problems have either analytical or samalytical solutions for traction and
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displacement fields. Further, all of these problems arectiyreelated to the types of contact and
interface geometries and boundary conditions that are aomyn@ncountered in built-up systems.
Many of these problems are presented in Johnson’s Contactidiécs text [93].

14.2 Indentation by a Rigid, Flat Punch

Figure 14.1. Flat, Rigid Punch Pressed into an Elastic Half
Space.

14.2.1 Static, Frictionless Punch
14.2.1.1 Analytical Formulation

A rigid punch is pressed into an elastic half space ([93] @38). The punch has a flat base and
a width of 2a. Because this is a two-dimensional problem, conditiondaigstrain are assumed.
The contact is assumed frictionless, so the boundary donditaret,(x) = constant= d, and
g(x) = 0. The pressure distribution for this problem is

pX) = ———7 (14.)



The displacement outside the contact zone is given by

1/2
Uz(x):@—wln{g+<;—z—l) } (14.2)

where the displacemend; is determined with respect to an arbitrarily chosen datuhe tangen-
tial displacements under the punch are given by

Oe(x) = — L= sz)r(EH V)P sint(x/a) (14.3)

where v is Poisson’s ratio,
and E is the elastic modulus.

This problem may be difficult to solve numerically due to thr@isg singularity at the corners
of the punch, as well as the assumption of an infinite halfepac

14.2.1.2 Numerical Results

The numerical solutions show good matching to the analytesults. As expected, achieving
good numerical results required very refined meshes at thstratie location immediately adjacent
to the corner of the punch. Figure 14.2 shows the extent towthie mesh was refined.

It should also be stated that the numerical solution was tniotlg two-dimensional, but also
involved a three-dimensional geometry that was subjecigalane strain boundary conditions.
The following three figures show a comparison between thé/aee results and the numerical
solutions for the three solutions given by Equations (14(14.2), and/(14.3). The parameters
employed for the analysis age= 0.5 m, E = 3.0 x 10’ MPa, v = 0.30, andP = 1.0 N. Figure
14.3 shows excellent agreement between the analytical amemcal results.

Figures 14.4 and 14.5 show the long-range nature of the pswlotion. Both figures plot the
displacement fields for two different representations ofiafinite” half-space. A convergence
study showed that the analytical solution could be reachddam appropriately large representa-
tion of the substrate.
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rigid punch

elastic half-space

Figure 14.2.Mesh Arrangement.

Significant mesh refinement was required in the substrateadj to the
punch corners to capture the stress singularity. The lomggeanature
of the solution required a large substrate.
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Figure 14.3. Punch Pressure Profiles.

Comparison of normal pressure profiles under the punch ovieal&
width of the punch. The parameters employed for the anadysia=
0.5m, E=3.0x 10’ MPa,v = 0.30, and P= 1.0 N.
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Figure 14.4.Elastic Body Displacements.

Comparison of the lateral displacement of the elastic boagen the
punch with frictionless contact. Numerical convergencéhmanalyt-
ical solution required a half-space width much larger thé&e tpunch
width, 2a. The parameters employed for the analysis are @5 m,
E =3.0x 10" MPa,v = 0.30,and P=1.0N.
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Figure 14.5.Normal Displacement of Elastic Bodly.

Comparison of the normal displacement of the elastic bodgide of
the punch contact zone. Numerical convergence to the acallgblu-
tion required a half-space width much larger than the pundatithy 2a.
The parameters employed for the analysis are@5m, E= 3.0 x 10’
MPa,v = 0.30, and P= 1.0 N.
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14.2.2 Steady-State Sliding Punch
14.2.2.1 Analytical Formulation

If the punch from the previous problem slides over the hadicgpat a speed sufficiently low for
inertial forces to be neglected, and friction is introduog(ck) = pp(x), the traction distribution
under the punch can be given by ([93] pp. 41-42)

_ Pcosny [a+x\”
p(x) = @) <a_x) (14.4)
where the exponentsatisfies
. 2(1-v)
cotrry = —m (14.5)

where v is Poisson’s ratio,
and U is the coefficient of friction.

14.2.2.2 Numerical Results

The same mesh was used for the sliding punch problem. Fqoribidem, the Poisson’s ratio used
was, v = 0.3 and the friction coefficient wag = 0.30. Using Equation (14.5) these parameters
lead to a value off = —0.0272, so the skewing in the pressure profile is minimal. Theaiaing
parameters employed for the analysis are 0.5 m, E = 3.0 x 10’ MPa, andP = 1.0 N. Figure
14.6 shows excellent agreement between the analytical amemcal results.
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Figure 14.6.Pressure Profiles.

Comparison of normal pressure profiles under the punch ovieal&
width of the punch, fop = 0.30,v = 0.30. The other parameters em-
ployed for the analysis are 0.5m, E= 3.0 x 10’ MPa, and P= 1.0
N.
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14.3 Hertzian Contact of Spheres

14.3.1 Static Contact

14.3.1.1 Analytical Formulation

contact patch

Figure 14.7.Spheres Pressed Together.

For the classical Hertzian problem of two spheres pressgetiier with a normal force of
magnitudeN, the interfacial traction distribution is given by ([93] p§4-93)

3N 211/2
p(r) = o=, {1—(r/a)} (14.6)
The radius of the contact patch is
3NR] Y3
a= [49} (14.7)
where
1 1 1
RS R TR (14.8)
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and

1 1-v¥ 1-v3
1 14.9
B B (14.9)

NOTE: If solving a problem involving contact of identical sphe(Bs=E; =E»,v=v; = vy, 1 =
R1 = Ry), then

R=r/2

14.3.1.2 Numerical Results

The mesh and geometry used for the problem is shown in Fighi& ITThe degrees of freedom
of the numerical solution can be greatly reduced by reptathe contact of two spheres with that
of a sphere and a rigid surface. This is an equivalent eigstolution, provided that appropri-
ate scalings for moduli and effective sphere radius are eyegl. A further reduction in the size
of the problem can be achieved by further assuming that theacbpatch radius will be a small
fraction of the sphere radius. In this instance, it is appede for the sphere to be represented as
a hemisphere without the introduction of significant eriidne numerical solution has reasonable
agreement with the analytical solution with respect to tresgure distribution expressed in Equa-
tion (14.6). The parameters employed for the analysisaze5.0 x 10’ N, Ry = 1.0 m, Ry = oo,

E; = 689 x 10° MPa, E, = », andvy = v» = 0.33. Figure 14.9 shows this comparison. In the
vicinity of the contact boundary, the normal pressures atecaptured very accurately. This is to
be expected due to mesh discretization error. In genermtdhtact patch size will not be knowan
priori, so the mesh will not be compatible with the exact extent otact. Although the test suite
meshes were engineered problems, with precisely detedltoaels and meshes, minor deviations
between the solved boundary value problems and the irtrassumptions that allow analytical
solutions were significant enough to introduce small, bateptable errors. This result is illus-
trated in Figure 14.10. For this problem a different norneald was used and applied to a finely
discretized mesh. The figure shows the mesh designed toregptecisely the contact patch size
as calculated using Equation (14.7), with=5 x 10° N and all other parameters identical to those
previously listed. This theoretical contact patch is shasrihe shaded red pateh= 0.0376 m.
The numerical solution calculated a contact patch illusttavith the solid black linega = 0.0368

m, exactly one radial element short of the expected conttchpadius.
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Figure 14.8.The Two Sphere Problem.

Symmetries and small normal forces can be exploited to edie
problem degrees of freedom.
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Figure 14.9.Hertzian Contact Comparison.

The pressure distribution is adequately captured, but theact radius
is not captured exactly despite priori knowledge of the theoretical,
contact patch radius. The parameters employed for the aismbre
N=50x10P°N,R =10m, R = o, E; =689 x 10° MPa, & = o,
andvy = v, =0.33.
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Figure 14.10.Contact Patch Radius.

The numerically calculated contact patch=e0.0368m) is one radial
element short of the expected contact patch radius (@376m). The
parameters employed for the analysis areN.0 x 10’ N, R = 1.0 m,
R, = », E; =689 x 10° MPa, B = », andv; = v, = 0.33.
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14.3.2 Oscillating Tangential Forces

14.3.2.1 Analytical Formulation

HEHTY [::;_

Figure 14.11.Mindlin Problem Configuration.

Spheres pressed together, then subjected to oscillatmgetatial forces
or moments.

One of the few, nontrivial, elasticity contact problems ¥anich analytical results are known
is Mindlin’s, oscillating, elastic spheres problem (Mimdl1949; Mindlin et al., 1962; Johnson,
1955). The geometry for the problem, illustrated in Figudell, involves two elastic spheres
pressed together with a normal foré, An oscillating tangential force of magnitudeacts in the
plane of contact.

As predicted in Hertz’s solution, an ellipsoidal normakss distribution will develop. Because
the shear stress must satisfy< pp in the contact patch, whene is the friction coefficient, slip
will develop in an outer annulus of the contact patch. Thatneg displacement of the two spheres,
at distances far removed from the contact plane is

5= % [1— (g) 1 (14.10)
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where v is Poisson’s ratio,
G is the shear modulus,
and ais the contact radius.

For the case of partial slip in the contact patch, the radiuseostuck regiong, can be related
to the contact radius, through ([93] pp. 224-231)

T 13
c=a {1— “—N} (14.11)

The tangential components of traction over the contactfaxte are

D=

211/2
t = oHN [l_< ) } - (14.12)

21132 [1_ )2}1/2 [1_(£)2]1/2 e

(o}

—~
=
Sl

The monotonic loading, or backbone curve (displacement fametion of lateral force), is
given by

_3uN (2—v1 2-W T \?%3
o(T) = 16a< Gy + G ){1— <1_u—N) (14.13)

If the spheres are now subjected to an oscillating tangdotige with amplitudeT , the energy
dissipation per cycle is given by (this equation is giver@8][p. 227 incorrectly, the correct form
is shown below)

N2 (2—v; 2—v, T\
AW — 1-(1-—
10a < G, G LN

A ~ ( 2/3
—%{1+(1—%N) }] (14.14)

For small applied tangential loads, this equation can beceqpated as

-'|=3 2—V1 2—V2
AW = 14.15
36auN< G | G ) (14.19)
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14.3.2.2 Numerical Results

Figure 14.12.Mindlin Problem Mesh.

Geometry and mesh used to solve Mindlin’s, oscillatingyéantial load
problem.

A good deal of time and computing effort has been expendedherindlin problem. The
reality is that the match between the analytical solutiod #re numerical results is poor. After
a thorough analysis of both the analytics and the numericsas determined that the relative
strength of the assumptions employed to achieve an arallgitution is the cause of the devi-
ations seen in the comparisons between solutions. The fabedifference lies in Mindlin’s
assumption that the sphere could be approximated as a jplaséll enough normal forces. With
that, the comparisons between the solutions are shown beffoyure/ 14.12 shows the geome-
try and mesh used for the numerical calculations. The paesiemployed for the analysis are
N=50x10FP N, R =R, =1.0m,E; = E; = 689 x 10° MPa, v; = v, = 0.33, andu = 0.3.
The simulation was performed under displacement contrb&res the displacement was applied
linearly to a displacement level & = 1.2 x 103 m. This displacement is approximately 20%
greater than the macroslip displacement calculated usipgtion (14.10). Again, for the mag-
nitude of normal loads applied, the spheres were repras@stdiemispheres, and the boundary
conditions were applied at the sphere mid-plane. Thisrireat is an adequate representation as
the mid-plane is sufficiently removed from the contact pdbet there is minimal impact on the
solution.

Figure! 14.13 shows the systematic difference between thytasal and numerical results
which was described previously. The analytical expresgimtted is that given by Equation
(14.13). It should be noted that because the Mindlin proltambe fit within the Masing model
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framework, we are guaranteed that the numerically caledldissipation will also be different
from the analytical expressions (either Equation (14.14(14.15)). This difference is true be-
cause the backbone curve as described in Equation (14.a@)letely characterizes the dissipation
characteristics of a particular model.

X 105

16

121 O b

10 y

Interfacial shear
[00]
@)

ol — analytical
O numerical

1

0.2 0.4 0.6 0.8 1 1.2
Lateral displacement X107

Figure 14.13.Mindlin Backbone Curve Comparison.

Comparison of the backbone curves for Mindlin’s probleme thrve
illustrates only the monotonic initial loading of the spbsr The pa-
rameters employed for the analysis areN5.0 x 10° N, Ry = R, = 1.0
m, B = E; = 68.9 x 10° MPa, v; = v, = 0.33, andu =0.3.

Other important measures of comparison can be made betWweamalytical expressions and
the numerical calculations. These comparisons are showheifollowing figures. Figure 14.14
shows the evolution of the stick/slip boundary as a functibthe far-field displacement of the
spheres. Some of the deviation can be explained by the tiiren of the contact interface,
which only allows discrete nodes to either stick or slip, papased to a continuum of allowed
interface kinematics. This error will be particularly arfipld when the contact patch is small, and
consequently it includes only a small number of contact sode
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Figure 14.14.Mindlin Stick/Slip Front.

Comparison of the stick/slip front for Mindlin’s problemhd& parame-
ters employed for the analysis areN5.0 x 10° N, Ry = R, = 1.0 m,
Eq = E» =689 x 10° MPa, vy = v = 0.33, andt = 0.3.
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Figure 14.15 shows the results of integrating the tangdmdietions given in Equation (14.12).
Again, these results are strongly dependent on the accuofdbg slip front calculation as charac-
terized in the previous figure.
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Figure 14.15.Shear Force in the Contact Patch.

Comparison of the amount of shear carried by both the stick glip
regions within the contact patch. The parameters employetthé anal-
ysisare N=5.0x 1° N, Ry =R, =1.0m, E, = E, = 689 x 10° MPa,
Vi =V, =0.33 andu =0.3.

The final comparisons that can be made are secondary in natitreteresting nonetheless.
Johnson [94] extended Mindlin’s force-displacement esgi@n (Equation (14.10)) to determine
the tangential displacements that occur in the slip annw\ghin the slip zonegc < r < a, the
following relative displacements occur
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v { (1— gsin—19) + <1— 252) 2¢ <1— C—i) } 00529] (14.16)
7T r r tr r
C

c?\ 2¢ c? .
+ <1— Zﬁ) r (1— r_Z) } sin20 (14.17)

Figure 14.16 shows the comparison between the Johnsonssiqme (Equations (14.16) and
(14.17)) at the onset of macroslip £ a). The results are reasonable, but yet again may suffer
from the discretization issues described earlier in the feégure 14.17 shows the comparison for
the slip direction around the circumference of slip, and alsthe onset of macroslip.
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Figure 14.16.Relative Slip Between Spheres.

Comparison of the relative slip between spheres in the sliuéus at
the onset of macroslip€ a. The parameters employed for the analysis
are N=50x10° N, R =R, =10m, B = E; = 689 x 10° MPa,

v = Vo =0.33 andu =0.3.
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Figure 14.17.Relative Slip on Contact Patch Circumference.

Comparison of the slip between spheres around the circiemdéer of
the slip zone at the onset of macroslip-@. The parameters employed
for the analysis are N=5.0x 1° N, RR =R, =10m, L =E» =
68.9 x 10° MPa, v; = v» = 0.33, andu = 0.3.
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14.3.3 Oscillating Torsional Forces
14.3.3.1 Analytical Formulation

A corollary problem to Mindlin’s, oscillating, elastic spfres problem is known as Lubkin’s tor-
sional sphere problem (Lubkin, 1951, Deresiewicz, 1954 geometry for the problem is identi-
cal to that of Mindlin’s, but has an oscillating torsionalgde of magnitudé/ acting in the plane
of contact.

For the case of partial slip in the contact patch, the radiubeostuck regiong, can be deter-
mined through ([93] pp. 231-233)

3 1 1 ap
a1 (e/a7) (g4 )P0 =8 (14.18)

where D(k) = K(k) —E(k),
k= (1—c?/a?)¥/?,
and B isthe relative rotation of the spheres.

For the Lubkin problem, there is no closed-form solutiontfae backbone curve (torque as a
function of angular twist), but a reasonable approximaison

2G1G, a2B )\ /16)2
(_(Gl-l-Gz)WTN) (§> ” (1449

If the spheres are now subjected to an oscillating torsiomaent with amplitudé, the
energy dissipation per cycle is given by

3rmuNa
T(B)= 56 ll—exp

22N2 /1 1\ 8 3 M\
AW = —+— ) |=<1-(1-=——
a (Gl+Gz) 9{ ( 2uNa>
A~ 1/2
M 3 M
_—uNa{1+ (1_§—uNa) }] (14.20)
For small applied moments, the energy dissipation can beappated as
= M 1 + 1 (14.21)
16a%uUN \G; G '
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14.3.3.2 Numerical Results

Figure 14.18 shows the geometry and mesh used for the nuaheaiculations. The parameters
employed for the analysis ad=50x10° N, Ry = R, = 1.0 m, E; = E, = 68.9 x 10° MPa,

v1 = Vp = 0.33, andu = 0.3. Again, for the magnitude of normal loads applied, the sphevere
represented as hemispheres, and the boundary conditiorsapplied at the sphere mid-plane.
This is an adequate representation because the mid-plan#igently removed from the contact
patch that there is minimal impact on the solution. The nucaésimulation was performed under
angular rotation control, where the angular rotation wasliag linearly to a level of3 = 0.05
radians. This displacement is approximately 20% great@n the macroslip, angular rotation
calculated using Equation (14.18).

