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Abstract  

Recent reports suggest that mammalian embryonic coronary endothelium (CoE) develops from the 

sinus venosus and ventricular endocardium. The contribution of extracardiac cells to CoE is, 

however, regarded to be minor and non-significant for coronary formation. Using classic (Wt1Cre) 

and novel (G2-Gata4Cre) transgenic mouse models for the study of coronary vascular development, 

we show that extracardiac septum transversum-proepicardium (ST/PE)-derived endothelial cells are 

required for the formation of ventricular coronary arterio-venous vascular connections. Our results 

indicate that at least 20% of embryonic coronary arterial and capillary endothelial cells derive from 

the ST/PE cell compartment. Moreover, we show that conditional deletion of the ST/PE lineage-

specific Wilms’ tumor suppressor gene (Wt1) in the ST/PE (G2-Gata4Cre) and the endothelium 

(Tie2Cre) disrupts embryonic coronary transmural patterning, leading to embryonic death. Taken 

together, our results demonstrate that ST/PE-derived endothelial cells significantly contribute to and 

are required for proper coronary vascular morphogenesis. 

 

Significance statement 

This study shows that extracardiac endothelial cells from the septum transversum/proepicardium 

(ST/PE) contribute, at least, to 20% of embryonic coronary endothelium (CoE), definitively proving 

that the endocardium (cardiac endothelium) is not the only developmental origin of CoE. Using 

different mouse transgenic lines, we first identified the preferential incorporation of ST/PE-derived 

endothelial cells into prospective coronary arteries and capillaries. We then deleted the Wilms’ 

tumor gene (Wt1), an important coronary developmental regulator, from both the ST/PE and 

embryonic endothelial cells. The defects of both mutant mice, which die before birth, indicate that 

ST/PE endothelial cells are required for the establishment of coronary arterio-venous connections 

through the ventricular wall, and are thus necessary for the proper formation of the coronary 

vasculature. 
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Introduction 

The coronary vascular system, whose function is necessary to sustain late embryonic and 

postnatal cardiac function, is formed by a complex network of blood vessels, including arteries, 

arterioles, capillaries, venules, and veins (1). Recent reports indicate that various sources of 

endothelial cells contribute to the mammalian embryonic coronary system, which forms from a 

primary endothelial plexus (2–4). However, the specific fate and function of these different 

endothelial cell pools during coronary vascular morphogenesis is subject of an intense controversy 

(5). 

Two endocardial populations have been reported to participate in the building of the 

embryonic coronary vascular system. The first one derives from the sinus venosus endocardium, 

which sprouts to give rise to the nascent, Apelin+, coronary vasculature (2). A careful analysis of 

these results suggests that the sinus venosus endocardium provides a cellular scaffold for the 

development of coronary veins, but its contribution to coronary artery formation is less evident. 

Accordingly, a second source of coronary endothelium has been identified in the ventricular 

endocardium (Nfatc1+ lineage) that massively contributes to coronary arterial endothelium (3, 6).  

A third disputed source of coronary endothelium (CoE) is the proepicardium (PE), a structure 

that comprises epicardial progenitor cells. The PE protrudes from the septum transversum (ST), a 

folding of lateral mesoderm that initiates the separation of thoracic and abdominal cavities in 

mammals (7). Although in vivo cell-tracing and in vitro culture of avian PE cells unambiguously 

show their robust differentiation into CoE (8, 9), data from experiments performed in mammals, 

which have largely relied on the use of the Cre/LoxP technology, claimed a minor contribution of 

PE-derived cells to the developing CoE (10–12). It is important to note here that the so-called 

‘epicardial’ Cre constructs used in these studies are based in the expression of genes like Gata5, 

Tbx18 or Wilms’ tumor supressor (Wt1), which are expressed by both PE and ST cells, thus 

confirming these two tissues form an ontogenetic and histomorphological continuum, and are 

therefore difficult to distinguish based on their molecular expression profile. The restricted 

involvement of PE cells to CoE has been recently challenged by new results indicating that the PE 

is constituted of different cell populations, including a significant number of endothelial progenitors 
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(13). Despite the suggested vascular potential of the PE, the final fate of these cells, the extent of 

their contribution and their specific role during coronary blood vessels morphogenesis remains 

unknown.  

