1,371 research outputs found

    Rolling covenants to protect coastal ecosystems in the face of sea-level rise

    Get PDF
    This article considers how “rolling covenants” (i.e., covenants on land title that can operate in a “rolling” geographic area to keep pace with sea-level rise) can be used to permit productive use of land in the short term, while ensuring land use can shift over time to allow for coastal ecosystem migration in the medium to long term. We use Australia as a case study, and through analysis of legislation and a series of semistructured interviews, we demonstrate how land title-based covenants can be used to give legal effect to “rolling covenant” arrangements where land is subject to existing use and occupation. We then consider practical issues associated with drafting a rolling covenant arrangement, including an analysis of the types of events or scenarios that could be used as a basis for land use changing (e.g., projected sea-level rise, actual ecosystem migration), and the advantages and disadvantages of each. We conclude that rolling covenants are a viable option for land management in the coastal zone, especially in circumstances where funding sources are available to incentivize uptake. Rolling covenants may provide opportunities for coastal wetlands to be maintained and even enhanced in cover, thereby delivering important ecosystem services (e.g., blue carbon) into the future

    Gettysburg College Sustainability Proposal

    Full text link
    In the fall of 2011, the Environmental Studies capstone class led by Professor Rutherford Platt was asked to write Gettysburg College’s first Sustainability Plan. The goal of the plan was to develop specific sustainable practices for the campus that were related to the three pillars of sustainability: economic, social, and environmental, and how integrating diligent sustainable practices into each of these respected pillars will result in a more conscious campus, community, and future. In 2010, Gettysburg College turned to the Sustainability Tracking Assessment and Rating System (STARS) to quantify the institution’s sustainability efforts, providing a self-check mechanism to encourage sustainability applications to all aspects of the College. The American College and University Presidents’ Climate Commitment was signed in 2007 by former Gettysburg College President Katherine Haley Will, declaring that Gettysburg College would become carbon neutral by 2032. Gettysburg College has made large strides in the search for sustainability, and aims to continue its dedication to furthering sustainable practice. The following plan outlines the six priority areas identified by the Capstone class: progress of the American College and University Presidents’ Climate Commitment, Dining Services, campus green space, community outreach, integration of sustainability into the Gettysburg College Curriculum, and the Sustainability Advisory Committee. The first priority area identified was monitoring and upholding the American College and University Presidents’ Climate Commitment (ACUPCC). Though creating new sustainability initiatives on campus is the driving force towards an increasingly sustainable college and community, it is imperative that these goals be carried out in full to maximize beneficial returns. In order to reach carbon neutrality, Gettysburg College hopes to increase energy efficiency in buildings, incorporate renewable energy sources on campus, and mitigate remaining emissions through the purchase of carbon offsets. To further the College’s progress, it is proposed that Gettysburg College continue its energy-efficient appliance purchasing policy, as well as create a policy to offset all greenhouse gas emissions generated by air travel for students study abroad. As stated by the ACUPCC, a Sustainability Committee should take responsibility for the updates and progress reports required to meet the goal of carbon neutrality. The second priority area identified was sustainability in Dining Services. Gettysburg College is home to 2,600 students, all of whom require three full meals a day. Dining Services accounts for a large fraction of Gettysburg College’s sustainability efforts, already implementing sustainability through composting, buying local produce, and using biodegradable products. The proposed on-campus sales cuts of non-reusable to-go items, a change in campus mentality on food waste, and improved composting practices will translate to an increasingly sustainable campus, as well as a well-fed campus body. The third priority was maintaining green space on campus. Ranked as the 23rd most beautiful campus in the United States by The Best Colleges, Gettysburg College utilizes campus green space to create an atmosphere that is conducive to activity as well as tranquility. The plan proposes that Gettysburg College and its grounds facilities continue their exceptional efforts, focusing on increasing the use of the student garden, creating a new rain garden or social area on campus, and converting unnecessary parking lots into green space. As these additions are completed, they must be introduced to the student body and faculty alike to assure these areas are known and utilized. The fourth priority was utilizing community outreach to spread awareness of sustainability initiatives on and off campus. To connect the sustainability-geared changes proposed in this plan, community outreach at Gettysburg College is assessed to estimate how well these initiatives are communicated and promoted to both potential and enrolled students, faculty, and other concerned parties. To evaluate the efficiency of communication at Gettysburg College, a quantitative assessment is presented to measure the ease of finding the sustainability webpage, the quality of sustainability-related topics available on the webpage, and quality of webpage design. The webpage is in need of improved text to image ratios, locations of sustainability topics, and data displays. Despite not having a link to the sustainability webpage on the Gettysburg College homepage, sustainability events should be covered and presented on the rotational news feed found on the homepage to maximize outreach to interested parties or simply to add to the definition of Gettysburg College. The fifth priority was integrating sustainability into the Curriculum to build a culture on campus that values academic rigor, supports students as they cultivate intellectual and civic passions, and promotes the development of healthy social relationships and behaviors. The proposed Sustainability Committee on Sustainability in the Curriculum (SCC) will hold sustainability workshops for faculty with the aim to instill sustainability into all academic disciplines, providing all Gettysburg graduates with a means to approach their professional careers in a fashion that is conscious of sustainability. The sixth and last priority was the Sustainability Advisory Committee. Established in 2007, the Sustainability Advisory Committee is currently under review, but it is recommended that the committee restructure itself in accordance with the new Sustainability Committee Bylaws. These bylaws aim to define the purposes, membership, governance, and involvement with the college. With a clearly defined set of goals and methodology, the Sustainability Advisory Committee will be able to improve the solidarity of the sustainability movement on campus as a whole. By following the propositions laid out in the Gettysburg College Sustainability Plan, the student body, faculty, and community alike will become a part of a multi-faceted progression toward a more sustainable future