Figure 14.18.Lubkin Problem Configuration.

Geometry and mesh used to solve Lubkin’s oscillating toeditoad
problem.

Figure 14.19 shows the comparison between the semi-acallgtipression and the numerical
results. The agreement is very good in this boundary valolel@m because it does not suffer from
the same set of restrictive assumptions. The solutionsiggdwby Deresiewicz are a significant
improvement over the expansion solutions provided by Liujdind are consistent with the manner
in which the boundary conditions are applied in the numésgohutions.

Figure 14.20 shows the evolution of stick/slip front. Thesdimitation that applied to Mindlin
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Figure 14.19.Lubkin Problem Backbone Curve Comparison.

Comparison of the backbone curves for Lubkin’s problem. duree

illustrates only the monotonic initial loading of the spbasr The pa-
rameters employed for the analysis areN5.0 x 10° N, Ry = R, = 1.0

m, B = E; = 68.9 x 10° MPa, v = v, = 0.33, andt = 0.3.
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applies here as well; discretization of the contact patechlead to apparently significant errors,
especially when the number of nodes in contact is small.
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Figure 14.20.Lubkin Stick/Slip Front Comparison.

The parameters employed for the analysis are-[8.0 x 10° N, R, =
R,=10m, B = E,=689x 10° MPa, v, = v, = 0.33, andu =0.3.
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14.4 Clamped 2D Strip

14.4.1 Analytical Formulation

A simple, one-dimensional model can demonstrate Goodnfiad]shypothesis that other systems
involving slip cause energy dissipation to increase propoately to the force amplitude, F, to the
third power.

Figure 14.21.Clamped 2D Strip Configuration.

Elastic strip clamped with uniform normal traction and sedtied to
oscillating applied force.

The strip in Figure 14.21 is assumed to be elastic, and thmaldraction applied by the clamps
is assumed uniform. When the applied force is maximum in yloge¢ the region of slip is also at
its maximum. Within the region of slip, the equilibrium edoa is

d?u

EALo = 24N (14.22)

where E is Young’s modulus,
A'is cross sectional area of the strip,
N is the uniform normal traction,
and U is the coefficient of friction. (Poisson contraction is iged).

The energy over a full cycle can be calculated as

1R

= SEANN (14.23)

AD
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14.4.2 Numerical Results

Figure 14.22 shows the mesh refinement that was requiregtareathe slip front and adequately
capture the energy dissipation in the slip zone. Figure3 4tbws the evolution of the energy
dissipation over time. For this numerical simulation, thesgc strip was subjected to a uniformly
imposed deformatiord, = 0.001 m. Based on this deformation, and the application ofgofdirain
boundary conditions, the resultant, uniform, normal icacican be calculated d8 = 10.5263
N/m. The remaining parameters of the analysisjare 0.1, E = 10000 PaA = 9.0 x 10 ° m?,
andFy = 0.09 N. The numerically calculated energy dissipation petegysD = 2.503x 10~4
Joule per cycle, compares favorably to that calculatedgusia the closed-form expression given
in Equation(14.23)AD = 2.565x 104,

P

Figure 14.22.Clamped Strip Mesh.

Geometry and mesh used to solve the two-dimensional clastgpd
problem.
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Figure 14.23.Energy Dissipation Prediction.

Energy dissipation prediction from numerical calculatsohe dissipa-
tion change over one cycle is illustrated. The elastic strgs subjected
to a uniformly imposed deformatiody, = 0.001m. The remaining pa-
rameters of the analysis age= 0.1, E = 10000Pa, A= 9.0 x 10 °m?,
and lp = 0.09N.
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Chapter 15

A Parameter Study on the Qualitative
Dissipation Response of the Simple Flat Lap
Joint

Michael J. Starr

15.1 Introduction

Over the course of the five year testing history, a wealth peermental data has been collected on
a variety of joint geometries. This section will focus on asd of specimens that has been termed
simple lap joints. The reason for considering these joisimple” is because they are idealized
and do not make use of bolts to put the contact interface irdtai@ of pre-stress. In fact, the
loading of the lap joint is accomplished through a fixturet #yaproximates line loading. These
lap joints come in three configurations: flat lap joint, radjaint, and stepped joint. The bulk of
the data has been collected for the flat lap joint, and, thezeft will serve as the geometry for
comparison.

15.2 Parameter Study

A series of parameter studies was performed to uncovergrenehergy dissipation per cycle, and
to establish general dependencies of the power-law dissipparameters on modifications to the
boundary conditions. Figure 15.1 shows the free-body diagof the axially loaded portion of
the simple lap joint. Due to deformations and the asymmeftipaxding, the actual equilibrium
state during a loading sequence is somewhat more comglittzda the free body diagram implies.
However, deviations from the figure are generally minor.

The following sections each highlight a unique parametedysthat was performed to better
understand dissipation dependencies and perhaps developeacomplete understanding of the
relative importance of correctly modeling boundary coiodis and material parameters. Although
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Figure 15.1.Free Body Diagram of the Simple Lap Joint.

there are systematic differences between experimentatsesd numerical predictions under an
assumption of Coulomb friction, a simple Coulomb fricti@onstitutive model was employed in
all of the parameter studies. These studies quantified thendiencies of dissipation per cycle
calculations on the following parameters: clamping loadtibn coefficient, lateral kinematic
constraints, Poisson’s ratio, and load coupling on the drese

15.2.1 Dependence on Clamping Load

Experiments on the simple lap joint are typically perfornmakr a relatively limited range of
clamping loads (less than one decade) in a range that isstensiwith loads seen in service
hardware. For the simple, flat lap joint, data were takenlnnping loads (designatédiin Figure
15.1) of N = 800, 1200, and 1600 Ib. Steady state data were collectedealefrels of axially
applied, force magnitudes (| = 60, 120, 180, 240, and 320 Ib. These boundary conditions were
reproduced in numerical predictions, and the results are/slin Figure 15.2.

Clockwise from the upper left corner, the plots show: theesxpental measurements of en-
ergy dissipation per cycle for the three clamping load leveumerical predictions fqu = 0.3,
numerical predictions gt = 0.7, and numerical predictionsat= 0.5. The numerical predictions
were performed at the three discrete levels of clampingfoefiiction coefficients consistent with
measured values for steel-on-steel contact.

Energy dissipation data of this type are typically preseémte a log-log scale. That format is
repeated here. The value of this form of representatioraistiie data appear linear as a function
of the logarithm of applied force. It is convenient, thenptake comparisons with respect to linear
curve fits of the data, where the slope of the curve fit is th@egpt of a power-law representation
of the data.

It is clear from Figure 15.2, that some qualitative trendssexperimentally are captured in the
numerical predictions. Namely, the arrangement of theggneiissipation predictions matches that
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Figure 15.2.Dissipation per Cycle, Normal Clamping Loads.

The upper left figure shows experimental measurementse wiel re-
maining figures are numerical predictions for various rett values
of friction coefficient.
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of the experiment. The larger the normal clamping load, theller the dissipation per cycle at a
given axial load level. A feature that is not captured, hosveis the change in dissipation slope.
Experimentally, the dissipation slope decreases withessing clamping load. The numerical
predictions appear to exhibit precisely the opposite &f ti@havior.
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15.2.2 Dependence on Friction Coefficient

The data presented in Figure 15.2 can be re-framed to maad\cidustrate the dependence of
dissipation behavior on the friction coefficient, as is shaw Figure 15.3. Clockwise from the
upper left corner, the plots show: the experimental measengs of energy dissipation per cycle
for the three clamping load levels, and numerical predngtifor N = 800 Ib, N = 1600 Ib, and

N = 1200 Ib. The numerical predictions were performed at theeldiscrete levels of friction
coefficients consistent with measured values for steedteal contact. Experimental results at
each respective clamping load are superposed on the nainamédictions.

The figures show the general trend that the smaller thedrnaoefficient, the larger the energy
dissipation per cycle at a given axial load level. This is ggitally acceptable result, since the
resistance to sliding decreases for lower friction coedfits. The direct comparisons to experi-
mental measurements show that the predictions are quasiyareasonable, but also highlight a
fundamental inadequacy of Coulomb friction, because tkdipted dissipation slopes are signifi-
cantly higher than experiment. This is not simply a mattermafonverged meshes or inappropriate
time stepping, as evidenced by numerous such convergarmtiest
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Figure 15.3. Dissipation per Cycle for Various Friction Coeffi-
cients.

The upper left figure shows experimental measurementse wiel re-
maining figures are numerical predictions at each of thee¢hdiscrete,
normal, clamping loads. Experimental results at each reipe clamp-
ing load are superposed on the numerical predictions.
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15.2.3 Dependence on Lateral Constraints

The fixture that holds the simple lap joint is known as the BMidl & typically not included in
FE analysis. Consequently, we can question whether thedaoyrconditions at the attachment
points are adequately modeled. The loaded end of the flablapmost closely resembles a can-
tilevered connection, but because the fixturing is not pésfeigid, the true boundary constraints
lie somewhere between simply supported and cantilevenggirér15.4 shows the dissipation re-
sponse under consideration of these two boundary condikitemes. It is interesting to note that
although the boundary conditions will lead to significardifferent measures of joint stiffness, the
dissipation characteristics are essentially the same.

N = 1200 Ib, u = 0.50
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107 10°
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Figure 15.4.Dissipation Prediction Comparisons.

Dissipation results for the two boundary condition extremé& uncon-
strained, y # U, # 0 and constrained, y= U, = 0.
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15.2.4 Dependence on Poisson’s Ratio

Figure 15.5 shows the dissipation response of the simpl@iapfor two different values of Pois-
son’s ratio. The figure shows that the dissipation respanssdentially independent of Poisson’s
ratio in the regime of realistic values for steel.
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Figure 15.5. Dissipation Predictions for Variable Poisson’s Ra-
tio.

Dissipation results for two unique Poisson’s values; 0.26 andv =
0.29.
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15.2.5 Dependence on End Shear

As stated previously, the true state of boundary conditmmshe loaded end of the lap joint as-
sembly is not perfectly known. Therefore, it has been pagtdl that the end loading may not be
purely axial. The sensitivity of the predicted dissipatteaponse is explored in the following two
sections. In the first, the end shear coupled with the ax& Ie a constant fraction of the applied
clamping load. In the second section, two different, timpat&lent schemes are applied, both of
which are in phase with the applied axial load.

15.2.5.1 Constant End Shear

In this section, it is postulated that the presence of a lapdccentricity has induced a coupled
loading on the end of the lap joint assembly. Figure 15.6 st nature of the loading boundary
conditions that have been applied numerically. These tiomdi pertain while an oscillatory axial
load,F(t), is also applied at the free surface. It is important to nlo&t there is no direct evidence
in our experimental work that such a loading actually occurs

l N(1 +a)
V=aN
F
N

Figure 15.6. Free Body Diagram, Loaded Portion of the Simple
Lap Joint.

A constant end shear has been applied to accommodate thenpres
of a loading eccentricity. The applied shear has amplitadd, where
—-0.10< a < 0.10.

Figure 15.7 shows the results of dissipation behaviors avange of scalings of the coupled
shear. In general, the predictions indicate that the amaofutissipation decreases with increasing
shear load for a given axial load. The power-law dissipasiopes increase from 0% shear up to
2% shear. At some point between 2% and 5% shear, a local maxisweached and the predicted
power-law slope decreases with increasing amount of cdwgiear.
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Figure 15.7.Dissipation Predictions With Coupled Shear.

Dissipation response of the simple lap joint for varioustrans of cou-
pled shear on the axially loaded end.
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As demonstrated in Figure 15.8, reversing the sign of theleauend shear has essentially
no effect on the predicted dissipation value. This holde far all coupled shear scaling levels
explored.
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Figure 15.8.Dependence of Dissipation Predictions on Shear.

The dissipation response is essentially independent afiitbetion of
the applied shear load. The dissipationis shown to be vilgudentical
forV=+40.1N.
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15.2.5.2 Time Varying End Shear

Here we consider an oscillatory axial load accompanied byngrhase oscillatory shear load
orthogonal to the plane of the interface (See Figure 15.9).

V=BNf(t) or V=pF

] F = F f(t)

N-V

Figure 15.9. Shear Loaded Free Body Diagram of the Simple
Lap Joint.

A time varying end shear has been applied to accommodateréise p
ence of a loading eccentricity. The shear has been appliachranner

that is in phase with the applied axial load F(t), and with dityale
BN f(t) or BF, where0.0 < 3 < 0.10.

The results of application of the time varying shear with &mge BN f(t) are shown in Figure
15.10. Increasing the level of the scaling facfrauses greater dissipation for a given applied
load. The effect is dramatic as the ratio of the magnitudehefdscillatory shear load to the
magnitude of the oscillatory normal load increases - resylh orders-of-magnitude increases in
dissipation but a decrease in the slope of the power-laioakhip.
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Figure 15.10.Coupled Shear Dissipation Predictions.

Time varying shear has been applied in a manner that is in @éath
the applied axial load Ft), and with amplitudg8N f(t), where0.0 <
B < 0.10.
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The results of application of the time varying shear with &tage BF are shown in Figure
15.11. Increasing the level of the scaling facfbrauses greater dissipation for a given applied
load, but there is very little change in power-law slope.
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Figure 15.11.Coupled Shear Dissipation Predictions.

Time varying shear has been applied in a manner that is in @éath
the applied axial load Ft), and with amplitudgBF, where0.0 < 8 <
0.10.
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15.3 Extrapolation of Joint Parameters

Here the data gathered from the parameter study is usedddlselow to calculate joint param-
eters for structural dynamics analysis.

Four parameters are employed to populate the lwan modelethsts within the structural
dynamics code SALINAS. These parameters are: power-lasypdison exponentCy, power-law
dissipation coefficienty, joint stiffness K3, and macroslip forces.

15.3.1 Power-Law Dissipation Parameters €y,a

The two parameters associated with fitting the energy diisip per cycle predictions with a
power-law are easily derived. A common approach to deritliege parameters is to use a straight
line least squares fit to the logarithm of dissipation petews a function of the logarithm of the
applied lateral load. The dissipation per cycle for a patéicflat lap joint configuration will be of
the form

P = CoF® (15.1)

where Z is the energy dissipation per cycle,

Co is a scaling coefficient,

F is the amplitude of the lateral load across the lap jointrfatse,
and a is the power-law exponent.

15.3.2 Joint StiffnessK;

Unlike with the experimental data, we need not concern dwgsevith the attachment compliances
of experimental fixturing. However, a set of reference satiadhs must be run to deduce the
separate contributions to the overall structural compkafiom the bulk material and the joint.
The joint stiffnessK; can be deduced from the following expression

-1
11 } (15.2)

KJ {KS Kref

where Kgis the calculated tangent stiffness of the jointed speciaten
load level sufficiently removed from the macroslip forcedev

and Kret is the calculated tangent stiffness for a specimen where the
lap joint has been made effectively monolithic, either byrgimey
the opposing sides of the contact patch or mathematicallginge
the interface using tied contact across the interface.
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15.3.3 Macroslip ForceFs

This parameter is the easiest to calculate because the iwal®odeling enforces a Coulomb
friction model. So, the macroslip force is typically givey b

Fs= uN (15.3)

where U is the coefficient of friction used in the numerical analysis
and N is the normal force across the contact patch.

For the cases where no shear loads are coupled with thel latdait is reasonable to assume
that the macroslip force will essentially remain constamirty a loading simulation despite the
evolution of the normal force due to induced bending. Tyibycthe normal force will change by
a very small fraction of the initial clamping preload. It is@aa very simple matter to calculate the
macroslip load for the cases of coupled shear and laterdiriga. The free body diagrams shown
previously can be used to solve directly for macroslip |daat. the case of constant coupled shear
loading (Figure 15.6), the clamping load was modified frormimal so that macroslip occurs at

_ HNc

Fo—
ST 1+a

(15.4)

where Nc is the applied clamping load.

For time-varying coupled shear loadings shown in Figur® fer which the shear loading is
a function of the clamping load, macroslip occurs at

Fs=H(1-B)Nc (15.5)

and for the case where the shear loading is a function of thkealdateral load, macroslip occurs
at

:IJNC
1+upB

Fs (15.6)

15.4 Extraction of Iwan Parameters: An Example

In this section, a simple geometry will be used to deducewaa Iparameters that would be input
into a SALINAS structural dynamics analysis. The model @mois known as the simple, flat lap
joint, and was introduced previously in this chapter (showexperimental fixturing in Figure

15.12). It will be assumed that there is no experimentalthgaed data. Further, the example will
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demonstrate the mechanics of the process and will not usexg®rimental source to inform the
selection of input parameters.

Figure 15.12.Simple Flat Lap Joint Shown in the BMD.
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15.4.1 Calculating Reference Stiffnes$ es

The boundary conditions on the loaded end of the experirhgmaimens are not precisely known.
A reasonable assumption is that the boundary conditions@rewhere “between” simply sup-
ported and cantilevered. Based on the fixturing, an assomgficantilevered boundary conditions
seems the most appropriate, although both instances angiree@& With the coordinate system
shown in Figure 15.13, the displacement conditions at taddd end can be expressed as: simply
supported impliesy # u, # 0 and cantilevered boundary conditions impligs= u, = 0.