To study the extent and significance of ST/PE contribution to the developing coronary 

vasculature, we have used novel and classic transgenic mice to first track ST/PE cells into the 

developing coronary vascular system, and then identify their ontogenetic functions. Our results show 

that ST/PE-derived endothelial cells (G2-Gata4CreYFP; Wt1CreYFP) preferentially contribute to arterial 

and capillary CoE, and are required for the growth of the coronary vascular tree, the transmural 

patterning of early arterio-venous vascular connections, and the viability of the entire coronary 

circulation. 
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Results  

 

G2-Gata4 enhancer-driven reporter expression labels septum transversum and proepicardial 

cells 

At embryonic days (E) 9.5, G2-Gata4LacZ mice display reporter activity in the septum 

transversum mesenchyme, including the PE, but not in heart tissues (myocardium, endocardium) 

(Fig.1A). At E11.5, G2-Gata4LacZ expression remains mainly confined to the mesenchyme 

surrounding the liver (14); weak X-gal staining is also observed in the myocardium of sinus venosus 

horns (Fig. 1B). Cre recombinase protein is only found in the sinus venosus myocardium and aortic 

walls (Fig.S1A), and is absent from the epicardium, myocardium and endocardium of other cardiac 

chambers (Fig.S1B-D).  

 

G2-Gata4 enhancer-lineage tracing reveals an extensive contribution to the epicardium, 

EPDCs (E9.5-E12.5) and CoE (E12.5-18.5) 

To trace G2-Gata4 ST/PE cells throughout embryonic development, we crossed the G2-

Gata4Cre line with Rosa26-YFP reporter mice, the resulting offspring displaying permanent YFP 

expression (from here onwards, G2CreYFP+) in the ST/PE (Fig.1C,D) and their derivatives, i.e. the 

epicardium and epicardial-derived cells (EPDCs) (Fig.1E-F’). GATA4 protein is detected in E9.5 

G2CreYFP+ ST/PE and some epicardial cells (Fig.1C). The majority of G2CreYFP+ ST/PE cells express 

WT1 protein (Fig.1D), while some ST/PE (Fig.1E) and epicardial (Fig.1E,F,F’) WT1+ cells are 

G2CreYFP-, suggesting that Wt1 expression may occur in epicardial cells that do not belong to the G2-

Gata4 population. WT1 protein expression is progressively reduced as G2CreYFP+ cells migrate from 

the interventricular and atrio-ventricular subepicardium (E11.5 to E12.5) into the myocardial layers 

(Fig.1F’). At these stages Wt1 gene expression remains confined to the epicardium and early EPDCs 

(Fig.1G). From E12.5 onwards, G2CreYFP+ cells are found in the epicardium, subepicardium, and the 

myocardial walls and septa; numerous ST/PE-derived G2CreYFP+ intramyocardial cells are also 

endothelial CD31+ (Fig.1H-J) and isolectin B4+ cells of the developing coronary blood vessels (IB4, 

Fig.1K,L). No G2CreYFP+ cells were found in the sinus venosus endocardium (Fig.S1E); however, 
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some G2CreYFP+/CD31+ cells are observed in the ventricular endocardium, suggesting an early 

contribution of ST/PE cells to this tissue (Fig.S1F). Chimeric transplantation of quail proepicardia 

into chick host hearts confirms ST/PE endothelial cell incorporation to the developing endocardium 

is a normal event (Fig.S1G,H).  

G2CreYFP+ cells can be found in the coronary endothelium and medial coronary smooth muscle 

(CoSM) layers, always intermingled with G2CreYFP- cells in a ‘salt and pepper’ pattern (Fig.1I-L, see 

also Movie S1). To verify the vascular potential of the ST/PE, angioblastic/endothelial specific 

Scl/Tal1 and Vegfr2 expression was confirmed in ST/PE cells by semiquantitative-PCR (Fig.S2A), 

and the vasculogenic potential of the tissue tested in vivo and in vitro (Fig.S2B-F). Most G2CreYFP+ 

coronary endothelial cells are found in coronary vessels of the ventricular compact layer. Since the 

activation of NOTCH signaling pathway via the nuclear translocation of the NOTCH1 intracellular 

domain (N1ICD) is known to reveal arterial endothelium fate, we studied N1ICD nuclear 

accumulation in G2CreYFP+ cells, and found that many endothelial (IB4+) G2CreYFP+ cells are also 

N1ICD+ (Fig.1K,L).  

