360 research outputs found

    Three-dimensional modelling of turbine wake interactions at a tidal stream energy site

    Get PDF
    One of the biggest uncertainties in tidal stream energy resource assessment is how tidal energy conversion, particularly at large scale, will interact with the resource. As few arrays are currently operational, data collected from these developments tends to be commercially sensitive. Therefore, array interaction with the resource is generally assessed using numerical models. A fully three-dimensional numerical approach based on Actuator Disk theory was implemented into the Regional Ocean Modelling System (ROMS) to simulate the energy extraction by tidal stream turbines. Emphasis was placed on wake interactions and cumulative effects of individual devices on energy extraction at array scale. This model was applied at the tidal stream energy site of the Fromveur Strait (western Brittany, France) considering an array of horizontal-axis turbines of 10-m diameter, matching the device technology currently operating in the Strait. Two tidal energy metrics were considered to describe asymmetries in tidal current magnitude and direction. The area with reduced asymmetry in current magnitude was selected to implement the turbine array. A nested grid technique was adopted to cascade processes from the regional scale to the high-resolution local farm domain. The computation was conducted over the inner-nested array domain covering the tidal farm with horizontal and vertical resolutions of 1 m, matching the 1/10th turbine diameter (D) recommended to resolve velocity and turbulence intensity along device wakes. The array layout initially followed recommended staggered configurations with longitudinal and lateral spacings of 10D and 5D, respectively. However, during mean spring tidal conditions, the misalignment of peak flood currents induced significant wake interactions that reduced the array output by about 15% in comparison to peak ebb. These interactions were investigated to adapt array layouts, minimise wake interactions, and optimise the energy conversion. By reducing the lateral spacing between devices to 3D (measured centre to centre rather than tip to tip), the flood ebb asymmetry in energy extraction was lowered from 15% to 2%

    Parameterized Broadcast Networks with Registers: from NP to the Frontiers of Decidability

    Full text link
    We consider the parameterized verification of arbitrarily large networks of agents which communicate by broadcasting and receiving messages. In our model, the broadcast topology is reconfigurable so that a sent message can be received by any set of agents. In addition, agents have local registers which are initially distinct and may therefore be thought of as identifiers. When an agent broadcasts a message, it appends to the message the value stored in one of its registers. Upon reception, an agent can store the received value or test this value for equality with one of its own registers. We consider the coverability problem, where one asks whether a given state of the system may be reached by at least one agent. We establish that this problem is decidable; however, it is as hard as coverability in lossy channel systems, which is non-primitive recursive. This model lies at the frontier of decidability as other classical problems on this model are undecidable; this is in particular true for the target problem where all processes must synchronize on a given state. By contrast, we show that the coverability problem is NP-complete when each agent has only one register

    Spatio-temporal variability of tidal-stream energy in north-western Europe

    Get PDF
    Initial selection of tidal stream energy sites is primarily based on identifying areas with the maximum current speeds. However, optimal design and deployment of turbines requires detailed investigations of the temporal variability of the available resource, focusing on areas with reduced variability, and hence the potential for more continuous energy supply. These aspects are investigated here for some of the most promising sites for tidal array development across the north-western European shelf seas: the Alderney Race, the Fromveur Strait, the Pentland Firth and the channels of Orkney. Particular attention was dedicated to asymmetry between the flood and ebb phases of the tidal cycle (due to the phase relationship between M(2) and M(4) constituents), and spring-neap variability of the available resource (due to M(2) and S(2) compound tides). A series of high-resolution models were exploited to (i) produce a detailed harmonic database of these three components, and (ii) characterize, using energy resource metrics, temporal variability of the available power density. There was a clear contrast between the Alderney Race, with reduced temporal variability over semi-diurnal and fortnightly time scales, and sites in western Brittany and North Scotland which, due to increased variability, appeared less attractive for optimal energy conversion. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’

    Numerical modelling of hydrodynamics and tidal energy extraction in the Alderney Race: a review

    Get PDF
    (IF 4.23; Q1)International audienceThe tides are a predictable, renewable, source of energy that if harnessed, can provide significant levels of electricity generation. Alderney Race, with current speeds that exceed 5 m/s during spring tides, is one of the most concentrated regions of tidal energy in the world, with the upper bound resource estimated at 5.1 GW. Due to its significance, the Alderney Race is frequently used for model case studies of tidal energy conversion, and here we review these model applications and outcomes. We examine a range of temporal and spatial modelling scales, from regional models applied to resource assessment and characterisation, to more detailed models that include energy extraction and array optimization. We also examine a range of physical processes that influence the tidal energy resource, including the role of waves and turbulence in tidal energy resource assessment and loadings on turbines. The review discusses model validation, and covers a range of numerical modelling approaches, from 2D to 3D tidal models, two-way coupled wave-tide models, Large Eddy Simulation (LES) models, and the application of optimization techniques. The review contains guidance on model approaches and sources of data that can be used for future studies of the Alderney Race, or translated to other tidal energy regions

    A 3D mechanical model of the early mammalian embryo

    Get PDF
    The early development of the mammalian embryo leads to the formation of a structure composed by an outer layer of polarized cells surrounding an inner mass of nonpolarized cells. Experimental biology has shown that this organization results from changes in cell polarity, cell shape and intercellular contacts at the 8 and 16-cell stages. In order to examine how the physical properties of embryo cells (adhesion, cortical tension) influence the organization of the cells within the embryo, our team has developed a 3D mechanical model of the dividing early embryo, based on cellular Potts models. In this paper we will present the principles of our simulations, the methodology used and we will show that a very simple mechanical model can reproduce the main structural features (geometry, cell arrangement) of the mammalian embryo during its early developmental stages, up to the 16-cell stage

    Active Control of Silicon Nanotweezers Detects Enzymatic Reaction at the Molecular Level

    No full text
    International audienceThis work achieved the control of micromachined tweezers for the enhancement of the sensing of DNA molecules and related enzymatic reactions. The mechanical stiffness of the silicon nanotweezers is decreased by feedback design and the sensitivity of the system is drastically improved

    Wave resource assessment and climate change impacts in Reunion and Mauritius

    Get PDF
    This study assesses wave energy resources in two remote, yet populated islands in the Indian Ocean, i.e., Reunion and Mauritius. The suitable areas for future consideration for development were specified using the criteria defined for the sustainability of wave energy, including high energy potential and low intra-annual variation and long-term change in the future due to climate change. For climate projections, a super-high-resolution climate model was used to simulate the wave characteristics in both historical and future periods. The wave model has been downscaled on a local scale using the boundary condition generated by a parent model covering the whole Indian Ocean. The results show that in both islands, the wave power is the highest in the southeast and southern parts. There is higher stability for wave power in terms of monthly fluctuations in the southern parts of both islands. However, the north of Mauritius and south of Reunion show a lower future change in available mean wave power. In general, the southwest of Reunion and northwest of Mauritius are suggested to be more suitable locations for future development of wave energy farms considering their potential and sustainability
    corecore