Figure 15.13.Numerical Model Configuration.

Schematic illustrating the boundary conditions and cooadé of the
numerical approximation to experiment.

Calculations of reference stiffness employed a tied cafdaculation on the interface. This is
equivalent to enforcing zero relative displacements oofdhe slave surface nodes that were orig-
inally in contact with the master surface before the appibbceof external loadings and displace-
ments. For both displacement boundary condition types,atooic-pull numerical experiments
were performed for each of the three possible clamping 1¢8@3, 1200, and 1600 Ib.). The max-
imum load applied in each instance was simply the load athvimacroslip would have occurred
on a jointed specimen with a friction coefficientf= 0.5. (This friction coefficient will be used
for all of the jointed-specimen numerical simulations irstbection.) The reference stiffness was
then calculated as the tangent stiffness over the final hggidicrement in the monotonic loading
sequence. The results are summarized in Table 15.1.

15.4.2 Calculating Structural Stiffness Kg

The next step is to calculate the structural stiffness byleynpg whichever interfacial constitu-
tive model is appropriate for the material system. For tingpge, flat lap joint in this example,
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Table 15.1.Joint Reference Stiffnesk;er

N(Ib) Kret (Ib/in) N(Ib) Kres (Ib/in)

800 2742 x 16 800 3876 x 16
1200 2740 x 16 1200 3876 x 1
1600 2738 x 1% 1600 3875 x 1

Coulomb friction is adequate for steel-on-steel contaam@notonic loading scheme may also be
employed for this calculation. The loading should be takealevel that is sufficiently far removed
from macroslip. For example, the maximum load might be tolérel at which the induced end
displacement matches the level achieved in the refereiféeest calculation. This load should
be sufficiently less than macroslip under an assumptiontb@astructural configuration is more
compliant than the reference configuration.

The structural configuration was simulated using a Coulondidn value ofu = 0.5. The
results for both boundary condition extremes are given bielfa5.2.

Table 15.2.Joint Structural Stiffnesss

N(Ib) Ks (Ib/in) N(Ib) Ks (Ib/in)
800 2243 x 16 800 2969 x 16

1200 2482 x 1 1200 3164 x 1¢

1600 2647 x 1¢ 1600 3286 x 1

15.4.3 Calculating Effective Stiffnesskj;

Now the effective joint stiffness can be calculated in aigtrdiorward manner by employing Equa-
tion (15.2). The results for both boundary condition extesrare given in Table 15.3.
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Table 15.3.Effective Joint StiffnessK;

N(Ib) Ks (Ib/in) N(Ib) Ks (Ib/in)
800 1232 x 10 800 1269 x 10

1200 2636 x 10 1200 1722 x 10

1600 7964 x 10 1600 2162 x 10

15.4.4 Calculating Power-Law Dissipation ParametersCo,a

The next set of parameters can be calculated by performingsistatic, cyclic loading sequence.
The dissipation per cycle vs lateral force data are fit to agvdaw of the form first shown in

Equation|(15.1). The power-law parameters are indeperaféhe nature of the boundary condi-
tion constraints. The data sets from which the parameterexracted are shown in Figure 15.14,

and the parameters are given in Table 15.4.

Table 15.4.Power-Law Parameter€y,a

N(Ib) Co a

800 2305x 1010 2.9032
1200 1200x 10710 2.9560
1600 5200x 1011 3.0633
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Figure 15.14.Dissipation Predictions.

Power-law dissipation curves for all combinations of F anevith u =
0.5.
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15.4.5 Calculating the Break Free Forcels

It is a simple matter to calculate the break-free force u§lnglomb friction as the interface con-
stitutive model. The simple relationship was stated in Equa(15.3), and the results for this
example problem are shown in Table 15.5.

Table 15.5.Break Free Forcehs

N(Ib) Fs(Ib)
800 400
1200 600
1600 800

15.4.6 Deducing lwan Parameters from Calculated Data

Now, with all of the values calculated in the previous sevggations, the Iwan parameters can be
deduced from Dan Segalman’s optimization routine. Theltesfithe optimization are shown in

Table 15.6.
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Table 15.6. lwan Parameters Deduced from Numerical Experi-

ments
Uy 7 Uz # 0
N(Ib) X OMAX R S
800 -0.7864 2473x10° 6542x10 6.388x1C¢
1200 -0.9993 ®638x10° 1.140x10 1.123x10
160 — — — —
Uy - UZ - O
N(lb) X PmAX R S
800 -0.8162 31533x10° 5149x10 6.466x 16
1200 -0.9143 4510x10° 2021x10 6.613x10
1600 -0.9276 ®&552x10° 2078x10 1.449x10

aCould not converge due @ > 3.0

The deduced parameters can now be input into a joint definitithin a SALINAS input deck.

BLOCK 1 // Joint # 1

/| RBAR
nonl i near = yes
coordinate 4

e6
e6
e9

j oi nt 2G

kx = iwan 1

ky = iwan 1

kz = elastic 1.8e6

krx = elastic 1.

kry = elastic 1.

krz = elastic 1.
END
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PROPERTY 1 // Sanple Al Mean
chi =-0.7864
phi _max = 3.2473e-5

R = 6.542e+7
S = 6.388e+6
END
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Chapter 16

Modeling Joint Variability Via Direct and
Indirect Numerical Methods

Michael J. Starr

16.1 Introduction

Proponents of micromodeling often make the argument thalgimicromeshing a contact inter-
face and applying a Coulomb friction- type constitutive raloid the best approach to modeling
joints. This philosophy, however, neglects very importssties of scale: some numerical and
some physical. The physical issues are addressed herekribven that on some length scale
all apparently smooth surfaces will exhibit roughness afissort. The source of the roughness
may be intrinsic to the nature of atomic packing, introdudadng fabrication or machining, or
be the result of loading history and wear. The impact of serfeatures is not well understood as
it relates to such global measures as energy dissipatiocypks. An approach to quantifying the
impact of surface roughness on the variability seen expariaily can be explored through direct
modeling of surface features. A road map for such a studytised here in the next section.

An alternative approach, indirect modeling, is describedhie third section. The basis for
approaches of this nature are the fundamental understatitin there exists a constitutive rela-
tionship associated with a length scale. The intrinsic mggion is then that all of the geometric
details of smaller length scales are appropriately cagturéhe constitutive model, and therefore,
under some approaches, a perfect, conformal mesh could fpleysd in an analysis. (Recognize
that this is exactly the argument made for the applicatioGadlomb friction. Coulomb friction
is a empiricism, employed for it's simplicity and conventenwhich results from more complex
physical phenomena on smaller length scales.)

All of the approaches in this section will be motivated thybwexplorations involving the sim-
ple flat lap joint.
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T

Figure 16.1.Simple Flat Lap Joint Configuration.

N

The simple flat lap joint will be the focus of the direct andiradt mod-
eling studies.

16.2 Direct Modeling of Surface Characteristics

In this section two direct modeling approaches will be exgdio The first approach employs data
gathered from imaging the height profiles of the mating ccinsairfaces. The second approach
employs data gathered from the contact surfaces of an aks@ijpbt pair. These data have the
benefit of also capturing features of misfit and misalignmérere the first approach cannot. How-
ever, a considerable effort must be expended to reduce theala usable form for FE analysis.

16.2.1 Surface Perturbations From Surface Imaging

The data are presented on the following pages for the alaisgecimens. Figure 16.2 shows the
reference local coordinate system for the scans.

16.2.1.1 Profilometry of Joint Interfaces

There are several techniques that could be employed to meetse mating surface profiles of
the flat lap specimens. These techniques include, but ademitgd to, atomic force microscopy,
(AFM), interferometry, and confocal, laser scanning méocapy. Due to the contact patch size and
the spatial resolution required, a confocal, laser scanmiitroscope was used to gather surface
profile data from a collection of flat lap joint specimens. Hpecimens can be broken into two
distinct groups. The first group consists of three lap bostodesignated specimens A, B, and C,
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Figure 16.2.Contact Interface Local Coordinate System.

and two lap tops, designated specimens 1 and 2. All of thamspes in this group were machined
from AISI 4340 steel with a surface finish specified agB8. Two dimensional projections of the
surface heights of these specimens are shown in the foltpfignres. Height data were sampled
every 50um in the plane of contact, with a vertical resolution on thdesrof 10 nm. Figures
116.3 through 16.5, below, show the height profiles measunetth® bottom specimens A, B, and
C. Figures 16.6 and 16.7, below, show the height profiles oredsn the top specimens 1 and 2.
(All of the dimensions in the figures have been convertedc¢bes.)
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Figure 16.3. Bottom Lap Joint Specimen A.
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Figure 16.4.Bottom Lap Joint Specimen B.
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Figure 16.5. Bottom Lap Joint Specimen C.
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Figure 16.6.Top Lap Joint Specimen 1.
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Figure 16.7. Top Lap Joint Specimen 2.

The second group comprises 3 sets of top and bottom specimAga, each specimen was
machined from AISI 4340 steel, however, each set had a diffesurface roughness prescribed on
the contact patch. Each specimen was machined in a traaliimenner, likely with an end milling
process. Following this, electrical discharge machinlBDM) was used to impart an “isotropic”
surface finish on the contact patch. The surface roughnegsesbroadly defined as “rough”,
“medium”, and “fine”. Numerical processing of the confocadér scans yielded the RMS values
for each specimen shown in Table 16.1.

Table 16.1.RMS Surface Roughness

Specimen Type Bottom Top

Fine 785 uin 722 uin
Medium 191uin  174uin
Rough 412 uin - 359uin

Figures 16.8 through 16.13 show two-dimensional projestiaf the EDM processed interfaces
for the second specimen group where the surface was sp#gifiogpared as a “fine”, “medium”,
or “rough” surface.
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Figure 16.8. Bottom Lap Joint - “Fine” Surface Roughness.
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Figure 16.9.Top Lap Joint - “Fine” Surface Roughness.
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Figure 16.10.Bottom Lap Joint - “Medium” Surface Roughness.
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Figure 16.11.Top Lap Joint - “Medium” Surface Roughness.
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Figure 16.12.Bottom Lap Joint - “Rough” Surface Roughness.
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Figure 16.13.Top Lap Joint - “Rough” Surface Roughness.
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16.2.1.2 Numerical Processing and Assembly of Surfaces

With the collection of scans taken it is possible to condt@@ unique contact pairs (6 bottom
specimens and 5 top specimens). For the purpose of simyifile modeling, all of the roughness
was initially applied to the slave surface by convolving thefaces together in the appropriate
manner. Figure 16.14 shows the result of combining bottoacispen “A” and top specimen “1”
to yield the new composite surface “Al”.

x10

10.5

&

Figure 16.14.Composite Rough Surface.

Two-dimensional projection of the perturbed rough surfabtained by
combining specimens ‘A’ and ‘1’.

The modification of the new perturbed surface is a simpleenattice the composite surface
has been constructed. Given a particular mesh, the ing@dinates of each contact slave node
are perturbed from their initial state by interpolating tleght values from the composite surface
Al. It will typically be the case that the mesh density is gigantly coarser than the density
of the data taken from conformal microscopy. Figure 16.1&shthe resultant perturbed slave
surface on an actual, coarse interface mesh. The mesh imampjtely 0.3% of the density of the
confocal, microscopy, height data.
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Figure 16.15.Modified Surface Mesh.

Perturbed profile of the slave surface of the meshed georfmthe
simple flat lap joint.
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16.2.1.3 Validation of Assemblies Against Experiment

A simple but meaningful validation activity is the compansof the resultant, normal, pressure
distributions on the contact interfaces to those that ateiloed experimentally. This validation
can be accomplished in a semiquantitative manner throughga of calibrated pressure film.

A numerical comparison of the interfacial, normal, pressdistribution is shown in Figures
16.16 4 16.18. In these figures, a preload of 1200 Ib has begiedpdo clamp the two lap com-
ponents together. Figure 16,16 shows the normal presssirébdiion under the assumption that
both contact surfaces are perfectly smooth and form a ndipic@nformal contact. Figure 16.17
shows the pressure distribution after the introductionooighness with peak-to-valley measures
on the order of 100@iin. The interface is comprised of approximately 1000 eleefrigure
16.18 shows the pressure distribution given the samelinmitiagh, surface scan, but with a mesh
refined in both planar dimensions. The interface for thisrBgsi comprised of approximately 4700
elements. For both rough surfaces, pressure distribuiinotigee contact region is quite localized.
The effect of refining the mesh to capture more accurate coptassures is apparent from these
figures.

stresszz
3.000e+03
-2. e+03

-8.500e+03
-1.425e+04
-2.000e+04

Figure 16.16.Normal Pressure Distribution.

Normal pressure distribution on the contact interface kagwperfectly
smooth lap joints.
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Figure 16.17.Normal Pressure Distribution.

Normal pressure distribution on the contact interface hestw rough
contacting surfaces. The interface is comprised of appnaxely 1000
elements.
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Figure 16.18.Normal Pressure Distribution.

Normal pressure distribution on the contact interface hestw rough
contacting surfaces. The interface is comprised of appnakely 4700
elements.

The experiments clamping the different combinations ofcspens together have yet to be
performed. Itis important to note that the numerical caltohs performed to date have only con-
sidered steel-on-steel contact. A more accurate treatfioenilidation purposes, should include a
layer of compliant material between the joint faces to caepthe compliance of the pressure film.

16.2.1.4 Comparisons of Predicted Dissipations

All of the numerical studies reported in this section haverbperformed with the understanding
that Coulomb friction cannot validate our experimentaltess The influence of various sources of
variability will be reported while discounting the erroradsuming a Coulomb friction based inter-
face model. Therefore, only qualitative conclusions arggedwhich might help guide modeling
decisions.

Figure 16.19 shows the effect of modeling surface roughfeedares on predictions of energy
dissipation. The first observation from this plot is thatsgpstion predictions from the rough
surface simulation is smaller than that of the smooth sarfamulation. This is not surprising
considering that the true contact area in the rough sinmras significantly smaller than that of
the smooth simulation. So, locally, much higher normalsstes will be achieved, and therefore
fewer nodes will reach the critical shear sliding force leyesecond observation is that the power-
law slopes of the rough simulations are actually greater the smooth simulation. This difference
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Figure 16.19.Energy Dissipation Predictions.

Comparison of energy dissipation predictions for compositrface A1
for two different levels of mesh refinement.

is an even further deviation from the slopes that are obderxperimentally. A final observation is
that the mesh refinement produced predictions that weretitatarely similar to the coarser mesh.
This result is not a statement related to mesh convergenteather a simple statement that the
added computational cost did not substantially changedh&® of the prediction.

Figure/ 16.20 shows the effect of modeling the roughnessffardint manners: smooth-on-
smooth contact, composite rough-on-smooth contact, anghron-rough contact. Both of the
rough contact simulations exhibit the expected decreapeeidicted dissipation magnitude. It is
interesting to note that the composite rough approximasait significantly different than the
rough-on-rough representation. This similarity may be tluéhe fact that the majority of the
dissipation is carried by a relatively small number of ngdesl there are only very small nodal
displacements during local sliding.

Figure 16.21 shows the dissipation predictions that arainbd by performing simulations of
all 6 pairings of the lap joints machined using traditioredhiniques (A1, A2, B1, B2, C1, C2).
The plots also contain the reference curves for the smootacgusimulation as well as the exper-
imental mean. There is a significant spread between the t@meishighest predicted dissipations.
In fact, the numerical spread (20 times) is significantlyheigthan the spread seen experimentally
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Figure 16.20.Roughness Based Energy Dissipation Predictions.

Comparison of energy dissipation predictions considethrge differ-
ent representations of the interface:smooth, rough coitgpdsl on
smooth, and rough A on rough 1.

for similar lap joints (3 times). Another interesting feawf the predicted dissipations is that the
predictions are clustered. All of the composite surfaces iticlude lap joint “2” predict higher
dissipations than composite surfaces that include lap f&in This is consistent with data gath-
ered for System A, single-leg configuration, in which oneugref data associated with one lap
component was systematically different than all other gumétions.

The large numerical spread may be due to the manner in whechdmposite surfaces were
mathematically assembled. In all cases, the raw, confoci@koscopy data were not modified.
Since the measurements are taken with respect to an aybitadwm, an artificial tilt may have
been introduced into the surface representation. Figu22i€hows that surface assembly is the
likely cause of the large numerical spread. The raw data sel$-aligned” so that a local, planar,
coordinate axis on the rough data was mathematically forgedparallel with its smooth mating
surface. This operation essentially reduces the predgtyy a factor of approximately 20.

It is not known whether real features of the true contact Haeen removed by performing
this tilt alignment. This question may be answered by a cetepstudy of interfacial pressures
employing the pressure film. A more complete study of the ichpathe specimen tilt is shown in
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Figure 16.21.Energy Dissipation Predictions of Assemblies.

Comparison of energy dissipation predictions betweenousiassem-
bly combinations.

