163 research outputs found

    Electroencephalographic interbrain synchronization in children with disabilities, their parents, and neurologic music therapists

    Get PDF
    : As with typically developing children, children with cerebral palsy and autism spectrum disorder develop important socio-emotional rapport with their parents and healthcare providers. However, the neural mechanisms underlying these relationships have been less studied. By simultaneously measuring the brain activity of multiple individuals, interbrain synchronization could serve as a neurophysiological marker of social-emotional responses. Music evokes emotional and physiological responses and enhances social cohesion. These characteristics of music have fostered its deployment as a therapeutic medium in clinical settings. Therefore, this study investigated two aspects of interbrain synchronization, namely, its phase and directionality, in child-parent (CP) and child-therapist (CT) dyads during music and storytelling sessions (as a comparison). A total of 17 participants (seven cerebral palsy or autism spectrum disorder children [aged 12-18 years], their parents, and three neurologic music therapists) completed this study, comprising seven CP and seven CT dyads. Each music therapist worked with two or three children. We found that session type, dyadic relationship, frequency band, and brain region were significantly related to the degree of interbrain synchronization and its directionality. Particularly, music sessions and CP dyads were associated with higher interbrain synchronization and stronger directionality. Delta (.5-4 Hz) range showed the highest phase locking value in both CP and CT dyads in frontal brain regions. It appears that synchronization is directed predominantly from parent to child, that is, parents and music therapists' brain activity tended to influence a child's. Our findings encourage further research into neural synchrony in children with disabilities, especially in musical contexts, and its implications for social and emotional development

    A workflow for the detection of antibiotic residues, measurement of water chemistry and preservation of hospital sink drain samples for metagenomic sequencing

    Get PDF
    Background: Hospital sinks are environmental reservoirs that harbour healthcare-associated (HCA) pathogens. Selective pressures in sink environments, such as antibiotic residues, nutrient waste and hardness ions, may promote antibiotic resistance gene (ARG) exchange between bacteria. However, cheap and accurate sampling methods to characterise these factors are lacking. Aim: To validate a workflow to detect antibiotic residues and evaluate water chemistry using dipsticks. Secondarily, to validate boric acid to preserve the taxonomic and ARG (“resistome”) composition of sink trap samples for metagenomic sequencing. Methods: Antibiotic residue dipsticks were validated against serial dilutions of ampicillin, doxycycline, sulfamethoxazole and ciprofloxacin, and water chemistry dipsticks against serial dilutions of chemical calibration standards. Sink trap aspirates were used for a “real-world” pilot evaluation of dipsticks. To assess boric acid as a preservative of microbial diversity, the impact of incubation with and without boric acid at ~22°C on metagenomic sequencing outputs was evaluated at Day 2 and Day 5 compared with baseline (Day 0). Findings: The limits of detection for each antibiotic were: 3”g/L (ampicillin), 10”g/L (doxycycline), 20”g/L (sulfamethoxazole) and 8”g/L (ciprofloxacin). The best performing water chemistry dipstick correctly characterised 34/40 (85%)standardsin a concentration-dependent manner. One trap sample tested positive for the presence of tetracyclines and sulfonamides. Taxonomic and resistome composition were largely maintained after storage with boric acid at ~22°C for up to five days. Conclusions: Dipsticks can be used to detect antibiotic residues and characterise water chemistry in sink trap samples. Boric acid was an effective preservative of trap sample composition, representing a low-cost alternative to cold-chain transport

    High-resolution characterisation of short-term temporal variability in the taxonomic and resistome composition of wastewater influent

    Get PDF
    Wastewater-based epidemiology (WBE) for population-level surveillance of antimicrobial resistance (AMR) is gaining significant traction, but the impact of wastewater sampling methods on results is unclear. In this study, we characterized taxonomic and resistome differences between single-timepoint-grab and 24 h composites of wastewater influent from a large UK-based wastewater treatment work [WWTW (population equivalent: 223435)]. We autosampled hourly influent grab samples (n=72) over three consecutive weekdays, and prepared additional 24 h composites (n=3) from respective grabs. For taxonomic profiling, metagenomic DNA was extracted from all samples and 16S rRNA gene sequencing was performed. One composite and six grabs from day 1 underwent metagenomic sequencing for metagenomic dissimilarity estimation and resistome profiling. Taxonomic abundances of phyla varied significantly across hourly grab samples but followed a repeating diurnal pattern for all 3days. Hierarchical clustering grouped grab samples into four time periods dissimilar in both 16S rRNA gene-based profiles and metagenomic distances. 24H-composites resembled mean daily phyla abundances and showed low variability of taxonomic profiles. Of the 122 AMR gene families (AGFs) identified across all day 1 samples, single grab samples identified a median of six (IQR: 5–8) AGFs not seen in the composite. However, 36/36 of these hits were at lateral coverage <0.5 (median: 0.19; interquartile range: 0.16–0.22) and potential false positives. Conversely, the 24H-composite identified three AGFs not seen in any grab with higher lateral coverage (0.82; 0.55–0.84). Additionally, several clinically significant human AGFs (blaVIM, blaIMP, blaKPC) were intermittently or completely missed by grab sampling but captured by the 24 h composite. Wastewater influent undergoes significant taxonomic and resistome changes on short timescales potentially affecting interpretation of results based on sampling strategy. Grab samples are more convenient and potentially capture low-prevalence/transient targets but are less comprehensive and temporally variable. Therefore, we recommend 24H-composite sampling where feasible. Further validation and optimization of WBE methods is vital for its development into a robust AMR surveillance approach