    Genetic Variants Within the Erythroid Transcription Factor, KLF1, and Reduction of the Expression of Lutheran and Other Blood Group Antigens: Review of the In(Lu) Phenotype

    Get PDF
    Erythroid-specific Krüppel-like factor 1, or KLF1, is an integral transcriptional activator for erythropoiesis. Genetic variants within KLF1 can result in a range of erythropoietic clinical phenotypes from benign to significant. The In(Lu) phenotype refers to changes in the quantitative expression of blood group–associated red cell surface molecules due to KLF1 variants which are otherwise clinically benign. These clinically benign KLF1 variants are associated with a reduced expression of 1 or more red cell membrane proteins/carbohydrates that carry blood group antigens for the LU (Lutheran), IN (Indian), P1PK, LW (Landsteiner-Wiener), KN (Knops), OK, RAPH, and I blood group systems. This is of significance during routine serologic blood typing when expression falls below the test sensitivity and therefore impacts on the ability to accurately detect the presence of affected blood group antigens. This is of clinical importance because the transfusion requirements for individuals with the In(Lu) phenotype differ from those of individuals that have a true Lunull phenotype. With this review, we summarize the current body of knowledge with regard to the In(Lu) phenotype and associated KLF1 variants. Our review also highlights discordant reports and provides insights for future research and management strategies. Serological heterogeneity in blood group expression of In(Lu) individuals has been shown, but studies are limited by the low prevalence of the phenotype and therefore the small numbers of samples. They are further limited by availability and inconsistent application of serological reagents and varying test algorithms. With the advent of genome sequence-based testing, an increasing list of In(Lu)-associated KLF1 variants is being revealed. The spectrum of effects on blood group expression due to these variants warrants further attention, and a consistent methodological approach of studies in larger cohorts is required. We propose that a recently reported testing framework of standardized serological studies, flow cytometry, and variant analysis be adopted; and that the international databases be curated to document KLF1 variability and the resultant In(Lu) red cell blood group expression. This will provide better classification of KLF1 variants affecting blood group expression and allow for phenotype prediction from genotype, accurate typing of In(Lu) individuals, and better transfusion management of related challenging transfusion scenarios

    Misogynoir and the public woman: analog and digital sexualization of women in public from the Civil War to the era of Kamala Harris