Figure 16.28. In this figure, the logarithm of energy dissgaper cycle is plotted as a function
of the tilt of the assembled, rough, composite surface, A2meéan planar surface was defined
from a linear least squares fit to the rough composite sudbmeg two axes: one parallel to the
long axis of the lap joint (longitudinal) and one parallekive in-plane normal to the longitudinal
axis (lateral). Aligning the mean plane defined by these twasgarallel to the smooth opposing
surface serves as the datum for the study. A suite of frietidissipation studies was performed for
0.025" increments for lateral and longitudinal tilts jr0.10°,0.10°]. For each test performed, the
clamping load wasl = 1200 Ib, the axial load magnitude wias= 60 Ib, and the friction coefficient
wasu = 0.5. The energy dissipation appears to be essentially indgperof the longitudinal tilt,
but exhibits a rather strong quadratic dependence on thldilt. The subsequent figure (Figure
16.24) shows the mean true contact area during the simngatierom the figure, it appears that
there is an inverse relationship between true contact axgamergy dissipation over the lateral tilt
axis.(Compare these results to the case of smooth-on-Brnontact, where the mean true contact
area is approximately 1.253%n)

It is clear from this study that the specimen surface charetics and the mechanics of assem-
bly are potential causes for the energy dissipation spreadraed experimentally. At this point,
it appears that the tilt misfit plays a much stronger role itatdshing the spread in numerical
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Figure 16.22. Surface Alignment Energy Dissipation Predic-
tions.

Comparison of dissipation predictions using the raw suwefacan of
composite surface A2 with the case where the surfaces haswe be
aligned.
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Figure 16.23.Tilt Misalignment Dissipation Predictions.

Energy dissipation per cycle is shown plotted as a functiotiltanis-
alignment of the mean composite rough surface, A2, and $noggios-
ing surface, for N=1200lb, F = 601Ib, andu = 0.5.
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Figure 16.24.Tilt Misalignment True Contact Area Predictions.

True contact area is shown plotted as a function of tilt mggaihent of
the mean composite rough surface, A2, and smooth opposifarsu
for N = 1200lb, F =601Ib, andu = 0.5.

predictions, but it is clear that the effect is intrinsigdihked to surface roughness and machining
variabilities.
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16.2.1.5 Extending Analysis to Probabilistic Study

We would like to extend the analysis by performing probabigimodeling. Given a set of exper-
imentally measured height distributions for the flat lamjpit is possible to generate realizations
for the spatial distribution of surface heights on eachrfatee

Z(x,y) = H(%Yy) +U (X,y)o(xy) (16.1)

where p(x,y) is the mean height at spatial locatieqy),
U (x,y) is to be determined,
and  o(xy) is the standard deviation at spatial locatiary).

A more complete treatment of this topic will be given in thédsequent section on indirect
modeling techniques.

16.2.2 Solving the Inverse Problem From Pressure Film

Another direct method of joint modeling is through the usthefpressure sensitive film. One of the
compelling reasons to use pressure sensitive film to guelentbdeling of an interface is that the
film reports a resultant state of equilibrium of an assembtadponent. The pressure distribution
recorded on the film is the direct result of surface roughnesgserfections, machining features,
component misfit, and variations introduced through assenilhis is in fact a richer set of data

than that provided by profilometry.

The application of the results, then, requires the soludfdhe inverse problem of what surface
perturbations, away from perfect conformality, are reegito arrive at the measured pressure
distribution. This process is not a trivial matter, as thieneo unique solution, and it is somewhat
complicated by the fact that the pressure film is introduaiicgmpliance that would not be present
in the joint during actual assembly. For this reason, arr@adimodeling technique using this data
will be described in the next section.

16.3 Indirect Modeling of Surface Characteristics

The focus of this section will be the generation of joint misdessuming that the only available
data for characterization of the lap joint contact integfacgiven in the form of three dimensional
pressure profiles of an assembled joint (or perhaps a dolfeof pressure profiles that represent
a number of unique profiles generated from a number of unignebations of different, but
nominally identical, components.)
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16.3.1 Modeling From Pressure Film Data

It is clear that representations of contact interfaces aeqéy flat and/or conformal entities is
incorrect. An illustration of the departure from this ideation is shown in Figure 16.25. In
this image, a pressure sensitive film was assembled intoaijderface. Contact is indicated by
the red dye, where regions of higher color intensity comesito locally higher pressures. In an
ideal contact, the pressure would look paraboloidal, amteced about the bolt hole (although the
distribution will be skewed somewhat due to the proximitytled upper boundary.) The pressure
plot clearly shows this not to be the case. The two cornerdiemight side appear to have very
high pressure (perhaps a tilt misalignment) and a periodidvess exists on the entire surface.

o0

pixels (1200dpi)

0 400 0 300 400 S0 B0 YO0 800 000 1000
piels (1200dpi)

Figure 16.25.Interface Pressure Profile.

A pressure profile gathered by assembling a pressure- sen§ltn into
the joint interface. The joint was designed to be conformalature.

Itis important to recognize that data in this form cannotdsesidered a boundary condition, but
it is rather a representation of an equilibrium state. Ther® direct way of applying the gathered
data to generate an elasticity model for the purposes obpeifig numerical simulations.

An approach to generating a serviceable model for reprieggtite interface is to solve the
“inverse” problem. This approach is not a trivial matteritasquires building a pair of rough mat-
ing surfaces so that the manner of the non-smoothness le#us measured pressure distribution.
A single or several such inverse solutions can be perforrHesever, if an ensemble of pressure
distributions is generated as part of a larger uncertaitugtys the time required for solving each
inverse problem of each pressure realization becomesiptiobi
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The remainder of this section will lay out what should be cd@ied a reasonable alternative
approach to solving the indirect problem, which necesgaribids the inverse solution and lever-
ages the current solution capabilities of the quasistaddistieity code, ADAGIO. The important
feature of the proposed solution technique is that it retalhof the fundamental physics of elas-
ticity theory in conjunction with a Coulomb friction intexfe model. There are no guarantees of
kinematic equivalence between this method of model geiloarahd a model that accounts explic-
itly for rough surface geometries. However, there is aniekgjuarantee that both models will
achieve macroslip at the same force level.

16.3.1.1 Numerical Processing of Data

Because there currently are no pressure profiles for thelsiftgs- lap joint, we will employ
pressure data obtained from simulations of rough-on-raaegitact generated from confocal, laser
microscopy scans of the surfaces described previously.

The method relies on aa priori knowledge of the macroslip load, the simple relationship
between normal pressure and tangential pressure at mipctbslease of calculating the interfacial
pressure distribution for an ideal, conformal lap jointj dne ability within ADAGIO to prescribe
friction coefficients spatially.

Simply stated, the method transfers the modifications ofdkal interfacial pressure to the
friction coefficient. At a local contact node, during slipetfollowing relationship always holds

TN = f5,d (16.2)

where 'I'_i is the tangential force at a node,
S\ is the normal pressure at that node,
and  a' isthe area associated with the node.

The ideal pressure, at a node on the contact interidqgecan be calculated easily in a nu-
merical simulation. With this value and a particular assigmbthe interfacial pressure, Equation
(16.2) can be rewritten as

T = £Q'd (16.3)

where Q' is a pure number that scales the reference pressure at estidi kgation.

S(X7y) = Q(Xv y)&efo(?y) (164)

The net effect of this operation is the apparent transfethefgerturbed, normal, pressure
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distributions onto the friction coefficient

Fs(x,y) = Q(xy)fs (16.5)

where Fsis now a spatially representation of the friction coeffitien

Applied in this manner, it is clear that the friction coeféiot is scaled deterministically, in-
formed by the perturbed pressure profile. If the referenesgqure is calculated at the onset of
macroslip, then the macroslip force will be reproduced idaty by a model that employs the
spatially varying, friction-coefficient formalism. Theason for this construction is simply to lever-
age the currently existing capabilities of the quasistatite ADAGIO and avoid the intermediate
step of constructing new, perturbed, solid-model geometio capture the pressure distribution
variability.

An example of normal interface pressure distributions &mw in Figures 16.17 and 16.18.
Figure 16.26 shows the distributidi(x,y) that results when the normal pressure profile of com-
posite surface Al (Figure 16.17) is compared to a perfe€aseiidealization (Figure 16.16)
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Figure 16.26.Spatial Friction Coefficient.

Spatial friction coefficient, §x,y) derived from composite surface Al
using constant friction coefficients ¥ 0.5.

The spatial friction map that was constructed and shownguréi 16.26 was employed in a
numerical simulation. The results are shown in Figure 16.Pfis figure shows a comparison
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between the spatial, friction-coefficient formulation ahe corresponding direct simulation of
a composite rough surface. The predictions are quanglgtivery similar. Although the local
kinematics are expected to be very different, the fricticaling has produced results that match
well with the direct modeling technique. It is expected ttigg will likely be the case in instances
when local, nodal displacements are very small, the normedsure distribution does change
significantly during a loading cycle, and the joint is suffigily far removed from a macroslip
condition.

Dissipation/cycle, Ib-in

—— Smooth

Direct roughness 1
——— Spatial friction

Lateral Force, Ib

Figure 16.27.Spatial Friction Energy Dissipation Predictions.

Comparison of direct roughness modeling with the spatiatitn rep-
resentation.

16.3.1.2 Extending Analysis to Probabilistic Study

The measurements taken on the interfacial pressure distnits, with the pressure film, give di-
rect evidence of joint misalignment, machining variapjland material surface characteristics. It
is hoped that accounting for these features within an FEyarsatould help to quantify the ex-
tent to which these mechanisms contribute to the systematiability in predictions for energy
dissipation in the flat lap joint.

Given a set of experimentally measured, interfacial, pnesdistributions for the flat lap joint,
it is possible to generate realizations for the spatialithstion of normal pressure on the interface

SN(XY) = p(xy) +UXYy)o(xy) (16.6)
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where p(x,y) is the mean height at spatial locatieqy),
U (x,y) is to be determined,
and  o(xy) is the standard deviation at spatial locatiary).

It is important to recognize that each random realizatiostralways satisfy equilibrium, there-
fore

NérﬁmpZ / %k)(x,y)dA k=1,2,.. (16.7)

Now, if a numerical simulation is run in which the frictionefficient is applied globally to the con-
tact interface, the simulation would provide a meaningtrhparison to the experiment provided
the friction coefficient was selected so that

Thin < fs/SN(Xa Y)dA < Tmax (16.8)

where Tnin is the minimum macroslip force measured experimentally,
Tmaxis the maximum macroslip force measured experimentally,
and fsis the static friction coefficient.

(No distinction will be made here between the static and gyodriction coefficient.) It should
also be noted that, in general, the interfacial pressutelalision is not a stationary function, but
will evolve as aresult of applied boundary conditions, ¢hg.left hand side of Equation (16.7) may
be constant, but the body deforms as a result of far-fielddo&dr our purposes it will assumed
that this evolution is negligible and therefdsg will be stationary. The method of determining the
spatial friction functior(x,y) proceeds as described in the previous section.
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Part IV

Modeling of Jointed Structures
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Chapter 17

Some Considerations of Dynamics of
Jointed Structures

Daniel J. Segalman

17.1 Introduction

An irony of the simulation of jointed structures is that thenmafidelity with which the joint models

reproduces the actual behavior of joints, the more diffitht solution of the resulting system
equations become. These difficulties are manifest as aresgent for extraordinarily small time
steps.

Another irony is the compulsion to characterize every typ@iot which can be modeled and
incorporate it into a structure-level simulation. So, as tkmber of different kinds of joints that
can be modeled grows, the less tractable the analyst dras¢ropstructural simulation becomes.

Both of these issues are addressed in this chapter.

17.2 Discontinuities and Time steps

17.2.1 Nature of the Computational Difficulty

The time step issue is illuminated by consideration first kriear problem. Consider the structure
shown in Figure 17.1.

In this problem,M, >> M1 andK; >> K; so that the two modes will be approximately as
follows. The lowest frequency mode is a near rigid body mdde énd M, moving together)

at a frequency of approximateby; = ,\% The second mode is closely described as nvdss

moving with respect to mad$4, at a frequency of aboub, = , /,ﬁ—i. In this particular problem, the
parameters are chosenkas=1,K, = 10,M1 =1, M, = 80, = 0.02. (The masses are in kg and
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Figure 17.1. Linear, Two Mass, Dynamic Structure with Base
Excitation.

the stiffnesses are in Newtons/m.) The base is drivan &iom rest harmonically at an angular
frequency one quarter of the lower natural frequernoy= wy /4 with a displacement amplitude
A= 0.2 so thatup(t) = Asin(axt).

The kinematics of the masses is calculate using the Newgharkthod with parameters chosen
for stability (3 =1/4 andy =1/2). The time step is selected a&d% %T so that there are twenty
time steps for each cycle of the highest frequency of theegysfThe resulting accelerations are
presented in Figure 17.2. The accelerations of the baseauidmeass are presented over a full
twenty cycles of base excitation and also over just the #ifsthe inception of base excitation, the
high frequency mode associated with motion of mgsas starts off with a high amplitude and
damps down quickly. The second mode also starts out at a ¥alise, but damps more slowly.

Accelerations using A t = 0.094237 ©10° Accelerations using A t = 0.094237
; ; ; T ; ; ; ; T T ; ;

Acceleration, m/s?
Acceleration, m/s?

-15 ——Mass 1}
——Mass 2
——Base

s ; . . . . . . T T _ . , . T
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50 100 150 200 250
Time, sec. Time, sec.

Figure 17.2. Accelerations of Two Mass System Calculated with
Small Time Steps.

If there is no interest in the higher frequency responseefdimne steps can be used. Because
the integration strategy is implicit, we can set the timg s large as we want. For instance,
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consider t= 22@", twice the period of the higher frequency mode. The resyitiredictions for
acceleration are shown in Figure 17.3. Here, the high frecuenode is essentially suppressed,
the motion of the larger mass is essentially unaffected tla@dmaller mass is approximately that
of the larger mass - consistent with the lower natural fregye

In structural dynamics of very large systems, having lortogeifewer time steps is greatly val-
ued because of the compute time associated with each timeAsallustrated above, employing
larger time steps is simple and direct. The situation thébvs is more complicated and more
difficult in problems that involve joints.

<10 Accelerations using A t = 3.7706 <10 Accelerations using A t = 3.7706

Acceleration, m/s?
Acceleration, m/s?

15 ——Mass 1| Lis| ——Mass 1|

——Mass 2 ——Mass 2

—Base —Base

; ; i ; i ; i T T . i ; i T

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 50 100 150 200
Time, sec. Time, sec.

Figure 17.3.Accelerations of Two Mass System Calculated with
Large Time Steps.

Next, consider a similar structure but with the second gpreplaced by a Jenkins element
of the same stiffness. So long as the base accelerationgremall, the response of these two
structures is identical.

- F - .

0 1 u,

Figure 17.4. Jointed, Two Mass, Dynamic Structure under Base
Excitation.
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When the base excitations are large, slip is induced in thkide element. Because the load
is oscillatory, the slider can switch from stuck to slippargd slipping to stuck twice per period of
the driving frequency. The features of the resulting dyrasygstem are shown in Figure 17.5.

Accelerations using A t = 0.094237

i 4
0 4
1 : : 1
——Mass 1||
——Mass 2 08 —Base
—Base — Stuck Status
T ; : :

4 | . . . . . . T o H H H H H H
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
Time, sec. Time, sec.

10° Accelerations using A t = 0.094237

Acceleration, m/s?
Acceleration, m/s?

Figure 17.5. Accelerations of Two Mass, Jointed System Calcu-
lated with Small Time Steps.

The initiation of high amplitude base excitatioh-£ 0.2), the highest frequency mode is heav-
ily excited but damps down quickly. Very soon a steady stateepn is achieved, in which the slider
switches from stick to slipping four times in each load cyael from slipping to stuck mode four
times in each load cycle. The sudden change of stiffnessesxall available frequencies of the
system at that time. These modal excitations are most gigitihe acceleration of the small mass,
but the effects of changing system stiffness are also se#teishape of the acceleration curve of
the larger mass. These calculations were performed usiegyaswall time step 2% of the period
of the highest frequency.

The excitation of high frequency resonances from joint ma&drities is demonstrated experi-
mentally in mechanical systems in Section 17.2.2 of thiptdra Such excitation is also seen in
civil structures|[95].

If the intent is to perforrmonlineardynamics calculations on large structures using time steps
that are a fraction of the period of the highest frequenay,ahalysis would be intractable. The
accelerations calculated using a much longer time stepcetitfie period of the highest natural
frequency - are shown in Figure 17.6.

The predicted response is very different from the orderhyaveor of the small time step calcu-
lations. The acceleration of the smaller mass is almosttahdmt the motion of the larger mass
is distinctly different from that predicted in the earlieiculations.

What is going on here? Why is it that in this problem, implicitegration generates such
nonsense when large time steps are employed? A sense ofsverars seen from the following
SDOF example. Consider the structure shown in Figure 17ageRxcitation is sufficient to cause
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Figure 17.6. Accelerations of Two Mass, Jointed System Calcu-
lated with Long Time Steps.

the slider of the Jenkins element to go in and out of slip s@v¥Enes over each period of excitation.

2
L
U
— —>
Uy =Asiny t) U,

Figure 17.7.Jointed, SDOF System.

