33 research outputs found

    Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer\u27s disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer\u27s disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer\u27s disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/Ξ±-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer\u27s disease patients than control subjects (P = 0.011). Liver docosahexaenoic/Ξ±-linolenic ratios correlated positively with MMSE scores (r = 0.78; P\u3c0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer\u27s disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer\u27s disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain

    Get PDF
    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and AΞ² accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and AΞ², among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging

    Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (Pβ€Š=β€Š0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/Ξ±-linolenic ratios in temporal cortex (Pβ€Š=β€Š0.005) and mid-frontal cortex (Pβ€Š=β€Š0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's disease patients than control subjects (Pβ€Š=β€Š0.011). Liver docosahexaenoic/Ξ±-linolenic ratios correlated positively with MMSE scores (rβ€Š=β€Š0.78; P<0.0001), and negatively with global deterioration scale grades (Pβ€Š=β€Š0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer's disease patients (Pβ€Š=β€Š0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (Pβ€Š=β€Š0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer's disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Get PDF
    BACKGROUND: This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). METHODS: In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. RESULTS: Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. CONCLUSIONS: Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife

    Inhibiting BDNF Signaling Upregulates Hippocampal H3K9me3 in a Manner Dependent On In Vitro Aging and Oxidative Stress

    No full text
    Histone modifications are key contributors to the cognitive decline that occurs in aging and Alzheimer's disease. Our lab has previously shown that elevated H3K9me3 in aged mice is correlated with synaptic loss, cognitive impairment and a reduction in brain derived neurotrophic factor (BDNF). However, the mechanism of H3K9me3 regulation remains poorly understood. In this study, we investigated the role of age-associated stressors on H3K9me3 regulation and examined if changes in H3K9me3 were age dependent. We used cultured hippocampal neurons at 6, 12, and 21&nbsp;days in vitro (DIV) to examine the effect of different stressors on H3K9me3 across neuron ages. We found that the oxidative stressor hydrogen peroxide (H2O2) does not induce H3K9me3 in 12 DIV neurons. Inhibiting BDNF signaling via TrkB-Fc elevated H3K9me3 in 12 and 21 DIV neurons compared to 6 DIV neurons. Antioxidant treatment prevented H3K9me3 elevation in 12 DIV neurons treated with TrkB-Fc and H2O2. H2O2 elevated the epigenetic regulator SIRT1 in 6 DIV neurons but did not increase H3K9me3 levels. Our findings demonstrate that inhibiting BDNF signaling elevates hippocampal H3K9me3 in a manner dependent on in vitro age and oxidative stress

    Age-related downregulation of the CaV3.1 T-type calcium channel as a mediator of amyloid beta production.

    No full text
    Alzheimer's is a crippling neurodegenerative disease that largely affects aged individuals. Decades of research have highlighted age-related changes in calcium homeostasis that occur before and throughout the duration of the disease, and the contributions of such dysregulation to Alzheimer's disease pathogenesis. We report an age-related decrease in expression of the CaV3.1 T-type calcium channel at the level of messenger RNA and protein in both humans and mice that is exacerbated with the presence of Alzheimer's disease. Downregulating T-type calcium channels in N2a cells and the 3xTg-AD mouse model of Alzheimer's disease, by way of pharmacologic inhibition with NNC-55-0396, results in a rapid increase in amyloid beta production via reductions in non-amyloidogenic processing, whereas genetic overexpression of the channel in human embryonic kidney cells expressing amyloid precursor protein produces complementary effects. The age-related decline in CaV3.1 expression may therefore contribute to a pro-amyloidogenic environment in the aging brain and represents a novel opportunity to intervene in the course of Alzheimer's disease pathogenesis

    Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer\u27s disease

    No full text
    Mild cognitive impairment (MCI) represents a cognitive state intermediate between normal aging and early Alzheimer\u27s disease (AD). To investigate if the molecular signature of MCI parallels the clinical picture, we use microarrays to extensively profile gene expression in 4 cortical brain regions (entorhinal cortex, hippocampus, superior frontal gyrus, post-central gyrus) using the postmortem tissue from cognitively normal aged controls, MCI, and AD cases. Our data reveal that gene expression patterns in MCI are not an extension of aging, and for the most part, are not intermediate between aged controls and AD. Functional enrichment analysis of significant genes revealed prominent upregulation in MCI brains of genes associated with anabolic and biosynthetic pathways (notably transcription, protein biosynthesis, protein trafficking, and turnover) as well as mitochondrial energy generation. In addition, many synaptic genes showed altered expression in MCI, predominantly upregulation, including genes for central components of the vesicle fusion machinery at the synapse, synaptic vesicle trafficking, neurotransmitter receptors, and synaptic structure and stabilization. These data suggest that there is a rebalancing of synaptic transmission in the MCI brain. To investigate if synaptic gene expression levels in MCI were related to cognitive function, Pearson correlation coefficient between the Mini Mental State Examination (MMSE) and region-specific messenger RNA expression were computed for MCI cases. A number of synaptic genes showed strong significant correlations (r \u3e 0.8, p \u3c 0.01) most notably in the entorhinal cortex, with fewer in the hippocampus, and very few in neocortical regions. The synaptic genes with highly significant correlations were predominantly related to synaptic transmission and plasticity, and myelin composition. Unexpectedly, we found that gene expression changes that facilitate synaptic excitability and plasticity were overwhelmingly associated with poorer MMSE, and conversely that gene expression changes that inhibit plasticity were positively associated with MMSE. These data suggest that there are excessive excitability and apparent plasticity in limbic brain regions in MCI, that is associated with impaired synaptic and cognitive function. Such changes would be predicted to contribute to increased excitability, in turn leading to greater metabolic demand and ultimately progressive degeneration and AD, if not controlled. Β© 2014 Elsevier Inc

    Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease

    No full text
    Mild cognitive impairment (MCI) represents a cognitive state intermediate between normal aging and early Alzheimer Disease (AD). To investigate if the molecular signature of MCI parallels the clinical picture, we use microarrays to extensively profile gene expression in 4 cortical brain regions (entorhinal cortex, hippocampus, superior frontal gyrus, post-central gyrus) using post-mortem tissue from cognitively normal aged controls, MCI, and AD cases. Our data reveal that gene expression patterns in MCI are not an extension of aging, and for the most part, are not intermediate between aged controls and AD. Functional enrichment analysis of significant genes revealed prominent upregulation in MCI brains of genes associated with anabolic and biosynthetic pathways (notably transcription, protein biosynthesis, protein trafficking and turnover) as well as mitochondrial energy generation. In addition, many synaptic genes showed altered expression in MCI, predominantly upregulation, including genes for central components of the vesicle fusion machinery at the synapse, synaptic vesicle trafficking, neurotransmitter receptors, and synaptic structure and stabilization. These data suggest that there is a rebalancing of synaptic transmission in the MCI brain. To investigate if synaptic gene expression levels in MCI were related to cognitive function, Pearson’s correlation coefficient between MMSE and region-specific mRNA expression were computed for MCI cases. A number of synaptic genes showed strong significant correlations (r>0.8, p<0.01) most notably in the EC, with fewer in the HC, and very few in neocortical regions. The synaptic genes with highly significant correlations were predominantly related to synaptic transmission and plasticity, and myelin composition. Unexpectedly, we found that gene expression changes that facilitate synaptic excitability and plasticity were overwhelmingly associated with poorer MMSE, and conversely that gene expression changes that inhibit plasticity were positively associated with MMSE. These data suggest that there is excessive excitability and apparent plasticity in limbic brain regions in MCI, that is associated with impaired synaptic and cognitive function. Such changes would be predicted to contribute to increased excitability, in turn leading to greater metabolic demand and ultimately progressive degeneration and AD, if not controlled
    corecore