15 research outputs found

    Somatostatin-based radiotherapy with [90Y-DOTA]-TOC in neuroendocrine tumors: long-term outcome of a phase I dose escalation study

    Get PDF
    BACKGROUND We describe the long-term outcome after clinical introduction and dose escalation of somatostatin receptor targeted therapy with [90Y-DOTA]-TOC in patients with metastasized neuroendocrine tumors. METHODS In a clinical phase I dose escalation study we treated patients with increasing [90Y-DOTA]-TOC activities. Multivariable Cox regression and competing risk regression were used to compare efficacy and toxicities of the different dosage protocols. RESULTS Overall, 359 patients were recruited; 60 patients were enrolled for low dose (median: 2.4 GBq/cycle, range 0.9-7.8 GBq/cycle), 77 patients were enrolled for intermediate dose (median: 3.3 GBq/cycle, range: 2.0-7.4 GBq/cycle) and 222 patients were enrolled for high dose (median: 6.7 GBq/cycle, range: 3.7-8.1 GBq/cycle) [90Y-DOTA]-TOC treatment. The incidences of hematotoxicities grade 1-4 were 65.0%, 64.9% and 74.8%; the incidences of grade 4/5 kidney toxicities were 8.4%, 6.5% and 14.0%, and the median survival was 39 (range: 1-158) months, 34 (range: 1-118) months and 29 (range: 1-113) months. The high dose protocol was associated with an increased risk of kidney toxicity (Hazard Ratio: 3.12 (1.13-8.59) vs. intermediate dose, p = 0.03) and a shorter overall survival (Hazard Ratio: 2.50 (1.08-5.79) vs. low dose, p = 0.03). CONCLUSIONS Increasing [90Y-DOTA]-TOC activities may be associated with increasing hematological toxicities. The dose related hematotoxicity profile of [90Y-DOTA]-TOC could facilitate tailoring [90Y-DOTA]-TOC in patients with preexisting hematotoxicities. The results of the long-term outcome suggest that fractionated [90Y-DOTA]-TOC treatment might allow to reduce renal toxicity and to improve overall survival. (ClinicalTrials.gov number NCT00978211)

    Towards tailored radiopeptide therapy

    No full text
    Purpose: Somatostatin receptor-targeted radiopeptide therapy is commonly performed using single radioisotopes. We evaluated the benefits and harms of combining radioisotopes in radiopeptide therapy in patients with neuroendocrine tumor. Methods: Using multivariable-adjusted survival analyses and competing risk analyses we evaluated outcomes in patients with neuroendocrine tumor receiving 90Y-DOTATOC, 177Lu-DOTATOC or their combination. Results: 90Y-DOTATOC plus 177Lu-DOTATOC treatment was associated with longer survival than 90Y-DOTATOC (66.1 vs. 47.5months; n = 1,358; p < 0.001) or 177Lu-DOTATOC alone (66.1 vs. 45.5months; n = 390; p < 0.001). 177Lu-DOTATOC was associated with longer survival than 90Y-DOTATOC in patients with solitary lesions (HR 0.3, range 0.1-0.7; n = 153; p = 0.005), extrahepatic metastases (HR 0.5, range 0.3-0.9; n = 256; p = 0.029) and metastases with low uptake (HR 0.1, range 0.05-0.4; n = 113; p = 0.001). 90Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5% vs. 4.0%, p = 0.005) or 177Lu-DOTATOC (9.5% vs. 1.4%, p = 0.002). Renal toxicity was similar among the treatments. Conclusions: Using 90Y and 177Lu might facilitate tailoring radiopeptide therapy and improve survival in patients with neuroendocrine tumors

    Towards tailored radiopeptide therapy.

