1,843 research outputs found

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    Gradient Representations and Affine Structures in AE(n)

    Full text link
    We study the indefinite Kac-Moody algebras AE(n), arising in the reduction of Einstein's theory from (n+1) space-time dimensions to one (time) dimension, and their distinguished maximal regular subalgebras sl(n) and affine A_{n-2}^{(1)}. The interplay between these two subalgebras is used, for n=3, to determine the commutation relations of the `gradient generators' within AE(3). The low level truncation of the geodesic sigma-model over the coset space AE(n)/K(AE(n)) is shown to map to a suitably truncated version of the SL(n)/SO(n) non-linear sigma-model resulting from the reduction Einstein's equations in (n+1) dimensions to (1+1) dimensions. A further truncation to diagonal solutions can be exploited to define a one-to-one correspondence between such solutions, and null geodesic trajectories on the infinite-dimensional coset space H/K(H), where H is the (extended) Heisenberg group, and K(H) its maximal compact subgroup. We clarify the relation between H and the corresponding subgroup of the Geroch group.Comment: 43 page

    K(E10), Supergravity and Fermions

    Get PDF
    We study the fermionic extension of the E10/K(E10) coset model and its relation to eleven-dimensional supergravity. Finite-dimensional spinor representations of the compact subgroup K(E10) of E(10,R) are studied and the supergravity equations are rewritten using the resulting algebraic variables. The canonical bosonic and fermionic constraints are also analysed in this way, and the compatibility of supersymmetry with local K(E10) is investigated. We find that all structures involving A9 levels 0,1 and 2 nicely agree with expectations, and provide many non-trivial consistency checks of the existence of a supersymmetric extension of the E10/K(E10) coset model, as well as a new derivation of the `bosonic dictionary' between supergravity and coset variables. However, there are also definite discrepancies in some terms involving level 3, which suggest the need for an extension of the model to infinite-dimensional faithful representations of the fermionic degrees of freedom.Comment: 50 page

    Vacua of N=10 three dimensional gauged supergravity

    Full text link
    We study scalar potentials and the corresponding vacua of N=10 three dimensional gauged supergravity. The theory contains 32 scalar fields parametrizing the exceptional coset space E6(14)SO(10)×U(1)\frac{E_{6(-14)}}{SO(10)\times U(1)}. The admissible gauge groups considered in this work involve both compact and non-compact gauge groups which are maximal subgroups of SO(10)×U(1)SO(10)\times U(1) and E6(14)E_{6(-14)}, respectively. These gauge groups are given by SO(p)×SO(10p)×U(1)SO(p)\times SO(10-p)\times U(1) for p=6,...10p=6,...10, SO(5)×SO(5)SO(5)\times SO(5), SU(4,2)×SU(2)SU(4,2)\times SU(2), G2(14)×SU(2,1)G_{2(-14)}\times SU(2,1) and F4(20)F_{4(-20)}. We find many AdS3_3 critical points with various unbroken gauge symmetries. The relevant background isometries associated to the maximally supersymmetric critical points at which all scalars vanish are also given. These correspond to the superconformal symmetries of the dual conformal field theories in two dimensions.Comment: 37 pages no figures, typos corrected and a little change in the forma

    An E9 multiplet of BPS states

    Full text link
    We construct an infinite E9 multiplet of BPS states for 11D supergravity. For each positive real root of E9 we obtain a BPS solution of 11D supergravity, or of its exotic counterparts, depending on two non-compact transverse space variables. All these solutions are related by U-dualities realised via E9 Weyl transformations in the regular embedding of E9 in E10, E10 in E11. In this way we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5 brane and the KK6-monopole, as well as other solutions admitting eight longitudinal space dimensions. A novel technique of combining Weyl reflexions with compensating transformations allows the construction of many new BPS solutions, each of which can be mapped to a solution of a dual effective action of gravity coupled to a certain higher rank tensor field. For real roots of E10 which are not roots of E9, we obtain additional BPS solutions transcending 11D supergravity (as exemplified by the lowest level solution corresponding to the M9 brane). The relation between the dual formulation and the one in terms of the original 11D supergravity fields has significance beyond the realm of BPS solutions. We establish the link with the Geroch group of general relativity, and explain how the E9 duality transformations generalize the standard Hodge dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure

    Kaluza-Klein supergravity on AdS_3 x S^3

    Full text link
    We construct a Chern-Simons type gauged N=8 supergravity in three spacetime dimensions with gauge group SO(4) x T_\infty over the infinite dimensional coset space SO(8,\infty)/(SO(8) x SO(\infty)), where T_\infty is an infinite dimensional translation subgroup of SO(8,\infty). This theory describes the effective interactions of the (infinitely many) supermultiplets contained in the two spin-1 Kaluza-Klein towers arising in the compactification of N=(2,0) supergravity in six dimensions on AdS_3 x S^3 with the massless supergravity multiplet. After the elimination of the gauge fields associated with T_\infty, one is left with a Yang Mills type gauged supergravity with gauge group SO(4), and in the vacuum the symmetry is broken to the (super-)isometry group of AdS_3 x S^3, with infinitely many fields acquiring masses by a variant of the Brout-Englert-Higgs effect.Comment: LaTeX2e, 24 pages; v2: references update