In this problem, the parameters are setvas-1,K; =1, Ko =1, ¢ =1, ap = wp/50 and

p = 2{ ap, wherewy, = /*1HK2 and¢ = 0.01. The displacement amplitude of the base is set at
A= 2.5. All the above are in consistent units (such as Sl). The heseleration and the resulting
acceleration of the sprung mass are shown in Figure 17.&e€l¢aculations were performed using
the Newmark3 method with the convention = 1/4 andy = 1/2 using time steps oftd= 5—10%
which is a far smaller time step than truly required.

The observed response is the lower frequency accelerdttbe base and the higher frequency
accelerations of the sprung mass. More insight into theegaysésponse can be seen by examina-
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Base Excitation: Acceleratlons
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Figure 17.8. Acceleration of Base and Sprung Mass in SDOF
System.

tion of Figure 17.9. This figure, showing the normalized #medion of the sprung mass as well
as the normalized instantaneous system stiffness showsytstem resonances are excited every
time the slider switches status from stuck to slipping. Wtrenslider switches back to the stuck
mode, the resonance drops in amplitude and increases uneiney, as would be expected.

When these same calculations are performed using time Bte;ﬁég, accelerations shown
in Figure/ 17.10 result. Given past experience with the twgrele-of-freedom model, the hashy
nature of this result is not surprising. However, this sieqploblem can lend some insight into the
source of the difficulty.

Figure17.10 shows that in most instances, the computedeaatien at each time step is
of opposite sign to that of the next. This suggests that tleemaportant information about the
state of the system that must be included in the dynamic legions and that can be known only
through short time path dependent integration. In linearcstires there is no mechanical energy at
frequencies above those at which there are inputs to theraystnplicit integration at time steps
corresponding to frequencies above those at which themelg)g may maintain a correct energy
balance even when there are unexcited modes above tha¢fregu

In nonlinear systems such as discussed here, the joinfeérarenergy from low to high fre-
guencies. An implicit integration using time steps that @b permit accurate modeling of those
excited high frequency modes will not achieve a correctg@nbéalance and anomalous behavior
such as illustrated above results.
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Base Excitation: Acceleration and Effective Stiffness

-0.8 —— Normalized Acceleration ||
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Figure 17.9. Normalized Acceleration of Sprung Mass and Ef-
fective System Stiffness.

There are very significant ramifications to the above argumienparticular the requirement
to use very small time steps would make direct implemematiojoint models into dynamics
analysis of large structures intractable.

The next two subsections discuss how such difficulties miighbbviated. Both techniques
are based on the goal of creating models that are incapalbésonhating beyond the frequencies
of interest but that are still able to manifest the importstniictural properties, including energy
dissipation and vibration isolation through macroslip.

17.2.2 Model Reduction Exploiting Component Mode Synthesi

One of the classical methods of structural model reducsahat of component mode synthesis
(CMS). This method involves treating the structure as a ¢oatlon of substructures, and captur-
ing the dynamics of each substructure by a reduced-ordeeimdbe configuration space of each
substructure is approximated by a combination of staticesddtatic deformation of the substruc-
ture in response to displacement of each of the interfaceedegf freedom) and dynamic modes
(eigen modes of the structure when all interfaces are fixétt)s approach is a well developed
technology discussed at length and reported often in thetiire. A standard citation is [96].

The CMS method is especially popular in the aerospace wohler&manufacturers of dif-
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Base Excitation: Accelerations
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Figure 17.10. Acceleration of Base and Sprung Mass in SDOF
System.

ferent components of a system can provide the prime cootragth CMS models of just their
subsystems, allowing the prime to integrate these intol@ystem model.

In the context of jointed structures, CMS would have a shglifferent flavor. Here the
boundaries between substructures include the mechaaintd.j The degrees of freedom available
to each substructure are dramatically reduced, so thosklaeato the full system are also re-
duced. The reduction in degrees of freedom has the effeetiofcing the frequencies to which the
system is capable of responding. Further, if the configomagpace left available to the structure
is consistent only with the lower frequency responses, yiséem cannot resonate at the higher
frequencies.

This technique was tested in [97] and, as shown below, thiSGivategy for model reduction
has had significant success in suppressing higher frequesoypance and making simulation at
larger time steps tractable. On the other hand, it is not esessful as desired. In order to achieve
sufficient static flexibility in low order modes, it is necasg to include many resonant modes of
each subsystem in the structures structure’s configurapace and some high frequency local
modes are admitted.
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17.2.3 Model Reduction Using the Method of Discontinuous Bsas Functions

Another approach, explored in [97], [98], and [99], spealficrestricts configurations consistent
with high frequency response. This method of discontindzass functions employs two sets of
structural response from a reference linear system to geatvie basis functions that define the
configuration space.

Consider a linear system similar to the jointed structuoséwith the joints replaced by springs
having stiffnesses approximately the tangent stiffnesgdimts. Bases for the configuration space
for dynamic analysis of the nonlinear structure are obthine

e retaining the eigen modes of the linear system correspgrtdithe frequency range of in-
terest.

e static analysis of the linear system where equal and opplmsites are applied at each degree
of freedom of each joint - one analysis per degree of freedbhe resulting deformations
are discontinuous at that joint. Because these “modes”are ho significant deformation
except at the joint, they are also inconsistent with highjdiency vibration modes.

These basis functions are used in a Galerkin analysis indheentional manner [99], ex-
ploiting the matrix structure of the linear subsystems. Téference linear model can be either a
full finite element model or a CMS reduced order model. Theveltescribed method of model
reduction is call the Method of Discontinuous Basis FunigMDBF).

17.2.4 Numerical Experiments with Model Reduction to Enlage Time Step

Computational experiments reported in [97] included itigadion of the dynamic response of
the mock AOS shown in Figure 17.11. This structure consiste/o monolithic pieces of metal
connected by three nominally identical joints.

A series of short duration shock tests were applied to thieemental structure to elicit high
amplitude response without causing damage to the strufd@0@3. The impulse, shown on the left
side of Figure 17.12 was designed to excite strongly therfisinance of the structure. Resulting
accelerations that were measured at the’2&@are shown on the right hand side of Figure 17.12.
The structural response exhibits the anticipated modpbrese augmented by the spiky behavior
at amplitudes so high as to elicit strong joint nonlineasiti

This structure was then simulated using the structural elyegcode Salinas with whole-joint,
lwan models employed at the interfaces. Parameters fomthe models were determined from
experimental data taken from single joint specimens. Amedibns calculated using the full FE
model using CMS model reduction are shown in Figure 17.13e(@riginal CMS reduction of
this structure was performed by Holzmann [101]).
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Figure 17.11.Mock AOS Hardware and Solid Model.

The full FE model using a time step of 19second predicts the structural response, including
the spiky behavior, though there does appear to be some™hagiat highest amplitude. Simu-
lations using CMS at a time step 10 times as long performatijidpetter than that of the full FE
model. The full mesh involves over 200,000 degrees of freeddile the CMS model employed
117 degrees of freedom. The CMS predictions are even betten the time is reduced to 19
seconds, as shown in Figlire 17.14.

In a parallel calculation, MDBF was also employed. This rdtlields very good response,
even when employing only 15 degrees of freedom. Figure 1shb%/s when extremely small time
steps (10° seconds) are used the hash disappears almost entirelyatitmiethods. Particularly
encouraging is that the hash is gone even with a time step of 46conds when the MDBF is
used. More studies using even longer time steps are calted fo

17.3 Modeling Spatially Distributed Joint Damping

Another daunting issue in the modeling of jointed structusghe complication that myriad joints
introduce to the problem of structural response. Only akkmuahber of those joints can be studied
and characterized, either experimentally or numericalhe effect of sometimes hundreds of other
joints must be accounted for as well. An approximate methi@commodating joint multiplicity

is presented in [102] and is abstracted in this section.

The opportunities to address this issue lie in the follonobgervations:

1. Experimentally, at modest levels of excitation, joinggdictures still seem to preserve the
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eigen modes of a reference linear system. (Note that refederear system is usually tuned
to match the near linear behavior measured experimentdiiywdoads.)

2. at modest excitation levels, the nonlinearities pred@rselves through ‘joint-like’ energy
dissipation (power-law dissipation with slopes greatat th2 and generally greater than 2.4)
and through some amount of softening as seen through resesaifts to lower frequency
as load increases.

The observation about ‘joint-like’ dissipation was madeaiparticularly clear manner in ex-
periments on a particular version of the AOS. Base excitaifdhe full complex structure yielded
dissipation that had a power-law slope of 2.6. Further, ibsipation that was measured on that
structure was about three times that which could be attbjutst to the three discretely-modeled
joints. Dissipation in the many other joints in that struetaontributed the rest.
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17.3.1 Development of Formalism
The above suggests employing the notion of a referencerlgyséem. The nonlinear system may
be represented by a system of equations
MU(t) +Cu(t) + Keou(t) + AN ({u(T), T € (—00,t)}) = F(t) (17.1)
where M, C, andK,, are all associated with a reference linear system.

The effects ofA.#” become pronounced as load amplitude increase and are stahifeugh
the dissipation and softening behavior discussed above.

The damping matriXC of the linear system is generally chosen to be consistett midal
damping. Such is the case for proportional damping and Gaudhmping, as well as for the
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direct imposition of modal damping.

The eigen modes and frequencies of the reference lineamyete denoted by, w}, and
we turn our attention to the first modes of the linear system. They are used to diagonalize
partially the firstn modes of Equation (17.1). Letting, be the matrix whose columns are the
first n eigenvectors of the linear system and postulating that thenkatics can be represented
adequately by

u(t) =WpA(t) (17.2)
we may obtain through the usual contractions and changesriaibles
MA+CN + HA+WAN (WA (1), T € (—o0,1)}) = (1) (17.3)

For convenience, assume that the eigenvectors are masalimaunso that/ is the identity
matrix. Because of the assumption that the damping matrscagasistent with modal damping,
% is a diagonal matrix with terms¢2wy and the revised stiffness mattix” is also diagonal with
termscqf. The right hand side is the projection of force onto the eigees# = W] F.

The only coupling among the modal coordinaies through the nonlinear term. In the absence
of data to the contrary and for the sake of facilitating atable process, we complement the
assuptions on page 442 with following:

3. The process that diagonalizes the linear elements of/#tera also diagonalizes the nonlin-
ear elements. Specifical! AV (Wh{A(1),T € (—oo0,t)}) is diagonal.

4. The nonlinear response of each modal coordinate is imdigme of all the other modal co-
ordinates.

The equations for modal coordinates are now decoupled:

M+ 200 + M+ Q({AK(T), T € (—e0,1)}) = Fi(t) (17.4)

This result is significant not only because it decouples therkatic modes, resulting in great
computational economy, but also because it accommodadéialbpdistributed joint-like interface
contributions to the structures nonlinear response.

17.3.2 Partial Nonlinear Modal Expansion
It is sometimes desirable to employ a partial modal expansio
N
u= Z}\i(t)qﬁ—f—z (17.5)

where zis the part ofu orthogonal to each of the first eigen mode
and zis solved from the linear system of equations.
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There is a method in linear structural dynamics for integgasystems described by combina-
tions of modal and spatial degrees of freedom [103]. The kegp solve the modal equations in
the standard manner; balancing generalized inertial, damand stiffness forces balance with the
projection of the imposed loads on the eigen modes. Forcptogad when solving for the spatial
degrees of freedom are the imposed loads minus the projdubsd loads on the eigen modes.

An analogous approach is developed here for integratiomohonlinear system as described
by the the firstN “model” degrees of freedom employed in Equatians (17.4) landhe spatial
degrees of freedom To avoid performing continuous orthogonalization, itisferred to achieve
the solution forz in a manner involvingi itself and conventional mass and stiffness matrices of a
reference linear system. This is done by solving thé\tidlecoupled nonlinear equations separately
and then applying placing the resulting modal forces onitfte hand side of the linear equations:

N
Ml+Cu+Ku=F(t) — Z Yk Qk(t) (17.6)
k=1

where yx = Myxk.

Employing modal damping in the firédd modes is not consistent with the modal damping
values that would result froi@. This is corrected via:

N n .
Mii+Cl+Ku=F () — 3 i [Qut) + (G~ &) 2k (17.7)

=1
where  Zywy = Wl Cyk.

The above expressions are derived using equations prdsentiee appendix of [104]. The
separate treatment of modal damping for the firshodes and system damping for the remainder
is along the lines of a method introduced by Alvin [103].

17.3.3 Model Form for Evolution of Modal Coefficients

The next step requires postulating a form for the nonlingaratorQy that are capable of man-
ifesting joint-like energy dissipation and softening. Téssential rate-independence of the joints
argues tha@Qy should be as well. Further, the model form must admit paranssts so as to be
tuned to reproduce quantitatively properties that are nredson real structures.

As shown previously, Iwan models can be formed to reprodoeeeplaw dissipation as well
as softening; they are a natural first candidate for thisiegipdbn. Therefore postulate

Qv = [ " od(®) M — ()] doo (17.8)
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where the state variablg evolves as

A i A (@) =9 and A(Ak(t) — (@) >0
Xk_{ Ok otherV\k/ise h (17.9)

The energy dissipation per cycle of maddes

Nk
Gi(N) = 4 /0 0(9) [Nk — ¢ dop (17.10)

where /A is the amplitude of the modal oscillation.
Differentiation of Equation (17.10) can be used to uncokerrtature of the:

B id?@k
TN

Px(@) (17.11)

N=0@

Examination of Equation (17.11) argues that a power-lawggnéissipation must be associated
with a py that is singular aboup = 0. This suggests that something like the four parametet join
model discussed earlier in this handbook might be apprpriaurther progress in this approach
will require more experimental data and reconciliation @idels to that data.
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Chapter 18

Example Dynamic Calculations of Jointed
Structures

Michael J. Starr

The goal of all the work the previous chapters has been to th@munderstandings and the
tools to facilitate systematic, physics based modelingaegign of jointed structures. The first
example has to do with the buttress thread connection oe8y#étthreaded housing. The second
is a model of the mock System A, AOS where the dynamics is datethby the three discretely-
modeled joints. Each of these is a demonstration of a desjipedofforward prediction that has
not been possible up to now.

18.1 Eigen-Analysis of Threaded Connection

The following is a demonstration of the use of the equivalmsotropic threaded material for-

malism within a structural dynamics finite element analydtsgure 18.1 shows the simplified

geometry of a aeroshell-like structure. The blue and lighe kelastic structural components are
connected through a threaded interface shown in red. Tleadled material is given anisotropic
properties in a manner consistent with the formalism deyedaelsewhere in the handbook.

The deduced anisotropic elastic parameters can now beiimtput threaded material definition
within a SALINAS input deck. In general an anisotropic matkwill have 21 unique entries in the
elasticity matrix. However, the material properties destlitor the buttress threads in this model
employed a plane stress idealization. The Salinas inpanpeters are shown below.

Il Top hat geonmetry nodal analysis

SCLUTI ON
title  Tophat Aeroshell Equival ent Threads Mdel’
ei gen
nnodes=6
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Figure 18.1. Solid Geometry Representation of an Aeroshell-
like Structure.
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END

COORDI NATE 1
cylindrical
000
001
100
END

/'l Aeroshell Material (A umnum
BLOCK 1

material 1
END

Il Forward Mount (Al um num
BLOCK 10

material 1
END
MATERI AL 1
| sotropic
E = 69. 0e+09
nu = 0.33
density = 2.70e+03
END

/'l Equi val ent Threads (Anisotropic Threaded Al um num

BLOCK 100 // Threaded Material Region

material 2
END

MATERI AL 2 //Equival ent Threads (Anisotropic Threaded Al um num

Ani sot ropi ¢
Gj

25.06e+09 10.42e+09 50.35e+09 15.71e+09
43.23e+09 50.35e+09 20. 82e+09
10. 07e+10

density = 2.649e+03
END

FI LE

0
44.97e+09
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geonetry file 'topHat_2X ¢’
END

BOUNDARY
nodeset 1
fixed END

OUTPUTS
el emqual checks of f
di sp
stress
strain
ener gy
END

ECHO
timng
mass

END

Table (18.1) lists the first 6 natural frequencies of thecitme shown in Figure 18.1. Two
material representations are given: a monolithic alumiromstitutive representation and one in
which the threaded zone is replaced by the aforementiongidadgnt anisotropic elastic material.

Table 18.1.Top Hat Natural Frequencies, Hz

Mode Monolithic Aluminum  Equivalent Anisotropic Aluminum
Bending - X 520 505
Bending - Y 520 505
Rotation 1612 1615
Buckling - X 1863 1852
Buckling - Y 1863 1852
Axial 1963 1918

Figures 18.2 and 18.3 show the strain that obtains in thevalgmt threaded material (the
aeroshell has been removed from the structure).
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VStrainX

3.990e+00
1.995¢+00
0.000e+00
-1.995¢+00
-3.990e+00

Figure 18.2. Strain in First Bending Mode.

The aeroshell has been removed to show the strain in the agoiv
threaded material for the first bending mode.
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VStrainX

3.990e+00
1.995¢+00
0.000e+00
-1.995¢+00
-3.990e+00

Figure 18.3. Strain in First Axial Mode.