 

Wt1-driven GFP expression is a bona fide marker for early epicardial cells, EPDCs (E10.5-

12.5) and coronary blood vessels (E12.5-18.5) 

Since Wt1 is also known to be a marker of ST/PE cells (15, 16), we first studied its expression 

pattern in Wt1GFP knock in mouse embryos. At E10.5, Wt1 protein and Wt1-driven GFP expressions 

overlap in space and time, and are restricted to the primitive epicardium (Fig.2A). These results 

confirm that the Wt1GFP knock-in mouse faithfully recapitulates native Wt1 gene activity. Between 

E11.5 and E12.5, Wt1 expression is detected in epicardial cells and EPDCs, which accumulate at the 

subepicardium of the ventricles (Fig.2B), atrio-ventricular and interventricular grooves (not shown). 

In accordance with the results from G2-Gata4 cell lineage tracing, no CD31 expression is detected 

in Wt1GFP+ epicardial cells or EPDCs before E11.5 (Fig.2C). At E12.5, a primary subepicardial 

coronary vascular plexus has formed in the ventricles. Starting at this stage, GFP expression is 

identified in a significant proportion of subepicardial and intramyocardial CD31+ cells of the 

developing atrio-ventricular ventricular and interventricular coronary vasculature (Fig.2D,E-E’’). 
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Some of these cells display the typical spindle-shaped morphology of migratory mesenchymal cells, 

with their major axis oriented orthogonally with respect to the epicardial surface (Fig.2F). Between 

E13.5-14.5 some Wt1GFP+/CD31+ cells can be identified in the forming intramyocardial blood vessels 

(Fig.2G), their number decreasing at perinatal stages (E18.5) (Fig.2H). 

 

Wt1 cell lineage tracing into developing coronary blood vessels  

To further confirm ST/PE contribution to the developing coronary vasculature, we selected a 

Wt1Cre mouse line which has been previously used to study PE and coronary development (15, 16). 

Crossing these mice with the Rosa26-YFP reporter line allows for the tracing of the Wt1 cell lineage 

(from here onwards, Wt1CreYFP). At E9.0-9.5 no Wt1CreYFP+ cells are seen in heart, with the exception 

of a few isolated myocardial (Wt1CreYFP+/α-SMA+) ones that formed part of the developing cardiac 

chamber walls (Fig.S3A). None of these cells express the vascular marker CD31 (Fig.S3B). Between 

E10.5-11.5, almost all epicardial cells and the majority of subepicardial EPDCs were Wt1CreYFP+ 

(Fig.2I). A fraction of Wt1CreYFP+ epicardial cells were apparently detaching and migrating from the 

epicardial lining towards the subepicardial mesenchyme (Fig.2I’, arrowheads). Active epicardial 

epithelial-to-mesenchymal transition was confirmed by time-lapse analysis of Wt1CreYFP+ whole heart 

explants (Movie S2). At these stages, a minor number of Wt1CreYFP+/CD31+ cells could be identified 

in the endocardial layer (Fig.S3C). From E12.5 onwards, the abundance of subepicardial and 

intramyocardial Wt1CreYFP+ cells increases, being these cells especially frequent within the 

interventricular septum (Fig.2J), and the ventricular walls (Fig.2K). Wt1CreYFP+ cells differentiate 

into CoE (Wt1CreYFP+/CD31+) (Fig.2L) and CoSMCs (Wt1CreYFP+/αSMA+) (Fig.2M) of 

intramyocardial coronary vessels (prospective coronary arteries, CoA). Neonatal arterial CoE was 

found to be a mosaic of Wt1CreYFP+ and Wt1CreYFP- cells, with Wt1CreYFP+ cells displaying a 

characteristic ‘salt and pepper’ distribution pattern. Perivascular cells closer to the CoE expressed 

α-SMA, but only part of them was Wt1CreYFP- (Fig.2N,O). To confirm the ST/PE Wt1+ cell population 

contributes to the forming coronary vessels, Wt1CreERT2 mice were crossed with the Rosa26-YFP line 

and recombination induced with tamoxifen at proepicardial stages (E9.0). All embryos (E14.5) 

showed a reduced but evident contribution to the developing coronary endothelium (Fig.2P-R). 
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FACS and image analysis reveals a differential contribution of Wt1 and G2-Gata4 cell lineages 

to CoE 

To further quantify the contribution of PE cells to the embryonic CoE, we analyzed G2CreYFP 

and Wt1CreYFP dissociated ventricles by FACS. CD31 was used as pan-endothelial marker. From 

midgestation to birth, Wt1CreYFP+ cells account for 6.5% (E12.5)-8% (neonates) of total ventricular 

cells. At E12.5 the percentage of G2CreYFP+ cells is 9.1%, this percentage decreasing to 4% of total 

ventricular cells by the end of gestation (Fig.2S). Interestingly, the cytometric analysis reveals that 

the percentage of CD31+/G2CreYFP+ cells is higher than CD31+/Wt1CreYFP+ cells: by E17.5, 22.7±4.2% 

of all CD31+ cells are G2CreYFP+ also (n=4), this percentage reaching 35.7±5.0% in neonates (n=3). 