    Get PDF
    This essay identifies how the very conception of public woman is infused with the opprobrium hurled against a wanton woman–a sexualized figure who has lost claims to moral standing or social worth. Our analysis begins diachronically by using thin description to trace the historical conflation of public woman in general, and Black woman in particular, with prostitute to outline the contours of the trope of public woman that have solidified across time. We document how the public woman became equated with prostitute, and then how the label prostitute was affixed to women in public to situate them as promiscuous or prurient. Our analysis proceeds synchronically as we argue that the toxic archive of memes and hashtags that name Kamala Harris a “ho” operates as a contemporary iteration of misogynoir that conflates public woman with prostitute. The result of our analysis is an identification of the digital public woman wherein the acceleration and repetition of such tropes ensures a recalcitrant public sentiment toward public women and hides the technological and rhetorical connections that intensify such public feelings

    Consistency in Polyclonal T-cell Responses to Gluten between Children and Adults with Celiac Disease

    Get PDF
    BACKGROUND & AIMS: Developing antigen-specific approaches for diagnosis and treatment of celiac disease requires a detailed understanding of the specificity of T cells for gluten. The existing paradigm is that T-cell lines and clones from children differ from those of adults in the hierarchy and diversity of peptide recognition. We aimed to characterize the T-cell response to gluten in children vs adults with celiac disease. METHODS: Forty-one children with biopsy-proven celiac disease (median age, 9 years old; 17 male), who had been on strict gluten-free diets for at least 3 months, were given a 3-day challenge with wheat; blood samples were collected and gluten-specific T cells were measured. We analyzed responses of T cells from these children and from 4 adults with celiac disease to a peptide library and measured T-cell receptor bias. We isolated T-cell clones that recognized dominant peptides and assessed whether gluten peptide recognition was similar between T-cell clones from children and adults. RESULTS: We detected gluten-specific responses by T cells from 30 of the children with celiac disease (73%). T cells from the children recognized the same peptides that were immunogenic to adults with celiac disease; deamidation of peptides increased these responses. Age and time since diagnosis did not affect the magnitude of T-cell responses to dominant peptides. T-cell clones specific for dominant α- or ω-gliadin peptides from children with celiac disease had comparable levels of reactivity to wheat, rye, and barley peptides as T-cell clones from adults with celiac disease. The α-gliadin-specific T cells from children had biases in T-cell receptor usage similar to those in adults. CONCLUSIONS: T cells from children with celiac disease recognize similar gluten peptides as T cells from adults with celiac disease. The findings indicate that peptide-based diagnostics and therapeutics for adults may also be used for children. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved

    Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma.

    Get PDF
    BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury

    RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey

    Get PDF
    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space TelescopesComment: Accepted to Ap

    Resistance to natural and synthetic gene drive systems

    Get PDF
    Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general

    PLD3 is a neuronal lysosomal phospholipase D associated with β-amyloid plaques and cognitive function in Alzheimer\u27s disease.

    Get PDF
    Phospholipase D3 (PLD3) is a protein of unclear function that structurally resembles other members of the phospholipase D superfamily. A coding variant in this gene confers increased risk for the development of Alzheimer\u27s disease (AD), although the magnitude of this effect has been controversial. Because of the potential significance of this obscure protein, we undertook a study to observe its distribution in normal human brain and AD-affected brain, determine whether PLD3 is relevant to memory and cognition in sporadic AD, and to evaluate its molecular function. In human neuropathological samples, PLD3 was primarily found within neurons and colocalized with lysosome markers (LAMP2, progranulin, and cathepsins D and B). This colocalization was also present in AD brain with prominent enrichment on lysosomal accumulations within dystrophic neurites surrounding β-amyloid plaques. This pattern of protein distribution was conserved in mouse brain in wild type and the 5xFAD mouse model of cerebral β-amyloidosis. We discovered PLD3 has phospholipase D activity in lysosomes. A coding variant in PLD3 reported to confer AD risk significantly reduced enzymatic activity compared to wild-type PLD3. PLD3 mRNA levels in the human pre-frontal cortex inversely correlated with β-amyloid pathology severity and rate of cognitive decline in 531 participants enrolled in the Religious Orders Study and Rush Memory and Aging Project. PLD3 levels across genetically diverse BXD mouse strains and strains crossed with 5xFAD mice correlated strongly with learning and memory performance in a fear conditioning task. In summary, this study identified a new functional mammalian phospholipase D isoform which is lysosomal and closely associated with both β-amyloid pathology and cognition
    • …
    corecore