The aeroshell has been removed to show the strain in the agoiv
threaded material for the first axial mode.
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18.2 Nonlinear Transient Analysis of Structure with Iwan In-
terfaces

The following is a demonstration of the use of the lwan irdeef model formalism within a struc-
tural dynamics finite element analysis. Figure 18.4 showsstilid geometry for a full degree of
freedom structural model. The structure consists of twstelacomponents that are connected
through the three base attachment location legs. The Iwarfage constitutive parameters were
deduced from experimental data.

Figure 18.4. Solid Geometry Representation of a Forward
Mount/Mass Mock.

The Salinas input parameters required for a nonlinearigahanalysis are given below. The
structure is subjected to base excitation shown in Figurg.18

#include ./base _resor _1145.fun
SOLUTI ON
NLt r ansi ent
tine_step=l.e-6
nsteps 10000
max_newt on_i terations=200
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Excitation, g
\

Figure 18.5.Base Excitation.

num newt on_| oad_st eps=50

tol erance=1e-6

nskip 1

updat e_tangent 200

rho=0. 90

sol ver =gdsw

title "mock aff and truncated base attachnment |ocation with shaped base input’
END

GDSW
max_i ter 2000
orthog 200
solver_tol le-6
scale_option 1
prt_sumary 1
overl ap=1
END
FILE
geometry file ' /3l eg_massnock. par. 4. % 1d
nunraid 1
END
PARAMETERS
wt mass = 0.00259
END
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BOUNDARY
nodeset 100

y=0.
z=0.
rotx = 0.
roty = 0.
rotz = 0.
END
LOADS

nodeset 100
force = 1. 0. 0.
scal e = 50. e+06
function 1

END

QUTPUTS END
H STORY
nodeset 1000
nodeset 100
nodeset 10
accel eration
END
ECHO
echo
END
#include ./Include/armaturel.inp
#include ./1nclude/ hex_bl ockl.inp
#include ./Include/iwanl.inp
#include ./1nclude/ ka_shakerl.inp

#include ./Include/ matl _bl ockl.inp

#include ./Include/rigid npcl.inp

#include ./Include/rigid_boltsurfl.inp
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#include ./Include/ npc_sof t bean®. i np

#include ./Include/seismcl.inp

The block definition for the armature is

#include ./Include/armaturel.inp
BLOCK 200

Bean?

Area 1.

11 1.

12 1.

J L

orientation 1. 1. 0.

material 200
END

MATERI AL 200

i sotropic

E 10el2

nu .3

density = 1.e-6
END

The block definitions for the elastic structural elemenés ar

#include ./1nclude/ hex_bl ockl.inp

BLOCK 1
material 12
END

BLOCK 2
material 11
END

MATERI AL 11
| sotropic
E=2. 8572e+07
NU=0. 28
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densi ty=0. 317
END

MATERI AL 12
| sotropic
E=1. 6e+07
NU=0. 3
density=0.16
END

The block definitions for the Iwan interface models are givelow. An identical lwan param-
eter is prescribed at each of the three interfaces that ctstiee base and the sprung mass.

#include ./Include/iwanl.inp

BLOCK 50
nonl i near = yes
j oi nt 2g
kx = iwan 1
ky = elastic 1.0e9
kz = elastic 1.0e9
krx = elastic 1.0e9
kry = elastic 1.0e9
krz = elastic 1.0e9
END
BLOCK 60
nonl i near = yes
j oi nt 2g
kx = iwan 2
ky = elastic 1.0e9
kz = elastic 1.0e9
krx = elastic 1.0e9
kry = elastic 1.0e9
krz = elastic 1.0e9
END
BLOCK 70
nonl i near = yes
j oi nt 2g
kx = iwan 3

ky = elastic 1.0e9
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kz = elastic 1.0e9

krx = elastic 1.0e9
kry = elastic 1.0e9
krz = elastic 1.0e9
END
property 1
chi = -0. 5565
R = 5.61e+06
S = 2.39e+06
phi _max = 2.2%-4
END
property 2
chi = - 0. 5565
R = 5.61e+06
S =  2.39%e+06
phi _max = 2.2%-4
END
property 3
chi = -0. 5565
R = 5.61e+06
S =  2.39%e+06
phi _max = 2.29%-4
END

The spring stiffnesses that connect the structural modéktshaker are

#include ./1nclude/ ka_shakerl.inp

BLOCK 101
j oi nt 2g
kx = elastic 6.e7

ky = elastic 1.e9
kz = elastic 1.€9
krx = elastic 1e9
kry = elastic 1e9

krz = elastic 1e9

END
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The nodes around the perimeter of the base and the sprundpoitissles are connected rigidly
to facilitate the whole-joint nature of the lwan model couostion.

#include ./Include/rigid npcl.inp

Rl G DSET set51
si deset 51
nodeset 53

END

Rl G DSET set61
si deset 61
nodeset 63

END

Rl G DSET set71
si deset 71
nodeset 73

END

Rl G DSET set52
Si deset 52
nodeset 54

END

Rl G DSET set 62
Si deset 62
nodeset 64

END

Rl G DSET set 72
si deset 72

nodeset 74
END

The surfaces that comprise the aft end of the base attachovation bolt circle are rigidized
to accommodate connection to the shaker.

#include ./Include/rigid_boltsurfl.inp
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Rl G DSET set 101
si deset 101
END

Rl G DSET set 102
si deset 102
END

Rl G DSET set 103
si deset 103
END

Rl G DSET set 104
si deset 104
END

Rl G DSET set 105
si deset 105
END

Rl G DSET set 106
si deset 106
END

Rl G DSET set 107
si deset 107
END

Rl G DSET set 108
si deset 108
END

The following is the definition for the beam that connectsghaker to the structural model

#include ./1nclude/ npc_sof t bean?. i np

Bean?
Area le-4
1 0.001
[2 0.001
J 0.001
orientation 1 11
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material 99

MATERI AL 99
| sotropic
E=2.8572e+3
NU=0. 28
densi ty=0. 289e-9
END

The properties for the seismic mass are defined here

#include ./Include/seismcl.inp

BLOCK 200
Bean?
Area 1.
1 1.
12 1.
J 1
orientation 1. 1. 0.
material 500
END

MATERI AL 500

i sotropic

E 10el2

nu .3

density = 1.e-6
END

BLOCK 300
ConMass
Mass=1e+06
| xx =1e+10
I xy =
lyy =1e+10
I xz =
lyz =
lzz =1e+10
Ofset=000
END
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the base exanitadi shown in Figure 18.6. The
il the forward prediction.

Ll wv/\vfwvmmu mw@

Figure 18.6.Response Comparison.
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Chapter 19

Future Work

Daniel J Segalman and Danny L. Gregory

19.1 Introduction

The careful reader of this handbook will certainly have tfdfesd many topics where he might
expect to make significant improvements and contributitins the goal of this chapter to provide
some order to opportunities and challenges for advancisdiétd.

Much of this issue has been framed in a SNL/NSF workshop imgibn VA in October 2006
[105] and some of the notions discussed there are repeatedAdditionally, this chapter reflects
experiences - some successful and some not - of reseancl&Md itrying to achieve the necessary
understanding to create useful engineering design angsasabols for the dynamics of built-up
structures.

One of the products of the 2006 workshop was the developnfemthotional road map for
working from the atomistic scale up to that of actual struesu One of the insights resulting
from the process of developing this road map was that betteragsolution into physics at any
level is not necessarily obtained by performing analysis atmaller length scales. The critical
issue is whether the physics that dominate at the smallgtiestale are any better understood than
those that dominate at the longer length scale. The direaity of that road map is determined
largely by the necessity to refine understanding of physiosl Ssome times chemistry) at each
length scale before explorations at that length scale caf Qaantitative value at a larger length
scale.

One of the difficulties of traversing the multi-scale roadooéFigure 19.1, is that the problems
of relevance are much messier than people would ordinadrpse to address in either laboratory-
or simulation-based investigations. For example, looldhthe left hand side of the road map a
researcher might perform atomistic calculations to exanie properties of individual asperities
and employ atomic force microscopy (AFM) to verify thoseccdditions. However, those AFM
experiments would have to be preformed on surfaces haviogide layer such as found in actual
joints. Similarly, the atomistic simulations would haveamploy postulated inhomogeneities to
accommodate oxide layers that are known to occupy metahsesf Simulating larger length
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scales requires introducing enough mechanics to appreithne processes where oxide layers are
sheared off, raw metal bonds locally across the interfaceé,chemical kinematics and transport
phenomena will govern the rates at which exposed metal foensoxide layers. Fidelity to the
actual physics requires layer-upon-layer of additionahpkexity.

Traversing the road map from left to right requires new expents, theories, models, and
verification strategies at every length scale. Additiopaithile looking to smaller length scales
to explain the larger, we discover that the small-scale meicis we study is driven by forces or
kinematics defined at a larger length scale. The problentrggically multi-scale. Many of the
tools often employed in multi-scale modeling (such as keciby or homogenization) are not as
useful in these interface problems as they have been wheyistubulk material properties.

Because the issues at hand are interface problems, it isajigraéfficult to collect data on the
mechanisms of interest directly. The experiments necgdsaleduce processes at each length
scale are often those that take place at a longer length. s€ake procedure involves a progres-
sion of postulating processes at small length scales, mggkiedictions to a larger length scale,
and employing validation experiments at the longer lengtiesto assess the small length scale
postulates. In this way, progress is obtained through a gmatibn of bottom-up and a top-down
procedures.

Since it may be decades before the road map is completelgrsed from the one side to the
other (small length scale to large), the engineering comitygannot wait for a rigorous bottom-
up process to provide engineering tools. Some work must be fil@using on longer length scales
to generate methods, models, and parameters that can beyeapi engineering structures in the
nearer term. The work of this handbook focuses on those tdeggth scales. Further, because
the expertise of the SNL joints research team members isapifinin the longer length scales, it is
with respect to such work that most of the following recomudedions are made. At the same time,
we can only encourage people more expert than we are on tls&cplof smaller length scales to
work out a research plan for the left hand side of Figure 19.1.

19.2 Experimental Work

An extensive discussion of future experimental work is intl®& 10.2. Topics that receive special
attention in that section are

a) Techniques to obtain greater spatial resolution of digggt@ent and deformation of speci-
mens. This could be coupled with finite element analysis thude the displacement fields
on interfaces.

b) More generalized loadings. These are necessary to refflacactual field loadings occur
in different directions simultaneously and are generatlyproportional. This data will be
necessary to develop correspondingly sophisticated rmodel
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Figure 19.1. Joints road map developed at 2006 International

Joints Workshop held in Arlington Va.

Procedings of the 2006 International Joints Workshop cafolbied in [105].
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¢) Advanced signal processing techniques. This is necessatytain better resolution on the
nonlinear response of jointed structures.

d) Experiments on multi-jointed structures. This is reqdin@t only to account for coupling of
nonlinearities, but also to provide guidance for the moddurction efforts discussed in this
handbook.

Elements of this discussion are cited in corresponding @xations of computational or theo-
retical issues below.

19.3 Joint Models

Joint modeling includes the kinematic simplification nesagg to map the continuum (three-dimensional)
kinematics and forces of the substructures to the correBpgnlower-dimensional quantities of

the joint models. Of course, joint modeling also includes¢bnstitutive model employed for the

joint itself. There are opportunities to make improvemeatsoth the kinematic and constitutive
elements.

19.3.1 Kinematic Models

The kinematic model employed explicitly and implicitly dughout this handbook is the rigidized
“whole-joint” model. (See Chapter 11.) Referring to Figdde2, each side of the contact patch is
held rigid and constrained to move consistently with a regnéative node.

As discussed in Chapter 11, the coupling of finite elementéotinuum) model components
of different dimensionality will always have artifacts. dlhigid whole-joint kinematics result in
fictitious, but harmless /4,/r singularities near the edges of the rigidized regions. &lsezgulari-
ties do not have any significance on the predicted systennaigsa However, they do slow down
the rate of mesh convergence and they sometimes distrass stnalysts who are unfamiliar with
these issues.

A more significant problem than the fictitious stress singiylanduced by the rigidization of
portions of each surface is suggested in Figure 19.2. Infidnise, two plates are attached by
closely placed bolts. The contact patches between thespéastsociated with the bolts overlap
with those of neighboring bolts. Employing the rigidizedaldyjoint model, the whole region of
overlapping contact patches is connected rigidly. Thiglpaes the natural re-balancing of loads
from one bolted region to another that is expected as extiyads to the system are changed.
Even when the contact patches do not overlap, there is iomuffilateral compliance available
from the small elastic regions between the rigidized patche

Evidence of overlap of contact patches is shown in the beitedgeometry of the W88 (Figure
19.2). The contact patch overlap is manifest through thezsva interfacial normal tractions
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between the centers of the compressive contact.

An approach to mitigating this over-constrained situai®m@a weakening of the rigidization
constraint. For instance, consider connecting the degresedom associated with each joint
node to those of the corresponding nodes of the contact pstdquiring that the joint degrees of
freedom evolve as a weighted average of the degrees of freetlthe mesh nodes.

Uy = % Uy Wicn/ %Wk,n (19.1)

where uﬁn = the displacement of thg" degree of freedom of th&" joint on surfaceA
uﬁkn= the displacement of thg" degree of freedom of thél" node of contact patch

and  wgn,= aweightassigned to thé" node of contact patch

Such a weighted relationship is suggested graphically guréi 19.3. Whether this approach is
feasible and what are optimal weightings are topics fohiertesearch.

A constraint on any feasible kinematic coupling is that dgld be possible to employ a joint of
zero compliance in a model for a specimen and recover tlirest of the interface-free specimen.

19.3.2 Joint Constitutive Models
19.3.2.1 Coupled equations for all 6 DOFs

The proposed experimental program outlined in Section @mghasized development of experi-
ments to probe the response of jointed structures to combaaels. So far, all experiments have
been unidirectional and the constitutive models postdl&tam the resulting data have also been
unidirectional. In general, it is expected that the threialdrrces and the three rotational degrees
of freedom of joints will not act independently. Developrhehappropriate constitutive modeling
must follow the generation of experimental data, suppdotethe corresponding fine mesh finite
element analysis.

19.3.3 Types of Joints

The content of this handbook focused on bolted and threasiats] primarily because of the
importance and ubiquity of such joints. There are othersgaf joints that must be addressed
as well, among them being such exotic connections as tapes jdn addressing such joints, the
issues of distributed relative slip must be addressed mozetly.
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The overlap of the contact patch due to adjacent bolts icated by
the normal tractions on the interface not going to zero betitbe bolt
centers.
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Figure 19.3. Representative Joint Node and Weights of Mesh
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The kinematics of each representative node is a distribwegdght of
mesh nodes on the corresponding side of the interface.

19.4 Finite Element Modeling of Joints

The literature of finite element modeling of joint mechani@s been surveyed in the relevant
sections of this handbook. There are difficulties and litiates to finite element investigations of
joint mechanics, and there are opportunities as well.

Among the limitations are:

e High resolution finite element modeling of interfaces is patationally demanding because
of the intrinsically multi-scale nature of the problem. Flwomputational difficulties pre-
clude the direct integration of fine mesh finite element asialynto structural dynamics

calculations.

¢ In general, there is no guarantee that the computationalksgsom these problems of mas-
sive contact are close approximations of the correspornuizitpematical problem.

e The interface (friction) constitutive models are very awpproximations to true interface
mechanics

Despite these limitations, fine mesh finite element (FMFElysis has much to contribute to
the understandingf joint mechanics. For example, as was shown in Chapterhbéigh FMFE
modeling cannot be expected to give quantitatively cowvaliies for joints properties, it has been
helpful in understanding the variability of mechanicalpedies among nominally identical spec-

imens.
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Following are areas of investigation where computatiodaéaces will likely extend the utility
of FMFE analysis in joint mechanics or where more extensivelémentation of FMFE analysis
is likely to advance the science of joint mechanics.

a)

b)

d)

Investigation of Dependencies: Not only can we look to FMVHftalysis to assess the sig-
nificance and qualitative effect of surface irregularitiest we can hope to investigate the
effect of mixed loadings, such as in-phase combinationsrmdion and moment. Such com-
binations are actually the norm even in the most carefulriooy investigation of jointed
specimens.

Which Interface Models to Use? Though the surface physars fwvhich to deduce an ap-

propriate set of interface constitutive models is a distamea of research, testing of various
candidate constitutive models with FMFE of joint can be hdlp assessing those consti-
tutive models.

Multi-scale and Model Reduction: The computational diffies of FMFE analysis derive
from two causes: the problem being intrinsically multileda nature and the contact prob-
lem involving the solution of contact problems at many lowag. Two areas of computa-
tional advance may mitigate those problems. The first is @ssipility of employing meth-
ods of domain decomposition (see [106]) to reduce the numidegrees of freedom of the
problem and possibly to increase the admissible time siagp $0omain decomposition is
complemented by the development of parallel computingueso Another potential ad-
vance is the reduction in dimension of the degrees of free@gsociated with contact. This
is the nature of the work by Guthrie and Kammer [107].