Instead, only 11.3±1.9% of CD31+ cardiac cells are Wt1CreYFP+ by E18.5 (n=6) (Fig.2T). This 

differential contribution of both lineages to the CoE was confirmed by quantitative image analysis 

performed on confocal micrographs from E18.5 G2CreYFP and Wt1CreYFP embryos. Considering only 

the compact ventricular layer (i.e., excluding endocardium, epicardium and trabeculae), 49.3±13.9% 

of CD31+ cells are G2CreYFP+, while only 25.1±4.1 % of CD31+ cells are Wt1CreYFP+ and therefore at 

least a 20% of embryonic coronary endothelial cells derive from the ST/PE. The percentages of 

endothelial cells obtained after image analysis are higher than those from the cytometry analysis, 

mainly due to the exclusion of the endocardial cells, but the 2:1 proportion between Wt1CreYFP+ and 

G2CreYFP+ cells remains evident. 

 

Wt1 expression in G2-Gata4 cells is required for CoA development 

G2Cre-driven Wt1 deletion (G2Cre;Wt1LoxP/LoxP) severely impairs the development of the 

coronary vasculature causing embryonic lethality around E15.5 (compare Fig. 3A-C with Fig.3D-

F). 3D reconstruction of coronary endothelium (CD31+) shows that mutant embryos, as compared 

to wild types, develop tortuous and sinusoidal irregular vessels that fail to progress transmurally and 

to complete ventricular myocardium invasion (compare Fig. 3A with Fig.3D and Movie S3 with 

Movie S4). Normal CoA are missing in the mutants, which also display a thin ventricular compact 

myocardium (Fig.3 B,E). Effective Wt1 deletion was confirmed by the absence of WT1 protein and 
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the decrease of RALDH2, a known direct Wt1 target (17), in mutant mice (Fig. S4A-D). However, 

the epicardium remains intact in the mutants (Fig.3F, arrowheads).  

 

Notch1 signaling is active in G2CreYFP cells  

Prompted by the characteristic N1ICD expression of endothelial G2CreYFP+ cells, we decided 

to test whether the N1ICD+ endothelial compartment is affected after G2-mediated Wt1 deletion 

(G2-Gata4Cre;Wt1LoxP/LoxP). N1ICD was found to be present in many wild type coronary endothelial 

cells, mainly capillaries and putative coronary arteries; however, such cells do not form normal 

transmural coronary blood vessels in the mutants (compare Fig. 3C with Fig.3F). A detailed analysis 

of the ventricular wall reveals that N1ICD+ endothelial cells form abnormal intramyocardial vessels 

that fail to connect to the deeper vascular elements of the developing coronary vasculature (Fig. 3F).  

 

Early systemic Wt1 deletion phenotype is more severe than that of G2-Gata4Cre;Wt1LoxP/LoxP 

mutants 

Since the E10.5 epicardial Wt1-expressing population encompasses all epicardial G2-Gata4 

cells, we decided to cross tamoxifen-inducible CAGGCreERT2 and Wt1LoxP/GFP mouse lines to generate 

systemic Wt1 mutants at early epicardial stages. CAGG-Cre-mediated Wt1 deletion at E10.5 results 

in embryonic death by E13.5. Mutant embryos were found to display a severe phenotype 

characterized by the impairment of EPDC migration into the compact ventricular myocardium and 

intramyocardial coronary vessel morphogenesis disruption, as revealed by the GFP copy carried by 

mutant mice. However, the subepicardial coronary vasculature is still formed (compare Fig. 3G with 

Fig.3H-I’’). 

 

Conditional Wt1 deletion in endothelial cells reproduces the coronary defects of G2-

Gata4Cre;Wt1LoxP/LoxP mutants 

To prove that coronary vascular defects in G2-Gata4Cre;Wt1LoxP/LoxP mutants are not secondary 

to disrupted epicardial signaling, we crossed Tie2CreERT2 (18) and Wt1LoxP/LoxP mice to create 

endothelial cell-specific Wt1 knockouts (19) (tamoxifen injected at E10; specificity of tamoxifen-
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induced recombination is shown in Fig.S5). Heart morphology is similar in wild type and mutant 

animals (E16.5), which do not show compact myocardial thinning (Fig.4A,B). WT1 protein is found 

in some coronary vascular structures and isolated EPDCs of wild type animals, but their number 

decreases in Tie2CreERT2;Wt1LoxP/LoxP mutants (compare Fig.4C with 4D; WT1 protein expression in 

wild type and mutants has been quantified in Fig.4E). Wt1 gene expression is also significantly 

downregulated in mutants (Fig.4F). CD31 immunostaining of wild type and mutant samples reveals 

a marked reduction in the number of coronary vessels, most especially in the transmural vessels that 

connect the endocardial and epicardial elements of the coronary vasculature (Fig.4G,H). Reduced 

coronary vascularization in mutant hearts was confirmed by the analysis of the area occupied by 

