6 research outputs found

    Atrial Fibrillation Detection With an Analog Smartwatch: Prospective Clinical Study and Algorithm Validation

    No full text
    BackgroundAtrial fibrillation affects approximately 4% of the world’s population and is one of the major causes of stroke, heart failure, sudden death, and cardiovascular morbidity. It can be difficult to diagnose when asymptomatic or in the paroxysmal stage, and its natural history is not well understood. New wearables and connected devices offer an opportunity to improve on this situation. ObjectiveWe aimed to validate an algorithm for the automatic detection of atrial fibrillation from a single-lead electrocardiogram taken with a smartwatch. MethodsEligible patients were recruited from 4 sites in Paris, France. Electrocardiograms (12-lead reference and single lead) were captured simultaneously. The electrocardiograms were reviewed by independent, blinded board-certified cardiologists. The sensitivity and specificity of the algorithm to detect atrial fibrillation and normal sinus rhythm were calculated. The quality of single-lead electrocardiograms (visibility and polarity of waves, interval durations, heart rate) was assessed in comparison with the gold standard (12-lead electrocardiogram). ResultsA total of 262 patients (atrial fibrillation: n=100, age: mean 74.3 years, SD 12.3; normal sinus rhythm: n=113, age: 61.8 years, SD 14.3; other arrhythmia: n=45, 66.9 years, SD 15.2; unreadable electrocardiograms: n=4) were included in the final analysis; 6.9% (18/262) were classified as Noise by the algorithm. Excluding other arrhythmias and Noise, the sensitivity for atrial fibrillation detection was 0.963 (95% CI lower bound 0.894), and the specificity was 1.000 (95% CI lower bound 0.967). Visibility and polarity accuracies were similar (1-lead electrocardiogram: P waves: 96.9%, QRS complexes: 99.2%, T waves: 91.2%; 12-lead electrocardiogram: P waves: 100%, QRS complexes: 98.8%, T waves: 99.5%). P-wave visibility accuracy was 99% (99/100) for patients with atrial fibrillation and 95.7% (155/162) for patients with normal sinus rhythm, other arrhythmias, and unreadable electrocardiograms. The absolute values of the mean differences in PR duration and QRS width were <3 ms, and more than 97% were <40 ms. The mean difference between the heart rates from the 1-lead electrocardiogram calculated by the algorithm and those calculated by cardiologists was 0.55 bpm. ConclusionsThe algorithm demonstrated great diagnostic performance for atrial fibrillation detection. The smartwatch’s single-lead electrocardiogram also demonstrated good quality for physician use in daily routine care. Trial RegistrationClinicalTrials.gov NCT04351386; http://clinicaltrials.gov/ct2/show/NCT0435138

    IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35–55 (MOG<sub>35-55</sub>)-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS) in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG<sub>35-55</sub>-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.</p

    MHC class II–dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies

    No full text
    Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B-MHC II-/-), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)-specific B cell receptor (BCR; IgH(MOG-mem)) but cannot secrete antibodies. B-MHC II-/- mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell-and B cell-dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B-MHC II-/- mice. In the absence of antibodies, IgH(MOG-mem) mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle-like structures were observed in IgH(MOG-mem) mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell-targeted therapies
    corecore