470 research outputs found

    1 cm2 CH3NH3PbI3 mesoporous solar cells with 17.8% steady-state efficiency by tailoring front FTO electrodes

    Get PDF
    In this article, we investigate the effects of atmospheric-pressure chemical vapour deposited fluorine doped tin oxide (FTO) thin films as front electrodes for the fabrication of mesoporous perovskite solar cells with an active area of 1 cm2 and compare them with the use of a commonly used commercial transparent conducting oxide. The effects of sheet resistance (Rs) and surface roughness are both closely linked to the film thickness. In order to separate out these effects the characteristics of the deposited FTOs were carefully controlled by changing the fluorine doping levels and the number of passes under the coating head to give films of specific thicknesses or Rs. Under AM 1.5 Sun illumination and maximum power point tracking, the optimised FTOs yielded a steady-state power conversion efficiency of 17.8%, higher than that of the reference cell fabricated from the commercial FTO. We attribute the improved cell efficiency to increased fill factor and a lower series resistance resulting from the lower Rs and increased thickness of these FTO substrates. This low-cost and viable methodology is the first such type of study looking independently at the significance of FTO roughness and resistance for highly efficient mesoporous perovskite solar cells

    Functional modes of proteins are among the most robust ones

    Full text link
    It is shown that a small subset of modes which are likely to be involved in protein functional motions of large amplitude can be determined by retaining the most robust normal modes obtained using different protein models. This result should prove helpful in the context of several applications proposed recently, like for solving difficult molecular replacement problems or for fitting atomic structures into low-resolution electron density maps. Moreover, it may also pave the way for the development of methods allowing to predict such motions accurately.Comment: 4 pages, 5 figure

    Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2

    Full text link
    We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu2_2Si2_2. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level EFE_F. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2_2Si2_2 can be described by single-impurity Kondo physics down to T≈5T \approx 5 K.Comment: 4 pages, 3 figure

    Quantum manipulation via atomic-scale magnetoelectric effects

    Full text link
    Magnetoelectric effects at the atomic scale are demonstrated to afford unique functionality. This is shown explicitly for a quantum corral defined by a wall of magnetic atoms deposited on a metal surface where spin-orbit coupling is observable. We show these magnetoelectric effects allow one to control the properties of systems placed inside the corral as well as their electronic signatures; they provide alternative tools for probing electronic properties at the atomic scale

    Higher order contributions to Rashba and Dresselhaus effects

    Full text link
    We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to an arbitrary order in the wavevector k. This is achieved by using the double group representations to construct general symmetry-allowed Hamiltonians with full spin-orbit effects within the tight-binding formalism. We have computed full-zone spin Hamiltonians for [001]-, [110]- and [111]-grown zinc blende heterostructures (D_{2d},C_{4v},C_{2v},C_{3v} point group symmetries), which are commonly used in spintronics. After an expansion of the Hamiltonian up to third order in k, we are able to obtain additional terms not found previously. The present method also provides the matrix elements for bulk zinc blendes (T_d) in the anion/cation and effective bond orbital model (EBOM) basis sets with full spin-orbit effects.Comment: v1: 11 pages, 3 figures, 8 table

    On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm

    Get PDF
    N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al

    An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats

    Get PDF
    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% (w/v) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with C-13-labeled lipids and C-13-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect

    Twisted exchange interaction between localized spins embedded in a one- or two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    We study theoretically the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in one- and two-dimensions in presence of a Rashba spin-orbit (SO) coupling. We show that rotation of the spin of conduction electrons due to SO coupling causes a twisted RKKY interaction between localized spins which consists of three different terms: Heisenberg, Dzyaloshinsky-Moriya, and Ising interactions. We also show that the effective spin Hamiltonian reduces to the usual RKKY interaction Hamiltonian in the twisted spin space where the spin quantization axis of one localized spin is rotated.Comment: 4pages, no figur

    Wavelets techniques for pointwise anti-Holderian irregularity

    Full text link
    In this paper, we introduce a notion of weak pointwise Holder regularity, starting from the de nition of the pointwise anti-Holder irregularity. Using this concept, a weak spectrum of singularities can be de ned as for the usual pointwise Holder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (denoted here strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum di ers from the strong one
    • …
    corecore