CD31+ cells (Fig.4I) and CD31 gene downregulation (Fig.4J).  
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Discussion  

To fully understand the morphogenesis of the coronary vascular system we need to unveil the 

molecular and cellular mechanisms that integrate different endothelial compartments (i.e. the 

embryonic arterial and venous coronary vasculature) into a single, continuous vascular bed (1). In 

this regard, the identification of the origin of coronary endothelial progenitors becomes crucial to 

the understanding of coronary blood vessel morphogenesis. Thus, while some reports discarded the 

PE and its derivatives as a significant source of CoE (12), or identified the endocardium as the major 

contributor to CoE (2, 3), Katz and collaborators  proved that the PE comprises several cell 

compartments (identified by either Scleraxis or Semaphorin3D gene expression) which differentially 

contribute to CoE (13). However, the specific developmental function of this ST/PE-derived CoE 

during coronary morphogenesis remains unknown. 

Despite all these important evidences, which indicate that ‘one molecule-based’ genetic 

strategies to trace certain embryonic tissues can be misleading, recent reviews still regard ST/PE 

contribution to CoE as quantitatively negligible and non-significant from a developmental 

standpoint (5). To reconcile different hypotheses on the origin of CoE, we aimed at resolving the 

controversy on ST/PE contribution to CoE and identifying the function of this specific cell 

population during coronary development. To tackle these goals, we have analyzed coronary 

formation using the Cre/LoxP system to track cells identified in origin by their G2-Gata4 enhancer 

or Wt1 expression. Moreover, we have used this same technology to conditionally delete the Wt1 

gene in ST/PE lineage cells (G2Cre) and endothelial cells (Tie2Cre) and then characterize the relevance 

of these cells during coronary blood vessel formation. 

Our results indicate that the G2-Gata4 enhancer, used here for the first time to study coronary 

vascular development, is as a bona fide marker of ST/PE cells, since this transgene is active at the 

extracardiac ST/PE location only (E9.5), and not in heart tissues proper. G2-Gata4 cell lineage 

tracing reveals a significant contribution of ST/PE cells to CoE, migrating from their extracardiac 

location to the heart surface to form the primitive epicardial epithelium. After epicardial EMT is 

initiated, G2CreYFP+ cells progressively colonize the subepicardial matrix and the myocardial layers. 

Along this process G2-Gata4-driven reporter expression is confined to the epicardium and its 
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mesenchymal derivatives (1, 20–22). Specifically, early G2-Gata4-derived CoE is originally found 

at the subepicardial coronary vascular plexus, while from E13.5 onwards they mainly accumulate at 

the intramyocardial coronary vasculature (prospective CoA and capillaries), but not significantly to 

prospective coronary veins.  

Wt1CreYFP+ ST/PE cells also contribute to CoE, although they are less abundant than G2-

Gata4CreYFP+ ones, suggesting an early developmental specification of this endothelial lineage. This 

finding also explains why other studies, mostly relying on Wt1 cell lineage genetic tracking, deemed 

ST/PE contribution to CoE as negligible. It is possible that the differences between the relative 

abundance of Wt1CreYFP+ and G2-Gata4CreYFP+ cells in the developing heart could relate to the 

reported de novo expression of Wt1 protein in cardiac vessels following myocardial infarction (23, 

24). Whether this Wt1 activation is linked to the developmental origin of these cells (25) or rather 

represents an ectopic activation of the gene in response to hypoxia (26) has been extensively 

discussed (27). However, the lack of activation of the G2 enhancer within heart tissues strongly 

suggests an ST/PE, extracardiac, origin for G2-Gata4CreYFP+ cells, whose endothelial differentiation 

potential is higher than that shown by Wt1CreYFP+ cells. Our most restrictive estimation of G2-

Gata4CreYFP+ and Wt1CreYFP+ cell incorporation to CoE (at least a 20%) is compatible with the 

reported variable endocardial contribution to coronary vasculature, roughly ranging from 70 to 40% 

of coronary embryonic coronary endothelial cells (3). 

