19 research outputs found

    Nanomechanical properties of solvent cast polystyrene and poly(methyl methacrylate) polymer blends and self-assembled block copolymers

    Get PDF
    © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE). The nanomechanical properties of solvent-cast polymer thin films have been investigated using PeakForceℱ Quantitative Nanomechanical Mapping. The samples consisted of films of polystyrene (PS) and poly(methyl methacrylate) (PMMA) obtained after the dewetting of toluene solution on a polymeric brush layer. Additionally, we have probed the mechanical properties of poly(styrene-b-methyl methacrylate) block copolymers (BCP) as randomly oriented thin films. The probed films have a critical thickness <50 nm and present features to be resolved <42 nm. The Young's modulus values obtained through several nanoindentation experiments present a good agreement with previous literature, suggesting that the PeakForceℱ technique could be crucial for BCP investigations, e.g., as a predictor of the mechanical stability of the different phases.This work was partially funded by the projects SNM (FP7-ICT-2011-8) and FORCE-for-FUTURE (CSD2010-00024).Peer Reviewe

    Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers

    Get PDF
    The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers

    SynthĂšse de (co)polymĂšres Ă  base de Poly(3-hexylthiophĂšne) pour le photovoltaĂŻque organique

    No full text
    L’optimisation de la morphologie de la couche active est primordiale pour l’augmentation des rendements des cellules solaires photovoltaĂŻques organiques. Nous avons montrĂ© l’influence du ratio de matĂ©riaux donneur (P3HT) et accepteur (PCBM) d’électrons ainsi que de la masse molaire du P3HT sur la morphologie de la couche active. Afin de contrĂŽler la sĂ©paration de phases entre les matĂ©riaux donneur et accepteur d’électrons, il est possible d’utiliser des copolymĂšres Ă  blocs afin d’aider la compatibilisation entre le P3HT et le PCBM. Nous avons choisi de synthĂ©tiser des copolymĂšres Ă  blocs P3HT-b-polystyrĂšne et des P3HT-b-polyisoprĂšne prĂ©sentant une certaine compatibilitĂ© avec les matĂ©riaux de la partie active. L’ajout optimisĂ© de P3HT-b-polyisoprĂšne permet une augmentation de 30% des rendements et de 90% de durĂ©e de vie des cellules solaires.Active layer morphology optimization is fundamental to achieve high efficiency in organic photovoltaic solar cells. We showed the influence of the donor (P3HT) and acceptor (PCBM) material ratio and the impact of the P3HT molecular weight on the active layer morphology. We demonstrated the possibility of using well-designed block copolymers to help P3HT and PCBM compatibilization and to control their phase separation. We chose to synthesize P3HT-b-polystyrene and P3HT-b-polyisoprene for which each block is compatible with the active materials. Optimal addition of P3HT-b-polyisoprene enables to get a 30%-improved efficiency and a 90%-enhanced lifetime of the solar cells

    SynthĂšse de (co)polymĂšres Ă  base de Poly(3-hexylthiophĂšne) pour le photovoltaĂŻque organique

    No full text
    L’optimisation de la morphologie de la couche active est primordiale pour l’augmentation des rendements des cellules solaires photovoltaĂŻques organiques. Nous avons montrĂ© l’influence du ratio de matĂ©riaux donneur (P3HT) et accepteur (PCBM) d’électrons ainsi que de la masse molaire du P3HT sur la morphologie de la couche active. Afin de contrĂŽler la sĂ©paration de phases entre les matĂ©riaux donneur et accepteur d’électrons, il est possible d’utiliser des copolymĂšres Ă  blocs afin d’aider la compatibilisation entre le P3HT et le PCBM. Nous avons choisi de synthĂ©tiser des copolymĂšres Ă  blocs P3HT-b-polystyrĂšne et des P3HT-b-polyisoprĂšne prĂ©sentant une certaine compatibilitĂ© avec les matĂ©riaux de la partie active. L’ajout optimisĂ© de P3HT-b-polyisoprĂšne permet une augmentation de 30% des rendements et de 90% de durĂ©e de vie des cellules solaires.Active layer morphology optimization is fundamental to achieve high efficiency in organic photovoltaic solar cells. We showed the influence of the donor (P3HT) and acceptor (PCBM) material ratio and the impact of the P3HT molecular weight on the active layer morphology. We demonstrated the possibility of using well-designed block copolymers to help P3HT and PCBM compatibilization and to control their phase separation. We chose to synthesize P3HT-b-polystyrene and P3HT-b-polyisoprene for which each block is compatible with the active materials. Optimal addition of P3HT-b-polyisoprene enables to get a 30%-improved efficiency and a 90%-enhanced lifetime of the solar cells

    SynthĂšse de (co)polymĂšres Ă  base de Poly(3-hexylthiophĂšne) pour le photovoltaĂŻque organique

    No full text
    L optimisation de la morphologie de la couche active est primordiale pour l augmentation des rendements des cellules solaires photovoltaïques organiques. Nous avons montré l influence du ratio de matériaux donneur (P3HT) et accepteur (PCBM) d électrons ainsi que de la masse molaire du P3HT sur la morphologie de la couche active. Afin de contrÎler la séparation de phases entre les matériaux donneur et accepteur d électrons, il est possible d utiliser des copolymÚres à blocs afin d aider la compatibilisation entre le P3HT et le PCBM. Nous avons choisi de synthétiser des copolymÚres à blocs P3HT-b-polystyrÚne et des P3HT-b-polyisoprÚne présentant une certaine compatibilité avec les matériaux de la partie active. L ajout optimisé de P3HT-b-polyisoprÚne permet une augmentation de 30% des rendements et de 90% de durée de vie des cellules solaires.Active layer morphology optimization is fundamental to achieve high efficiency in organic photovoltaic solar cells. We showed the influence of the donor (P3HT) and acceptor (PCBM) material ratio and the impact of the P3HT molecular weight on the active layer morphology. We demonstrated the possibility of using well-designed block copolymers to help P3HT and PCBM compatibilization and to control their phase separation. We chose to synthesize P3HT-b-polystyrene and P3HT-b-polyisoprene for which each block is compatible with the active materials. Optimal addition of P3HT-b-polyisoprene enables to get a 30%-improved efficiency and a 90%-enhanced lifetime of the solar cells.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes

    No full text
    We show that the production and the geometrical shape of complex polymersomes can be predicted by varying the flow rates of a simple microdevice using an empirical law which predicts the droplet size. This device is constituted of fused silica capillaries associated with adjusted tubing sleeves and T-junctions. Studying the effect of several experimental parameters, double emulsions containing a controlled number of droplets were fabricated. First, this study examines the stability of a jet in a simple confined microfluidic system, probing the conditions required for droplets production. Then, multicompartmental polymersomes were formed, controlling flow velocities. In this work, poly(dimethylsiloxane)-graft-poly(ethylene oxide) (PDMS-g-PEO) and poly(butadiene)-block-poly(ethyleneoxide) (PBut-b-PEO) amphiphilic copolymers were used and dissolved in chloroform/cyclohexane mixture. The ratio of these two solvents was adjusted in order to stabilize the double emulsion formation. The aqueous suspension contained poly(vinyl alcohol) (PVA), limiting the coalescence of the droplets. This work constitutes major progress in, the control of double emulsion formation in microfluidic devices and shows that complex structures can be obtained using such a process
    corecore