    High-resolution characterization of short-term temporal variability in the taxonomic and resistome composition of wastewater influent

    Get PDF
    Wastewater-based epidemiology (WBE) for population-level surveillance of antimicrobial resistance (AMR) is gaining significant traction, but the impact of wastewater sampling methods on results is unclear. In this study, we characterized taxonomic and resistome differences between single-timepoint-grab and 24 h composites of wastewater influent from a large UK-based wastewater treatment work [WWTW (population equivalent: 223 435)]. We autosampled hourly influent grab samples (n=72) over three consecutive weekdays, and prepared additional 24 h composites (n=3) from respective grabs. For taxonomic profiling, metagenomic DNA was extracted from all samples and 16S rRNA gene sequencing was performed. One composite and six grabs from day 1 underwent metagenomic sequencing for metagenomic dissimilarity estimation and resistome profiling. Taxonomic abundances of phyla varied significantly across hourly grab samples but followed a repeating diurnal pattern for all 3 days. Hierarchical clustering grouped grab samples into four time periods dissimilar in both 16S rRNA gene-based profiles and metagenomic distances. 24H-composites resembled mean daily phyla abundances and showed low variability of taxonomic profiles. Of the 122 AMR gene families (AGFs) identified across all day 1 samples, single grab samples identified a median of six (IQR: 5–8) AGFs not seen in the composite. However, 36/36 of these hits were at lateral coverage <0.5 (median: 0.19; interquartile range: 0.16–0.22) and potential false positives. Conversely, the 24H-composite identified three AGFs not seen in any grab with higher lateral coverage (0.82; 0.55–0.84). Additionally, several clinically significant human AGFs (bla VIM, bla IMP, bla KPC) were intermittently or completely missed by grab sampling but captured by the 24 h composite. Wastewater influent undergoes significant taxonomic and resistome changes on short timescales potentially affecting interpretation of results based on sampling strategy. Grab samples are more convenient and potentially capture low-prevalence/transient targets but are less comprehensive and temporally variable. Therefore, we recommend 24H-composite sampling where feasible. Further validation and optimization of WBE methods is vital for its development into a robust AMR surveillance approach

    Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio–venous connections

    Get PDF
    Recent reports suggest that mammalian embryonic coronary endothelium (CoE) originates from the sinus venosus and ventricular endocardium. However, the contribution of extracardiac cells to CoE is thought to be minor and nonsignificant for coronary formation. Using classic (Wt1(Cre)) and previously undescribed (G2-Gata4(Cre)) transgenic mouse models for the study of coronary vascular development, we show that extracardiac septum transversum/proepicardium (ST/PE)-derived endothelial cells are required for the formation of ventricular coronary arterio-venous vascular connections. Our results indicate that at least 20% of embryonic coronary arterial and capillary endothelial cells derive from the ST/PE compartment. Moreover, we show that conditional deletion of the ST/PE lineage-specific Wilms' tumor suppressor gene (Wt1) in the ST/PE of G2-Gata4(Cre) mice and in the endothelium of Tie2(Cre) mice disrupts embryonic coronary transmural patterning, leading to embryonic death. Taken together, our results demonstrate that ST/PE-derived endothelial cells contribute significantly to and are required for proper coronary vascular morphogenesi

    The plasmidome associated with Gram-negative bloodstream infections: a large-scale observational study using complete plasmid assembliess

    Get PDF
    Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative ‘backbone’ of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes

    An \u3cem\u3eIL1RL1\u3c/em\u3e genetic variant lowers soluble ST2 levels and the risk effects of \u3cem\u3eAPOE\u3c/em\u3e-Δ4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-Δ4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (AÎČ) pathology through the modulation of microglial activation and AÎČ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    Early mortality and overall survival in oncology phase I trial participants: can we improve patient selection?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient selection for phase I trials (PIT) in oncology is challenging. A typical inclusion criterion for PIT is 'life expectancy > 3 months', however the 90 day mortality (90DM) and overall survival (OS) of patients with advanced solid malignancies are difficult to predict.</p> <p>Methods</p> <p>We analyzed 233 patients who were enrolled in PIT at Princess Margaret Hospital. We assessed the relationship between 17 clinical characteristics and 90DM using univariate and multivariate logistic regression analyses to create a risk score (PMHI). We also applied the Royal Marsden Hospital risk score (RMI), which consists of 3 markers (albumin < 35g/L, > 2 metastatic sites, LDH > ULN).</p> <p>Results</p> <p>Median age was 57 years (range 21-88). The 90DM rate was 14%; median OS was 320 days. Predictors of 90DM were albumin < 35g/L (OR = 8.2, p = 0.01), > 2 metastatic sites (OR = 2.6, p = 0.02), and ECOG > 0 (OR = 6.3, p = 0.001); all 3 factors constitute the PMHI. To predict 90DM, the PMHI performed better than the RMI (AUC = 0.78 vs 0.69). To predict OS, the RMI performed slightly better (RMI ≄ 2, HR = 2.2, p = 0.002 vs PMHI ≄ 2, HR = 1.6, p = 0.05).</p> <p>Conclusions</p> <p>To predict 90DM, the PMHI is helpful. To predict OS, risk models should include ECOG > 0, > 2 metastatic sites, and LDH > ULN. Prospective validation of the PMHI is warranted.</p
    • 

    corecore