Our cell tracing analysis shows a preferential incorporation of ST/PE endothelial cells to 

intramyocardial prospective coronary arteries, and capillaries, pointing to a different developmental 

origin for coronary arteries and veins. This concept is further supported by the coronary arterial (but 

not venous) endothelial phenotype of mouse embryos with deficient epicardial NOTCH signaling 

(15). We thus decided to inspect whether ST/PE cells play role in coronary arterio-venous 

connection. Intramyocardial arterial CoE, identified by the nuclear accumulation of NOTCH 

intracellular domain (N1ICD) is anomalous in G2-Gata4Cre;Wt1LoxP/LoxP mutants. In detail, 

endothelial structures connecting the inner, intramyocardial coronary vasculature (prospective 

arteries) and the outer, subepicardial one (prospective coronary veins), are unable to cross the 

myocardial wall and form aberrant vascular structures. Coronary anomalies recorded in 
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Tie2CreERT2;Wt1LoxP/LoxP mutants, which show a reduction in both WT1+ and CD31+ cells in the 

ventricular myocardial walls and a disruption of the transmural organization of embryonic coronary 

vessels, confirm the loss of Wt1 in ST/PE cells after G2-Gata4-mediated deletion primarily affects 

coronary endothelial cells. 

In summary, our work unambiguously show that the ST/PE, a complex population of 

extracardiac splanchnic mesoderm constituted of various cells populations (Wt1+ and G2-Gata4+), 

significantly contributes cells to the CoE that are necessary for proper coronary vascular 

morphogenesis (Fig. 5). Our results also suggest that the ST/PE-derived component of CoE is 

mechanistically related to CoA rather than to CoV, and reveal a functional role for these cells in 

transmural arterio-venous patterning of the coronary vascular tree, most likely via the segregation 

of NOTCH+ and NOTCH- endothelial domains. In summary, our findings support the concept of 

CoE as a developmental mosaic forming from different sources of endothelial cells that actively 

contribute to the patterning of coronary blood vessels, and open new perspectives to the 

understanding of congenital coronary anomalies and adult coronary endothelium malfunction.  
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Methods 

 

Mouse lines, and embryo extraction 

The animals used in our research program were handled in compliance with the institutional 

and European Union guidelines for animal care and welfare. The procedure was approved by the 

Committee on the Ethics of Animal Experiments of the University of Malaga (procedure code 2009-

0037) and the French Coordination Committee on Cancer Research guidelines and local Home 

Office regulations. All embryos were staged from the time point of vaginal plug observation, which 

was designated as E0.5. Embryos were excised and washed in PBS before further processing. Details 

on the transgenic mouse lines used in this paper are included in the SI. 

 

Tissue sampling for fluorescent reporter analysis 

For fluorescent reporter expression analysis and immunofluorescence the embryos were fixed 

in 2-4% fresh paraformaldehyde solution in PBS for 2–8 h, washed in PBS, cryoprotected in sucrose 

solutions, embedded in OCT (Tissue-Tek), and frozen in liquid N2-cooled isopentane. Samples were 

sectioned on a cryostat (10μm) and cryosections were stored at -20°C until use. Quantification of 

cells was performed as indicated in the SI. 

 

Quantitative and semiquantitative (reverse-transcriptase) PCR  

Total RNA was isolated from embryonic hearts using the Trizol reagent (Invitrogen). First-

strand cDNA synthesis was performed with 0.5 µg of total RNA using oligo(dT) and random primers 

and superscript III reverse transcriptase (Invitrogen). PCRs were performed as described in the SI. 

 

Immunofluorescence and X-Gal staining 

Immunofluorescence staining was performed as described elsewhere (see supplemental 

information for a detailed protocol). All images were captured on a Leica SP5 confocal microscope. 

β-Galactosidase expression in G2-Gata4LacZ transgenic embryos or tissues was detected by X-gal 
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staining, which was performed as described (28). Transverse and sagittal sections from X-gal-

stained embryos and tissues were prepared and counterstained with Neutral Fast Red. 

 

Immunohistochemistry (peroxidase) 

Immunohistochemistry on embryo tissue sections were performed as previously described 

(23). The primary antibodies used and the procedure applied for CD31+ and WT1+ cell quantification 

can be found in the SI. 