    No full text
    PURPOSE Somatostatin receptor-targeted radiopeptide therapy is commonly performed using single radioisotopes. We evaluated the benefits and harms of combining radioisotopes in radiopeptide therapy in patients with neuroendocrine tumor. METHODS Using multivariable-adjusted survival analyses and competing risk analyses we evaluated outcomes in patients with neuroendocrine tumor receiving (90)Y-DOTATOC, (177)Lu-DOTATOC or their combination. RESULTS (90)Y-DOTATOC plus (177)Lu-DOTATOC treatment was associated with longer survival than (90)Y-DOTATOC (66.1 vs. 47.5 months; n = 1,358; p < 0.001) or (177)Lu-DOTATOC alone (66.1 vs. 45.5 months; n = 390; p < 0.001). (177)Lu-DOTATOC was associated with longer survival than (90)Y-DOTATOC in patients with solitary lesions (HR 0.3, range 0.1 - 0.7; n = 153; p = 0.005), extrahepatic metastases (HR 0.5, range 0.3 - 0.9; n = 256; p = 0.029) and metastases with low uptake (HR 0.1, range 0.05 - 0.4; n = 113; p = 0.001). (90)Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5% vs. 4.0%, p = 0.005) or (177)Lu-DOTATOC (9.5 vs. 1.4%, p = 0.002). Renal toxicity was similar among the treatments. CONCLUSIONS Using (90)Y and (177)Lu might facilitate tailoring radiopeptide therapy and improve survival in patients with neuroendocrine tumors

    Indium-111 labeled gold nanoparticles for in-vivo molecular targeting.

    No full text
    The present report describes the synthesis and biological evaluation of a molecular imaging platform based on gold nanoparticles directly labeled with indium-111. The direct labeling approach facilitated radiolabeling with high activities while maintaining excellent stability within the biological environment. The resulting imaging platform exhibited low interference of the radiolabel with targeting molecules, which is highly desirable for in-vivo probe tracking and molecular targeted tumor imaging. The indium-111 labeled gold nanoparticles were synthesized using a simple procedure that allowed stable labeling of the nanoparticle core with various indium-111 activities. Subsequent surface modification of the particle cores with RGD-based ligands at various densities allowed for molecular targeting of the αvß3 integrin in-vitro and for molecular targeted imaging in human melanoma and glioblastoma models in-vivo. The results demonstrate the vast potential of direct labeling with radioisotopes for tracking gold nanoparticles within biological systems

    Survival after somatostatin based radiopeptide therapy with (90)Y-DOTATOC vs. (90)Y-DOTATOC plus (177)Lu-DOTATOC in metastasized gastrinoma.

    Get PDF
    We aimed to explore the effects of (90)Y-DOTATOC and (90)Y-DOTATOC plus (177)Lu-DOTATOC on survival of patients with metastasized gastrinoma. Patients with progressive metastasized gastrinoma were treated with repeated cycles of (90)Y-DOTATOC or with cycles alternating between (90)Y-DOTATOC and (177)Lu-DOTATOC until tumor progression or permanent toxicity. Multivariable Cox regression analyses were used to study predictors of survival. A total of 36 patients were enrolled; 30 patients received (90)Y-DOTATOC (median activity per patient 11.8GBq; range: 6.1-62.2GBq) and 6 patients received (90)Y-DOTATOC plus (177)Lu-DOTATOC (median activity per patient: 14.8GBq; range: 7.4-14.8GBq). Response was found in 26 patients (72.2%), including morphological (n=12, 33.3%), biochemical (n=14, 38.9%) and/or clinical response (n=6, 16.2%). A total of 21 patients (58.3%) experienced hematotoxicity grade 1/2, while 1 patient (2.8%) experienced hematotoxicity grade 3; no grade 4 hematotoxicity occurred. Furthermore, 2 patients (5.6%) developed grade 4 renal toxicity; no grade 5 renal toxicity occurred. Responders had a significantly longer median survival from time of enrollment than non-responders (45.1 months, range: 37.1-53.1 months vs. 12.6 months, range: 11.0-14.2, hazard ratio: 0.12 (0.027-0.52), p=0.005). Additionally, there was a trend towards longer median survival with (90)Y-DOTATOC plus (177)Lu-DOTATOC as compared to (90)Y-DOTATOC alone (60.2 months, range: 19.8-100.6 months vs. 27.0 months, range: 4.0-50.0, hazard ratio: 0.21 (0.01-3.98), p=0.16). Response to (90)Y-DOTATOC and (90)Y-DOTATOC plus (177)Lu-DOTATOC therapy is associated with a longer survival in patients with metastasized gastrinoma. Both treatment regimens are promising tools for management of progressive gastrinoma

    Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers

    No full text
    PURPOSE To investigate response, survival, and safety profile of the somatostatin-based radiopeptide (90)yttrium-labeled tetraazacyclododecane-tetraacetic acid modified Tyr-octreotide ([(90)Y-DOTA]-TOC) in neuroendocrine cancers. PATIENTS AND METHODS In a clinical phase II single-center open-label trial, patients with neuroendocrine cancers were treated with repeated cycles of [(90)Y-DOTA]-TOC. Each cycle consisted of a single intravenous injection of 3.7GBq/m(2) body-surface [(90)Y-DOTA]-TOC. Additional cycles were withheld in case of tumor progression and/or permanent toxicity. Results Overall, 1,109 patients received 2,472 cycles of [(90)Y-DOTA]-TOC (median, two; range, one to 10 cycles per patient). Of the 1,109 patients, 378 (34.1%) experienced morphologic response; 172 (15.5%), biochemical response; and 329 (29.7%), clinical response. During a median follow-up of 23 months, 491 patients (44.3%) died. Longer survival was correlated with each: morphologic (hazard ratio [HR], 0.46; 95% CI, 0.38 to 0.56; median survival, 44.7 v 18.3 months; P > .001), biochemical (HR, 0.75; 95% CI, 0.59 to 0.96; 35.3 v 25.7 months; P = .023), and clinical response (HR, 0.68; 95% CI, 0.56 to 0.82; 36.8 v 23.5 months; P > .001). Overall, 142 patients (12.8%) developed grade 3 to 4 transient hematologic toxicities, and 103 patients (9.2%) experienced grade 4 to 5 permanent renal toxicity. Multivariable regression revealed that tumoral uptake in the initial imaging study was predictive for overall survival (HR, 0.45; 95% CI, 0.29 to 0.69; P > .001), whereas the initial kidney uptake was predictive for severe renal toxicity (HR, 1.59; 95% CI, 1.17 to 2.17; P = .003). CONCLUSION This study documents the long-term outcome of [(90)Y-DOTA]-TOC treatment in a large cohort. Response to [(90)Y-DOTA]-TOC is associated with longer survival. Somatostatin receptor imaging is predictive for both survival after [(90)Y-DOTA]-TOC treatment and occurrence of renal toxicity

    Upregulation of Key Molecules for Targeted Imaging and Therapy.

    No full text
    Targeted diagnosis and therapy enable precise tumor detection and treatment. Successful examples for precise tumor targeting are diagnostic and therapeutic radioligands. However, patients with tumors expressing low levels of the relevant molecular targets are deemed ineligible for such targeted approaches. METHODS We performed a screen for drugs that upregulate the somatostatin receptor subtype 2 (sstr2). Then, we characterized the effects of these drugs on transcriptional, translational, and functional levels in vitro and in vivo. RESULTS We identified 9 drugs that act as epigenetic modifiers, including the inhibitor of DNA methyltransferase decitabine as well as the inhibitors of histone deacetylase tacedinaline and romidepsin. In vitro, these drugs upregulated sstr2 on transcriptional, translational, and functional levels in a time- and dose-dependent manner. Thereby, their combinations revealed synergistic effects. In vivo, drug-based sstr2 upregulation improved the tumor-to-background and tumor-to-kidney ratios, which are the key determinants of successful sstr2-targeted imaging and radiopeptide therapy. CONCLUSION We present an approach that uses epigenetic modifiers to improve sstr2 targeting in vitro and in vivo. Translation of this method into the clinic may potentially convert patients ineligible for targeted imaging and therapy to eligible candidates
    corecore