    Time-like T-duality algebra

    Full text link
    When compactifying M- or type II string-theories on tori of indefinite space-time signature, their low energy theories involve sigma models on E_{n(n)}/H_n, where H_n is a not necessarily compact subgroup of E_{n(n)} whose complexification is identical to the complexification of the maximal compact subgroup of E_{n(n)}. We discuss how to compute the group H_n. For finite dimensional E_{n(n)}, a formula derived from the theory of real forms of E_n algebra's gives the possible groups immediately. A few groups that have not appeared in the literature are found. For n=9,10,11 we compute and describe the relevant real forms of E_n and H_n. A given H_n can correspond to multiple signatures for the compact torus. We compute the groups H_n for all compactifications of M-, M*-, and M'-theories, and type II-, II*- and II'-theories on tori of arbitrary signature, and collect them in tables that outline the dualities between them. In an appendix we list cosets G/H, with G split and H a subgroup of G, that are relevant to timelike toroidal compactifications and oxidation of theories with enhanced symmetries.Comment: LaTeX, 37 pages, 1 eps-figure, uses JHEP.cls; v2. corrected typo's in tables 16 and 17, minor changes to tex

    Oceans of Impact

    Get PDF

    Quantitative analysis of videokymography in normal and pathological vocal folds: a preliminari study.

    Get PDF
    Videokymography (VKG) captures high-speed images of the vocal folds independently of the periodicity of the acoustic signal. The aim of this study was to preliminarily assess a software package that can objectively measure specific parameters of vocal fold vibration. From August 2009 until December 2010, we prospectively evaluated 40 subjects (Group A, 18 normal subjects; Group B, 14 patients with benign lesions of the middle third of the vocal fold, such as polyps and cysts; Group C, 8 patients treated by endoscopic excision of vocal fold benign lesions) by videoendoscopy, videolaryngostroboscopy, and VKG. A VKG camera was coupled to a 70 telescope and video was recorded during phonation. Images were objectively analyzed by a post-processing software tool (VKG-Analyser) with a user-friendly interface developed by our group. Different parameters were considered, including the ratio between the amplitude of the vibration of one vocal fold with respect to the contralateral (Ramp), the ratio between the period of one vocal fold vibration and the opposite one (Rper), and the ratio between the duration of the open and closed phase within a glottal cycle (Roc). Mean values for Ramp, Rper, and Roc in Group A were 1.05, 1.04, and 1.35, respectively; in Group B were 1.63, 0.92, and 0.97, respectively; and in Group C were 1.13, 0.91, and 1.85, respectively. Quantitative analysis of videokymograms by the herein presented tool, named VKG-Analyser, is useful for objective evaluation of the vibratory pattern in normal and pathologic vocal folds. Important future developments of this tool for the study of both physiologic and pathologic patterns of vocal fold vibration can be expected

    Narrow Band Imaging and High Definition Television in endoscopic evaluation of upper aero-digestive tract cancer.

    Get PDF
    Narrow band imaging and high definition television are recent innovations in upper aero-digestive tract endoscopy. Aim of this prospective, non-randomized, unblinded study was to establish the diagnostic advantage of these procedures in the evaluation of squamous cell cancer arising from various upper aero-digestive tract sites. Between April 2007 and January 2010, 444 patients affected by upper aero-digestive tract squamous cell cancer, or previously treated for it, were evaluated by white light and narrow band imaging ± high definition television endoscopy, both in the pre-/intra-operative setting and during follow-up. Tumour resection was performed taking into account narrow band imaging and high definition television information to obtain histopathologic confirmation of their validity. Endoscopic and pathologic data were subsequently matched to obtain sensitivity, specificity, positive, negative predictive values, and accuracy. Overall, 110 (25%) patients showed adjunctive findings by narrow band imaging ± high definition television when compared to standard white light endoscopy. Of these patients, 98 (89%) received histopatological confirmation. The sensitivity, specificity, positive, negative predictive values, and accuracy for white light-high definition television were 41%, 92%, 87%, 82%, and 67%, for narrow band imaging alone 75%, 87%, 87%, 74%, and 80%, and for narrow band imaging-high definition television 97%, 84%, 88%, 96%, and 92%. The highest diagnostic gain was observed in the oral cavity and oropharynx (25%). Narrow band imaging and high definition television were of value in the definition of superficial tumour extension, and in the detection of synchronous lesions in the pre-/intra-operative settings. These technologies also played an important role during post-treatment surveillance for early detection of persistences, recurrences, and metachronous tumours
    corecore