Does Contact Parallelize? Much time and energy has gowepitallelizing quasistatic

finite element code with the expectation that it would faaik solving very large problems
in modest periods of time. That expectation has been metnymaas of analysis, but there
is still an open question with respect to problems describelde handbook. So far, there is
still no demonstration that general contact analysis fgizts. An answer to this question
would be of great value for the investment of future resasirce

19.5 Structural Dynamics

Some of the elements of facilitating the use of joint models heen discussed above, there the
focus was specifically on structural dynamics models thérase

19.5.1 Model Reduction

Three model reduction methods were discussed in Chapte€éitainly other methods can and
should be considered. As importantyposteriorimethods of error estimation must be developed
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for each of these tools to guide the analyst in building higlet® and in employing simulation
results in decision making.

19.5.2 Library of Joint Properties

Currently, the only joint models that can be included witly aonfidence in structural dynamics
calculations are those deduced from careful laboratorysoreaent. Alternatively, models whose
parameters are deduced from FMFE modeling can be empldyaagh with less confidence.

The structural dynamicist needs much more. Ideally, he evbale at his disposal a library of
joint properties for each class of joint. Parameters anihldity in parameters would be provided
as functions of geometric, material, and load parameters.

With improvements to FMFE analysis on joints, better matennd interface models, and better
correlations with key experiments, the desire is to develolatabase making the specification of
joint properties easier for analysts. All of this involvest ionly raw computation and testing, but
advances in all the underlying sciences.

19.6 Quantification of Model Uncertainty

Predictions of success or robustness of a design requly@sg®n numerous models; not just the
computational model employed. Other aspects of modeliolgde the basic assumptions about
which physics dominate and the nature of the applied load$anndary conditions.

Quantifying model uncertainty involves assessing the dative uncertainty of all of the ele-
ments that play a role in prediction. In the following, thentrdoution to the uncertainty of struc-
tural dynamics response from modeling mechanical joindsldressed.

19.6.1 Model Form Error

A model form was postulated in Chapter 12 to capture the nmggortant behaviors of lap joints.
Qualitative limitations of the four parameter model intugdd in that chapter were discussed. That
model is quite successful in that parameters can be fourabhgto reproduce to the experimental
data.

Much still remains unclear about the fidelity by which this&ny other constitutive) model can
predict the response to any input outside the calibratiadddtype and magnitude). Addressing
this question is one necessary part of the quantificatiomoédainty of the predictions.

Another question is how well uniaxial constitutive modeds @apture the response of actual
joints to combined loads. There is need to quantify the dogf joint response to off axis loads.
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Once more sophisticated constitutive models are develtpedpture multi-axis coupling, there
must be quantification of how well coupling is captured.

19.6.2 Mappings to Reality

As discussed before, computational investigations usM&E analysis do not capture interface
physics with fidelity and do not give quantitatively corr@cedictions of joint properties. Still, at
this stage the FMFE predictions do seem tabalitativelycorrect.

FMFE will be relied on to provide joint parameters in the mostial cases - when a wealth
of experimental data is not available. That being the cassearch must be done to assess the
guantitative ranges of error in this approach.

Further, research should be directed to identifying syatendifferences between predictions
of FMFE calculations and laboratory data. If possible,isgatules should be developed to com-
pensate for systematic differences and to enhance thgy ailFMFE analysis in predicting joint
parameters.

19.6.3 Nominal Ranges of Joint Parameters

The notion of developing a database of joint constitutivelel® and parameters for those models as
functions of geometry, material, surface condition, logtd, was presented previously. The huge
variability of mechanical properties intrinsic to mectaalijoints requires that such a database
include processes to compute variability of those parammetewell as the parameters themselves.

19.6.4 Quantification of Variability of Joints

The sparse experimental data available on the very few gmoimetries studied showed huge
variability. Stiffnesses varied by 30% and dissipatior nadried by factors of three. These data
were collected on small numbers of specimens and testingrger data sets might well have
shown even more variability.

Clearly much more investigation - by laboratory experingmgplemented by FMFE analysis -
must be done to obtain both nominal properties and statlgtatements of variability of the joint
types of interest.

Another class of issues that must be addressed is the devetaf a theoretical framework
for predicting the statistical distribution of properties structures containing many interfaces,
each of which has its own distribution of statistical pras. Monte Carlo simulation would ap-
pear to be impractical. One would expect that this problemald/bave to be addressed through
a combination of extensive laboratory investigation arebthtical development of statistical me-
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chanics of nonlinear networks. Perhaps there is sometlnidgs to the law of large numbers
whereby the random nature of all of the joints causes thaliity net response to be described
by a distribution function of modest width.

19.6.5 What Can and Should be Predicted?

Given the huge intrinsic variability and nonlinearity anggoints and a corresponding variability
and nonlinearity among jointed structures, the questioisg:awhat quantities can be predicted;
which aspects of prediction are sensible to attempt to adidwhich aspects of prediction are
useful in design or qualification?

Because acceleration histories from slightly dissimijetems can diverge very quickly, other
features need to be considered. Following are some podsdileres that deserve consideration:

e peak stresses in critical parts over distinct time intexval

e frequency content evaluated over distinct time intervals

e comparison of wavelet content

e traditional Shock Response Spectrum (SRS)

19.7 Conclusion

The future work discussed above is far from inclusive of tileringe of research to the science
that underlies the dynamics properties of built up striegunt very much reflects the perceived
critical path for programmatic need at Sandia National lratmyies. Among the opportunities of
the research community is enlargement of this list to conttecengineering approaches discussed
here to a rigorous scientific foundation.
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Appendix A

Test Specimen Drawings

Danny L. Gregory
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Appendix B

Finding lwan Parameters

Daniel J. Segalman

A very robust Matlab code has been written to extract the farameters or the joint model
from the experimental data or micro-mesh FE. An exampletodlinctionget paramsK_T2 fol-
lows.

% provide the |ocation of the relevant Mtlab code
addpat h(’ E:\ Joi nt s\ mat | ab\ New fi nd_parans’);

% The following is collected from specinen B-2

F =100 200 300 400 500] ;
D=1[7.06%-5 4.106e-4 1.283e-3 2.776e-3  4.951e-3];
K= 1. 282e7 1. 170e7 1.037e7 9. 003e6 7.975e6] ;

% The stiffness value to match
F Ref F(4);
K Ref = K(4);

% the presunmed macroslip force

F S = 700;

%

%

% Find Iwan Parameters

[chi, beta, KT, phi_mx, R § = ...
get _params_K T2(F , D, F_S

F Ref |, K Ref );

The resulting output along withs are sufficient to define fully both parameter sets: the primi-
tive set(R, S X, @nax) and the preferred séFs,Kr, x, ).

The dissipation data from all force levels is employed wiihy the stiffness data from just
one force level is used. The reasons for this can be explaiitedeference to plots in Figure B.1.
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The dissipation curves behave in a manner consistent witbmaeplaw relation with force
amplitude. Also, the dissipation easily varies by a facfdhoee among the specimens and varies
by several orders of magnitude over the force ranges imagst.

For six of the specimens, the stiffness decreases conthuetith load amplitude and will
gradually decline to zero as the load approaches breakdreeFs (600 Ib in this case). For three
of the specimens, the stiffness is nearly constant and iexjpes a precipitous decline to zero as
the load approaches break free force.

Given the qualitative variability from one specimen to dmestand the fact that the four param-
eter model predicts stiffnesses very much like those ofigpats C-1, C-2, and C-3, but not very
much like that of the other six samples, it seems reasonalte tontent with matching the model
with experiment at just one force level.

The code discussed above is used to deduce the parametieesfofit parameter model from
all the dissipation data of Specimen B-2, and from the stggdata of that specimen at a load of
400 Ib. The predictions of the resulting four-parameter elade shown in Figure B.2. The model
reproduces the energy dissipation very well, but only vigcaptures the decline in stiffness with
load.

A listing of getparamsK_T2.mis provided in Figure B.3, and listings of two more routines
that are called by that function are provided in Figures Bid/B.5.
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get params_K_T2.m 1/1
e:/Joints/matlab/New_find_params/ 07/25/08
function [chi_out, beta out, K T out, phi_nmax, R S] = get_parans_K T2(Force,D, F_S, F ref, Kref

% routine to generate three of the joint paraneters given

% F_S - the fourth joint parameter = macroslip force
% a Force—-Dissipation curve (Force, D)

% a measured value of joint stiffness at some reference force
% K_ref = K(F_ref)

%

tolerance = K_ref *1.0e -3;

F_ratio = F_ref /' F_S;

%

% First and second guesses of K_T

K_Te(1) = K_ref;

K_Te(2)=K_ref *1.02;

% Newton itteration loop to find the set {Ke, chi, beta} that
% reproduce given dissipations (D) over given force range (F) and
% match experimental stiffness K_ref at F_ref
for i=1:2

[chi(  i),beta( i)]=find_chi_beta(Force,D, F_S, K_Te(

% find the stiffness at F_ref with these parameters
r = find_r(F_ratio, chi( i), beta(  1));
Ke( i)=K_ Te( i)..

i)

*((beta( T)+1) - (r ~(chi( i)+1) /(chi( i)+2) /(1 +beta( i));

end

error = Ke(2) —K_ref;

count = 0; max_count=20;

while (tolerance < abs(error)) && (count  <max_count)
count = count +1;

K_Te2_temp = K_Te(2);

K_Te(2) =K_Te(2) —error *(K_Te(2) -K_Te(1)) /(Ke(2) - Ke(1));

%

K_Te(1)= K_Te2_temp;

chi(1) = chi(2);

beta(1) = beta(2);

Ke(1) = Ke(2);

%

[chi(2),beta(2)] = find_chi_beta(Force,D, F_S, K_Te(2));
% find the stiffness at F_ref with these parameters

r = find_r(F_ratio, chi(2), beta(2));

Ke(2) = K_Te(2)...

“((beta(?)  +1) - (r ~(chi2) +1)) /(chi2) +2)) /(1 +beta());

error = Ke(2) —K_ref;
end
if (count == max_count)
msg = [ "Failure to converge after’ , hum2str(max_count), iterations.’ ]
Stiffness_error = Ke(2) —K_ref
current_ K_t=K_Te(2)
end

% having converged, output values
chi_out = chi(2);

beta_out = beta(2);

K_T_out =K_Te(2);
phi_max=F_S *(1 +beta(2)) /(K_Te(2) *(beta(2) +(chi(2)
R=F

S=

+1) 1 (chi(2)  +2)));
S *(chi(2) +1)/((phi_max ~(chi2) +2)) *(beta(2) +(chi(2) -+1)/(chi2) +2)));

(F.S /phi_max) *beta(@) /(beta(2) +(chi2) +1)/(chi(2) +2));

Figure B.3. Listing of Functionget_paramsK_T 2.
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find_chi_beta.m (unsaved)
/cygdrive/e/Joints/matlab/New_find_params/

1/1
07/25/08

%This routine finds accepts dissipation data as well as values for
% nominal macro-slip force F_S and initial stiffness K_T to

% calculate values of chi and beta to reproduce the dissipation
% data.

%

function [chi,beta] = find_chi_beta (F,D, F_S, K.T)
%

% Number of dissipation values

N = length(F);

%

% parameters for optimixation

p =zeros(2 *N+3,1);

PL:N) =F

p(N+1: 2*N) =D;

p(2 *N+1)=F_S;

p(2 *N+2) =K_T;

p(2 “N#3) = N;

%

% initial guess for the unknowns

X = zeros(2,1);

slope = (log(D(N)) —log(D(1)))  /(og(F(N)) - log(F(1)));

X(1) = slope -3

x(2) =1,

%

% call the optimization program

options = optimset( TolX" ,1e -6, 'Display’ , 'final’ , 'MaxFunEvals’
8000);

[x,resid,flag]=fminsearch( ‘para_fit3’ ,X,options,p);

chi = x(1);

beta = x(2);

%

Figure B.4. Listing of Functionfind_chi_beta
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find_r.m 1/1

e:/Joints/matlab/New_find_params/ 07/25/08
%

% r = find_r(Ft,chi,beta);

%

% routine to find the r that results in a target value of Ft
%

function r= find_r (Ft, chi, beta)

%

%

% first estimate:

r=Ft;

%

% iteration parameters

i =1; max_i = 100;

tol = 1.0e —-4;

res = Ft;

while (i <max_i &Ft *tol <abs(res))
F=r *((beta +1)—(r *(chi +1)) /(chi +2)) [/ ..
( beta +(chi +1)/ (chi +2));
res=F -Ft;
slope = ( (beta +1) -r ~(chi +1)) /(beta + (chi +1)/(chi +2));
r=r -res / slope;
r = max(r, -1);
r=min(r, 1);
= i+l
end
if (Ft *tol <abs(res))
%(disp('did not converge on r’);
%Ft
%res
%chi
%beta
end

Figure B.5. Listing of Functionfind_r.
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Appendix C

Threaded Joint Derivations

Daniel J Segalman

The sections in this appendix provide tools to deduce paemnef an elastic material equiv-
alent to those of a welded unit thread pair. The key notiom ipdrform a number of elasticity
calculations on a mesh containing an array of unit threasg&igure 13.3) and then to identify
the single set of equivalent elastic parameters that bpetdeces all those elasticity results. This
effort has three elements:

1. For each detailed elasticity result, deduce an equival@mogeneous strain for the center
unit thread pair.

2. For each detailed elasticity result, deduce an equivalemogeneous stress for the center
unit thread pair.

3. From all of those strain and stress pairs, deduce a sestfeparameters that best maps the
strains onto the stresses.

The next three sections address each of these issues sgparat

C.0.1 Finding Equivalent Homogeneous Strains

There are subtleties in imposing displacements on the ahitthese subtleties originate from the
fact that in the actual geometry, except at the top and bottwoeads, each cell is attached to cells
above and below it, as illustrated in Figure 13.3. This cast is satisfied if periodic boundary
conditions are imposed explicitly, however, this is difftdo implement in most FE codes.

Instead, constraints are imposed by embedding the unitfcellerest inside a matrix of similar
cells. Displacements are imposed in a manner consistehtheinogeneous deformation on the
boundaries of that matrix. Labeling locations of nodesn the boundary of the cell matrix a8,
displacements consistent with the displacement gratigti08] are

ou"=H - x"+ug (C.1)
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where ug is arigid body translation.

The displacement gradieht is assumed constant over the cell volume and is found by post-
multiplying the above equation by the local outwardly pwigtnormal vectom and integrating
over the surface of the control volume (the central threaid}p

/dv [dun] dA:H/av [xn] dA+ [uO </dvndA)} (C.2)

where the quantities inside brackets are dyads. If evadustgebraically, they would be computed
as

[ablij = aib; (C.3)
Noting that
/ ndA=0 (C.4)
oV
Equation|(C.2) becomes
H=UX"1 (C.5)
where
u :/ Bun] dA (C.6)
oV
and
X= [ [xn]dA (C.7)
oV

The incremental strain corresponding to this deformaton i

de, == (H+HT) (C.8)

NI =
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C.0.2 Finding Equivalent Homogeneous Stress

The (possibly nonlinear) equilibrium equations are solieedetermine the nodal forces and dis-
placements as well as the stresses and strains in the ekeriiéietre are two expeditious methods
for deducing equivalent, homogeneous approximates fosttiess in the thread-pair region:

1. Average the element stresses weighted by the elemenmheslu
o= Zak\/k/ ka (C.9)
2. Appropriately integrate the tractions applied to therimary of the thread-pair.

Both approaches are mathematically equivalent; the approsed depends on which data are
most easily extracted from the FE microanalysis of the twgeir and its surrounding material.
Though the mathematics of the first approach is very simpét,df the second approach requires
some explanation, as follows.

From the forcef" on the boundary of the unit cell at the center of the array té ceorre-
sponding tractions are defined as

#N = 5 /dAD (C.10)

where d\" is the surface area corresponding to node

An expression fow is derived in terms of the™ If the tractionsr on the surface are exactly
consistent with a uniform stress fiedd those tractions are expressed in terms of

7(S) = o -n(9) (C.11)

where 7(s) is the traction at locatios on the surface of the cell
and n(s) is the unit outwardly pointing normal there.

Taking the outer vector product of Equation (C.11) and iraBgg over the surface yields

/av [r(s)n(s)] dA = /(,VU‘ [n(s)n(s)]dA (C.12)

Factoringo out of the integral on the right and lettif@y= [, [n(s) n(s)] dA, obtainso

o= { /a [ron(s) dA} Q1 (C.13)
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Equation|(C.13) provides a natural manner to define the mieasss associated with the trac-
tions obtained via finite elements

o, = {; (71" dA”} Q1= {Z [5f”n”]} Q71 (C.14)

Since it is assumed that the stress tensan Equation ((C.11) is symmetric, Equations (C.11)
through (C.14) are also derived easily in the following form

7(s)=n(s) o (C.15)
/av n(s) 7(s)] dA— /av n(s)n(s)]dA- o (C.16)
o—0QL. { /a MUCEIC) dA} (C.17)

and

o, =Q . { ; [n"#") dA”} =Q 1t {; [n" 6f”]} (C.18)

The symmetry ofo is guaranteed by averaging the expressionssfoand o, in Equations

(C.14) and[(C.18)
a:%<{;[6f”n”]}-Q_1+Q_1-{;[n”éf”]}) (C.19)

C.0.3 Deducing Elastic Properties

Assuming that a number of elastic FE calculations have bedonmed as outlined above, a sys-
tematic method for processing those results is sought taatedquivalent elastic parameters for
the thread cell.