 

Wt1CreYFP whole mount and time-lapse analysis 

For time lapse analysis, E11.5 Wt1CreYFP- embryos were dissected in PBS supplemented with 

10% FBS, penicillin (100U/ml) and streptomycin (100μg/ml). Hearts were isolated and transferred 

to HEPES buffered DMEM-F12 medium supplemented with 2% FBS and penicillin-streptomycin. 

An Alexa660-conjugated rat anti-mouse CD31 antibody (eBiosciences, #17-0311) was injected into 

the hearts through the outflow tract using a microinjector (PicospritzerII). Hearts were then 

embedded into a 1.5 mg/ml collagen gel (BD Bioscience) in a glass-bottom culture dish (MatTek). 

For CD31 whole mount immunofluorescence embryonic hearts were fixed in 4% paraformaldehyde 

and incubated in Alexa660-conjugated rat anti-mouse CD31 (eBiosciences, #17-0311). Images were 

captured in a Leica SP5 laser confocal microscope every 10 min for 12 h. During the image capture, 

the culture chamber was maintained at 37°C in a 5% CO2 humidified atmosphere. 

 

Flow cytometry (Fluorescence-Activated Cell Sorting, FACS) 

Hearts from Wt1CreYFP and G2-Gata4CreYFP were dissociated for 15 min at 37°C in a pre-

warmed collagenase solution (0.1% in HBSS, 3mM CaCl2) (Sigma), and homogenized by repeated 

pipetting. Cell suspension was washed in PBS plus 2% FBS and 10mM HEPES. The cells were then 

incubated for 20 min on ice with Alexa660-conjugated rat anti-mouse CD31 (eBioscience #17-

0311). After washing, the cell suspension was analyzed in a MoFlo cell sorter. Damaged cells were 

excluded from the analysis by propidium iodide staining. The standard deviation of replicates is 

indicated.  
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Figure legends 

 

Figure 1. ST/PE G2-Gata4 cells along cardiac development. G2-Gata4LacZ mice show reporter 

activity in the septum transversum (including the PE, E9.5, A) and inflow myocardium (E11.5, B, 

arrowheads). Immunohistochemistry of G2-Gata4CreYFP+ samples show the expression of GATA4 

and WT1 proteins in G2-Gata4CreYFP+ E9.5 proepicardial cells (C, D, respectively). Between stages 

E10.5 and E14.5, G2-Gata4CreYFP mice show an increasing number of G2-Gata4CreYFP+ cells from 

the developing epicardium to subepicardial and intramyocardial areas (E-F’). Note that the 

epicardium comprises WT1+/G2-Gata4+ (arrowheads) and WT1+/G2-Gata4- cells (arrows) (F). A 

few EPDCs retain WT1 expression transiently (F’, white arrow), whereas other EPDCs do not (F’, 

black arrows). Wt1 gene expression is conspicuous in the epicardium (G) but restricted to a few 

EPDCs (G, arrowheads). Progressive expansion of EPDCs through the myocardial walls (E14.5-

18.5) parallels G2-Gata4CreYFP+ incorporation to developing coronary blood vessels (H, arrows). 3D 

reconstructions (I) and tissue section (J) analysis of the developing coronary vasculature allows 

distinguishing perivascular (I, J, arrows) from G2-Gata4CreYFP+ CoE cells (I, J, arrowheads). 

Identification of active Notch1 signaling by Notch1 intracellular domain (N1ICD) nuclear 

localization confirms the arterial nature of these vessels (K, L, arrows). Abbreviations: A: atrium; 

AVC: atrio-ventricular canal; ENDO: endocardium; EPI: Epicardium; IVS: Interventricular Septum; 

MYO: myocardium; PE: proepicardium; ST: septum transversum; V: ventricle. Bars: A, B=100µm; 

C-H=50µm; I=40µm; J=10µm; K=25µm; L=5µm. 

 

Figure 2. Wt1-expressing cells and their progeny contribute to coronary endothelium. WT1 

protein is ubiquitously expressed in early (E10.5-12.5) epicardial cells and EPDCs, extensively 

overlapping with Wt1 promoter-driven GFP expression (A, B, arrowheads). Reporter expression in 

Wt1GFP embryos is frequently observed in subepicardial and intramyocardial coronary vasculature 

(CD31+) between E12.5-E14.5 (D,G, arrows), but not at earlier developmental stages (C). A number 

of Wt1GFP+/CD31+ cells are still found at perinatal stages (H, arrows). Early Wt1CreYFP+ cells form 

the epicardium (I, arrowheads; the area marked with a black arrowhead is magnified in I’) and first 
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EPDCs (J, arrows). At E11.5 many Wt1CreYFP+ epicardial cells show morphological features of EMT 

(I’, arrowhead). Between E12.5-E15.5, the lineage reporter co-localizes with the vascular marker 

CD31 in the subepicardial and intramyocardial coronary plexus (J, arrows). Perinatal and neonatal 

coronary arteries show Wt1CreYFP+ cells incorporated to both the CoE (L, O, arrowheads) and CoSM 

layers (M, O, arrowheads). P-R. Tamoxifen-induced (E9.5) Wt1CreERT2;Rosa26-YFP embryos show 

YFP+ cell incorporation (E.14.5) to coronary vessels (arrowheads). S. The total percentage of cardiac 

Wt1CreYFP+ and G2CreYFP+ cells along development is shown. T. Representative cytograms of 

dissociated ventricles from midgestation embryos and neonates. Quadrant limits were established 

with fluorochrome-conjugated isotypes. Numbers indicate percentages on total events. Both 

Wt1CreYFP+ and G2CreYFP+ populations include CD31+ in cells. Abbreviations: A: atrium; AVC: 

atrioventricular canal; CoA: coronary artery; CoV: coronary veins; ENDO: endocardium; EPI: 

epicardium; IVS: interventricular septum; V: ventricle. Bars: I=100µm; A, C, D, J, M, N, P=50µm; 

B, F, G, H, K, L, R=25µm; E-E’’, O=10µm; Q=5µm. 

 

Figure 3. G2-Gata4 and conditional systemic Wt1 deletion disrupt coronary artery formation. 

Wt1 deletion in G2-Gata4 cells disrupts intramyocardial CD31+ coronary blood vessels. Embryonic 

coronary endothelial structures are dysmorphic and fail to contact the endocardium (double-headed 

arrows, compare A with D, movie S3 with S4), and mutants show a dramatic reduction of compact 

ventricular myocardium thickness (double-headed arrows, compare B with E). N1ICD 

immunohistochemistry identifies dysmorphic intramyocardial vessels as coronary arteries 

(arrowheads, C, F), whereas subepicardial vascular structures are N1ICD- (prospective coronary 

veins). Tamoxifen-induced (E10.5) systemic Wt1 deletion has similar effects to G2-Gata4-driven 

Wt1 deletion. At E13.5, the number of developing intramyocardial blood vessels is even lower than 

in the former (G, H). Despite the sharp thinning of the compact ventricular myocardium, 

subepicardial blood vessels still form (I-I’’, arrowheads). Abbreviations: CoA: coronary artery; 

CoV: coronary vein; ENDO: Endocardium; EPI: Epicardium; V: ventricle. Bars: A, B=50µm; 

C=25µm; D, E, G, H, I=50µm; F=25µm. 
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Figure 4. Endothelial Wt1 expression is required for coronary vessel formation. Hematoxylin-

eosin stained sections from control Wt1LoxP/LoxP+Tamoxifen (A) and mutant 

TieCreERT2;Wt1LoxP/LoxP+Tamoxifen (B) E16.5 embryos. WT1+ cell contribution (C, arrows) to 

coronary vessels is reduced in the mutants (D) as confirmed by quantification of the area density 

occupied by WT1+ cells (E) and Wt1 gene expression (F) in E16.5 mutant and control embryonic 

hearts. CD31 staining of E16.5 control and mutant embryonic hearts shows a decrease in compact 

ventricular wall coronary endothelial cells in the experimental group (arrow in H; compare with G). 

I. Quantification of the area density occupied by CD31+ cells and CD31 gene expression (Fig.4J) 

from E16.5 hearts further supports CoE depletion in mutant animals. Abbreviations: A: atrium; 

EPI: epicardium; V: ventricle. Bars: 50µm. Data are mean ± SEM. *p<0.05, ***p<0.001. 

 

Figure 5. A model on EPDC contribution to CoE. G2-Gata4CreYFP+/Wt1CreYFP+ ST/PE cells (green) 

are transferred to the surface of the heart to form the epicardium; and then epicardial-derived cells 

invade heart walls (A-C). The boxed area in C is magnified in D. G2-Gata4CreYFP+/Wt1CreYFP+ cells 

(green) preferentially incorporate to intramyocardial coronary arterial and capillary endothelium. 

Color arrows indicate the major transmural endothelial cell flows. Note that the arrow size estimates 

the frequency of the events. Abbreviations: A: atrium; A-V: arterio-venous; CoA: coronary arteries; 

CoV: coronary veins; EPI: epicardium; PE: proepicardium; ST: septum transversum; SV: sinus 

venosus; V: ventricle. 