Each experiment should yield an ard}, of lengthM of strain values and another arrdy",
of corresponding stress values whiétdas the number of components defining the stress or strain
state. The superscript is the index of the numerical experiment. If all the equinaletress and
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strain fields deduced from the FE calculations are congistith the same elastic response, there
is a symmetridM x M matrix, E, relating the equivalent stresses and equivalent strains

TM=EgS" (C.20)
BecauseE is symmetric, it is fully defined by a numbeK, of parameter£y whereK <
M (M +1)/2. If further material assumptions, such as isotropy or &mopthotropy, are made on

E, the value oK is further reduced. Corresponding to the material paramm€eare symmetric
matrices By, of dimensiorM x M, which are defined so that

K
E = Z CiBy (C.21)
k=1

For full anisotropy in plane strain elasticitiyl(= 3), there are six material properties dads
expressed

C G GCs
E—| C C Cs (C.22)
G G Cy

In this case,

w
w
I
POO OO OO

(C.23)

OO0 OOr OOO
OORr OO0 OOO
s
I
OO0 OO0 OO0OO
POO OO0 OFr O
OrRr O POO OOO

The challenge is to find the material parametgfs An objective functionR(Cy) associated
with Equation|(C.20) is defined:

R = max[tr(T" - E SHTD(TM - ES)] (C.24)
= max|C;Cr ((S™)' B] DBS") — 2C;tr ((S") T B[ DT")
+tr ((T™TDT™)] (C.25)
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where D is a diagonal matrix capturing the mapping between sheainstr
angle and the corresponding component of the strain tensor.

In plane strain,

0
0 (C.26)

In Equations (C.24) and (C.25), the stress vectdfsand strain vectorS™ of each case are each
normalized by the largest componentS5t

The objective functiorR(Cy) represents the maximum error obtained over all of thau-
merical experiments used in the constitutive relationstiigquation [(C.20) for a particular set
of parameter€y. The simplex {minsearch tool in the Matlab Optimization Toolbox is used to
minimize the objective function (which is the maximum resderror) to find the optimal values
of Cx. These optimal values @i are then used to construct the elasticity maiinsing Equation

(C.21).
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Appendix D

Verification Test Suite: ABAQUS and LS
DYNA

Nicoli Ames

D.1 Introduction

This section reports an effort to replicate results fromghie of classic contact problems first
introduced in the body of the document. In the following s, the results will be presented
from the implicit finite element code Abaqus/Standard [188Y from the finite element code
LS-Dyna [110] using implicit integration.

D.2 Indentation by a Rigid, Flat Punch

We have chosen to model the full 3D problem with plane-stoainndary conditions as opposed to
using 2D plane-strain elements. The mesh used is shown indf[@.1. The mesh is sufficiently
wide and tall in order to prevent boundary effects near thacpu The inputs used ara2 1,
P=1,E=1x10 andv =0.3.

D.2.1 LS-Dyna

The rigid punch is modeled by a single element with a rigidemnat definition. Element type 1
with hourglass control type 6 is used for the elastic bodyd8e, constant stress solid element
with hourglass control). Surface-to-surface contact witmear penalty method is used between
the rigid element and the elastic body.

The results from LS-Dyna are shown along with the analyscédlitions in the following fig-
ures. The results from LS-Dyna were initially not very premg. There was significant pene-
tration of the slave (elastic) surface into the masterdigurface. To reduce the penetration, the
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Figure D.1. Three-dimensional Mesh Used in the FE Simula-
tions.

penalty stiffness on the slave surface nodes was increasaddxtor of 16. This significantly
improved the smoothness of all the LS-Dyna solutions. Hanethere are still issues with the
LS-Dyna solution near the punch corner. Figure|D.5 showspthesure contours in the elastic
material near the corner of the punch. The maximum pressuaefew elements outside of the
contact region in LS-Dyna, whereas the maximum pressureldhee located directly under the
punch corner.
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Figure D.2. Pressure Distribution Under Rigid Frictionless
Punch.
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Figure D.3. Displacement of Material irx-Direction Under
Punch.
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Figure D.4. Displacement of Material irz-Direction Outside
Punch.
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Figure D.5. Pressure Contour Near Punch Corner.
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D.2.2 ABAQUS

The rigid punch is modeled with an analytical rigid surfaaad C3D8R elements are used for
the elastic body (8-node linear brick, reduced integratidth hourglass control). Finite-sliding
surface-to-surface “hard” contact is used between thel sgrface and the elastic body. With
the default settings in Abaqus/Standard, the optimal nbomastraint method will be chosen at
runtime by Abaqus. This can be a Direct constraint (pure &age multiplier) method, a Penalty
constraint method with or without Lagrange multipliersdaan Augmented Lagrange method (a
penalty constraint method with augmentation iterations).

The results from Abaqus are shown along with the analytmalt®ns in the following figures;
the agreement between Abaqus and the analytical solusogscellent for the pressure distribu-
tion, x displacement, and displacement. Figure D.9 shows the pressure contours ieléstic
material near the corner of the punch; Abaqus correctlygsdabe maximum pressure under the
punch corner.

Analytical
o Abaqus

pressure, p
o

s s s s s s s s s
-05 -04 -03 -02 -01 0 0.1 0.2 03 0.4 0.5
x coordinate

Figure D.6. Pressure Distribution Under Rigid Frictionless
Punch.
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Figure D.7. Displacement of Material irx-Direction Under
Punch.
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Figure D.8. Displacement of Material ire-Direction Outside
Punch.
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Figure D.9. Pressure Contour Near Punch Corner.
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D.3 Static Hertzian Contact

We have chosen to model half of each sphere with 3D elemente. nfesh used is shown in
Figure/D.10. In order to aid in the application of boundamnditions, rigid parts are tied to
the exposed mid-plane of each hemisphere. One rigid pamrigpletely fixed and a force is
ramped to approximatelly = 45.8 x 10° on the opposite rigid part. The inputs used Rie= 1,

E =689 x 10°, andv = 0.33.

Figure D.10. FE Simulation Meshes.

Three-dimensional mesh used in the FE simulations (upfgr 2etail
of one hemisphere (lower). Closeup of contact region (upjgt).
Rigid parts are hidden for clarity.

D.3.1 LS-Dyna

The results are shown along with the analytical solutiorteéfollowing figures. With the default
penalty stiffness, very poor results are obtained for thigoad displacement (Figure D.11) and the
maximum contact pressure (Figure D.12) in comparison wighainalytical solution. However, as
the penalty stiffness is increased by a factor of 10, thdaigment and maximum contact pressure
results are significantly improved, however, there is didicrepancy in the contact pressure as a
function of contact patch radius as shown in Figure D.14.uBthker increasing the penalty stiffness
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scale factor to 100, the contact pressure as a function aigand the contact patch is improved
further as shown in Figure D.15.
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Figure D.11. Vertical Displacement vs Applied Normal Force.

515



max

Maximum Pressure, p

Analytical

0.5 o - LS-Dyna - Default Penalty |

o LS-Dyna - 10x Penalty

X LS-Dyna - 100x Penalty
T T T

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Force, P x 10

Figure D.12. Maximum Contact Pressure vs Applied Normal
Force.

4 T T T T T T T T

P =42.3e6 ©  LS-Dyna
Analytical 4

3.5

Pressure, p(r)

A
%0 l 7
\) ;
o |
| |
0 . L%, . AN i 1.3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Radius, r

Figure D.13. Pressure in the Contact Patch.

Contact pressure, p, vs position, r, in contact patch at asi normal
loads P using the default contact penalty stiffness. Arlytesults
from Equation(14.6)for 0 <r < a.
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Figure D.14. Pressure in the Contact Patch.

Contact pressure, p, vs position, r, in contact patch at asi normal
loads P using a 10 scale factor on the contact penalty ss§nénalyt-
ical results from Equatiofl4.6)for 0 <r < a.
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Figure D.15. Pressure in the Contact Patch.

Contact pressure, p, vs position, r, in contact patch at asi normal
loads P using a 100 scale factor on the contact penalty sg8n Ana-
lytical results from Equatioif14.6)for 0<r < a.
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Contact
Pressure
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Figure D.16. Contact Pressure Contours.

Contact pressure contours on sphere using a 100 scale factdhe
contact penalty stiffness with a force ofP43x 10°. These contours
correspond to the outermost (red) curve in the previous égur
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D.3.2 ABAQUS

One complication arose at the beginning of the analysis wetwo spheres are in contact at only
one node. When a force is applied as the boundary conditianot transmitted properly across
the interface and the solution does not converge. In ordarvedd this, a small displacement is
first applied in order to bring multiple nodes into contactheg interface, then the force boundary
condition is introduced.

The results are shown along with the analytical solutionthenfollowing figures. All results
agree very well.

Analytical
o Abaqus

Displacement, &

Force, P x107

Figure D.17. Vertical Displacement vs Applied Normal Force.
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Figure D.18. Maximum Contact Pressure vs Applied Normal
Force.
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Figure D.19. Pressure in the Contact Patch.

Contact pressure, p, vs position, r, in contact patch ateasinormal
loads P. Analytical results from Equati§©4.6)for 0 <r < a.
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Figure D.20. Contact Pressure Contours.

Contact pressure contours on sphere at a normal force ef 45.8 x
10°. These contours correspond to the outermost (pink) curw@en
previous figure.
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D.4 Mindlin Problem

Two identical elastic spheres of radiRg are pressed against each other with a fé?aes in the
previous problem. A coefficient of frictiop is assumed at the interface between the spheres.
After the application of the normal force, a tangential gofic< uP is applied until the spheres
slips completely relative to each other. This is shown sdtaally in Figure D.21.

Figure D.21. Schematic of Mindlin Problem.

D.4.1 LS-Dyna

The same model described in the previous section is usethifoptoblem as well. However, it
proved difficult to apply the tangential force in LS-Dyna,stangential displacement was applied
instead. The tangential displacement on the free rigid bedy ramped from 0 to.2 x 10°3
after the normal load dP = 2 x 10’ was applied. The coefficient of friction j = 0.1, so that a
resulting tangential load of 2 10° should cause complete slip.

The results for the tangential displacement vs tangerdiakfare shown in Figure D.22. As
in the previous problem, the results are strongly dependerthe value of the contact penalty
stiffness scale factor. The default value of penalty st$s grossly underpredicts the tangential
stiffness of the interface. The results are improved, bey tre not brought into agreement with
the analytical solution when the penalty stiffness is stalea factor of 10 and further by a factor
of 100. The results do not continue to improve with incregsicale factors.
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Figure D.22. Mindlin Monotonic Loading Curve.

Lateral displacement vs tangential force for the elastibesps sub-
jected to compression and a tangential force. Results aosvehfor
various contact penalty stiffness scaling factors.
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D.4.2 ABAQUS

The same model described in the previous section is usedigpitoblem as well. In Abaqus, the
tangential force was ramped To= 2 x 10° after the normal load d? = 2 x 10’ was applied. The
coefficient of friction isy = 0.1, so that the maximum tangential load should cause comglipte

Three different interaction property combinations weredlisi Abaqus at the contact interface
between the spheres:

e Direct (Lagrange multiplier) normal constraint enforcemaeavith Lagrange multiplier fric-
tion formulation

e Default normal constraint enforcement, with Penalty foictformulation

e Default normal constraint enforcement, with Penalty foietformulation using a reduced
value of admissible elastic slip (0.01 of the default slip)

All three methods used a “hard” contact relationship formbemal direction behavior. With the

default settings in Abaqus/Standard, the optimal congtraethod will be chosen at runtime by
Abaqus. This can be a Direct constraint (pure Lagrange piigit) method, a Penalty constraint
method with or without Lagrange multipliers, and an AugneenLagrange method (a penalty
constraint method with augmentation iterations).

For the Penalty friction formulations, the allowable elasiip used by Abaqus iy = Fil,
wherel is a characteristic contact surface length of the curramgtfan the slave surface, akeis
the user defined slip tolerance. The default valug is- 5 x 1073

The results from Abaqus for the tangential displacemeniuasl lare shown along with the
analytical solution in the following figure. The results rimathe Direct Lagrange case (Direct
normal constraint with Lagrange multiplier friction) mh&s the results with the Penalty friction
with reduced elastic slip. The results from the case withfaudevalue of elastic slip in the Penalty
friction formulation are much softer than anticipated. Whone of the cases result in a perfect
agreement with the analytical expression, this does teat¢hat we can use both a Penalty and a
pure Lagrange Multiplier friction formulation in Abaqus ¢btain commensurate results.
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Figure D.23. Mindlin Monotonic Loading Curve.

Lateral displacement vs tangential force for the elastibesps sub-
jected to compression and a tangential force. Results aosvehfor
various contact penalty stiffness scaling factors.
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D.5 Lubkin Problem

Two elastic spheres of radiug, are pressed against each other with forcas in the earlier
problems. A coefficient of frictioru is assumed at the interface between the spheres. After the
application of the normal force, a twisting momeMtis applied to the spheres until they slip
completely relative to each other. The twist of one sphdedive to the stationary x-y plane [5.

This is shown schematically in Figure D.24.

Figure D.24. Schematic of Lubkin Problem.

Lubkin [111] found the following expression for the moment

= ‘Z—F,)Ta { 322 K'k? [6K (k) -+ (4K — 3)D (k)] — 3kK (k) sin 1K
_ 32 K(k)/n/z sin (K sina) /n/z sin~%(K'sina) » (D.1)
o (1-k2sirfa) 3720 J1_K2sirta
where
D(K) = (K (k) — E(K)/* 0.2)
andK (k) andE(k) are the complete elliptic integrals of the first and secomd kand
k,:C/a, k2:1_k/2 (DS)

wherea is the contact area ardis the radius of the annulus of the slipping region in the aont
area. [111] also found the following expression for the twithe sphere

2ua

m(K(k) —E(k)) (D.4)

B=
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Equations/(D.1) and (D.4) may be solved analytically to piemla torque-twist relation, how-
ever, [112] shows a simpler approximation to this pair ofans which has less than 3% error

_ 3mpPa —16° Ga’P
M= 16 ll—exp(WWH. (D.5)

The moment that causes complete slip can then be approxiraate

: 3muPa
lim M = D.6
il 16 (D-6)

The results are shown along with Lubkin’s solution, Equadiand(14.18), and Jaeger’s ap-
proximation, Equation (D!5).

D.5.1 LS-Dyna

The same model described in the previous section is usetiifoptoblem, however, the applied
tangential displacement is replaced with an applied t@isthich is ramped to 0.036 radians
(B = 0.018) after the normal loall = 2 x 10’ was applied. The coefficient of friction js= 0.1.

As in previous problems, the default penalty stiffness qrenk very poorly. Larger values
of the penalty stiffness scale factor bring the solutiorie rloser agreement with the analytical
solution, but values greater than 100 do not further imptbeeaesults.

Lubkin solution

— — — Jaeger approximation
o - - LS-Dyna — Default Penalty
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Figure D.25. Lubkin Monotonic Twist Curve.
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D.5.2 ABAQUS

The same model described in the previous section is usetiitoptoblem, however, the applied
tangential force is replaced with an applied momknhtwhich is ramped to & x 10* after the
normal loadP = 2 x 10" was applied. The coefficient of friction js= 0.1.

The Abaqus simulation with small elastic slip matches Lualsksolution very well. Whereas
the simulation with the default elastic slip is about halsaf. The Abaqus simulation with the La-
grange multiplier friction formulation failed to convergace the twisting stage of the simulation

commenced.

Moment, M

Lubkin solution
— — — Jaeger approximation
o Abaqus - Hard Penalty

n]
u]
n]
1
u)
m]
u]
u)
u]
u]
u]
]
m)
u]
1
]
1
1
]
1
u)
m]
]
u]
u]
u]
u]
n]
X Abaqus - Hard Penalty, Small Slig
T T T

0 1 1 1 1 T
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Twist, B

Figure D.26. Lubkin Monotonic Twist Curve.

D.6 Conclusions

For normal contact situations, LS-Dyna Implicit does notfgen very well using the default
settings in a surface-to-surface penalty type contact. defi@ult penalty stiffness must be scaled
by a factor of at least 10 in order to prevent penetrationsiti@rrectly influence the pressure
profile at the contact interface. For tangential frictiobahavior, LS-Dyna performs even worse;
it requires the default penalty stiffness to be scaled by ashmas 100 in order to come close
to reproducing analytical results. While it is expectedt thame scaling would be required in
order to simulate the perfect Coulomb friction assumed eahalytical results, the amounts of
scaling necessary in LS-Dyna is much larger than one woubéexto need to use. Also, the
large penalty stiffness values drastically slow down timeugation time. Another drawback of the
contact modeling in LS-Dyna is that it does not support a penalty (i.e. constraint) type contact
formulation in the implicit version of the code.
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For normal contact situations, Abaqus/Standard perforang well using the default settings
for “hard” contact in a finite-sliding surface-to-surfaggdraction. When frictional effects are
also dominant, it is best to use a penalty formulation fog&rtial behavior. If the user is very
concerned about accurately modeling slip at the interfttoen a smaller non-default value of
allowable elastic slip should be chosen. For this case paalierance of; = 5 x 10> (default
Fr = 5x 10~3) works very well in reproducing results from a pure Lagrangétiplier friction
formulation. No noticeable improvements were achievedgismaller values df;.
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