22 research outputs found

    Effectiveness and safety of opicapone in Parkinson’s disease patients with motor fluctuations: the OPTIPARK open-label study

    Get PDF
    Background The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. Methods OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson’s disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician’s Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). Results Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: − 3.0 ± 4.6, p < 0.0001) and motor scores during ON (− 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of − 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. Conclusions Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. Trial registration Registered in July 2016 at clinicaltrials.gov (NCT02847442)

    Improvement of experimentally-induced endothelial dysfunction by proteasome inhibition in rat aortic rings

    No full text
    Die endotheliale Dysfunktion ist ein Merkmal vieler kardiovaskulärer Erkrankungen und gekennzeichnet durch die Einschränkung der endothelabhängigen Vasorelaxation. Das Ubiquitin-Proteasom-Syste(UPS) ist der wichtigste Abbauweg intrazellulärer Proteine und an der Regulation einer Vielzahl zellulärer Prozesse beteiligt. Kürzlich konnte gezeigt werden, dass niedrigdosierte, nicht toxische Proteasominhibition zu einem endothelprotektiven Expressionsmuster in Endothelzellen führt. Es wird daher die Hypothese aufgestellt, dass niedrigdosierte Proteasominhibition eine endotheliale Dysfunktion vehindern kann. Der Einfluss von Proteasominhibitoren auf die endotheliale Dysfunktion wurde an isolierten aortalen Gefäßringen der Ratte untersucht. Die Induktion einer endothelialen Dysfunktion erfolgte durch Inkubation der Gefäßringe mit TNF-alpha für 48 Stunden. Die Vasorelaxation wurde im Organbad mit Acetylcholin und Papaverin nach Phenylephrin- Vorkontraktion unter isometrischen Bedingungen untersucht. Dabei führte TNF- alpha zu einer dosisabhängigen Abnahme der endothelabhängigen Vasorelaxation. Die Koinkubation der Ringe mit TNF-alpha und dem Proteasominhibitor MG132 konnte die Abnahme der endothelabhängigen Vasorelaxation dosisabhängig verhindern. Mit dem Proteasominhibitor MG262 wurden die Ergebnisse bestätigt. Weiterführende Untersuchungen zeigten eine verminderte Expression von NAD(P)H -Oxidase-Untereinheiten sowie verstärkte Expression der Superoxiddismutase unter Proteasominhibition, was zu einer signifikanten Abnahme der Superoxidanion-Produktion führte. Trotz verbesserter endothelabhängiger Vasorelaxation der Gefäßringe war die Expression der endothelialen NO-Synthase unter Proteasominhibition vermindert, wohingegen die Expression des potenten Vasokonstriktors Endothelin-1 durch Proteasominhibition reduziert wurde. Zusammenfassend kann gesagt werden, dass Proteasominhibition die Entstehung einer TNF-alpha induzierten endothelialen Dysfunktion verhindert. Antioxidative Eigenschaften und die Senkung der Endothelin-1 Expression konnten potentiell verantwortlich gemacht werden.Endothelial dysfunction is a hallmark of a number of cardiovascular diseases and characterized by impaired endothelium-dependent vasorelaxation. The ubiquitin-proteasome system (UPS) is the major pathway for intracellular protein degradation and is involved in the regulation of numerous cellular processes. Recent studies showed endothelium-protective effects of low-dose proteasome inhibition in endothelial cells. Therefore it is hypothesized that low-dose proteasome inhibition prevents the devolpment of endothelial dysfunction. The influence of proteasome inhibition on endothelial dysfunction was investigated in rat aortic rings. Endothelial dysfunction was induced by incubation of rat aortic rings with TNF-alpha for 48 hours. Vascular reactivity was investigated in isometric tension studies. TNF-alpha dose- dependently reduced endothelium-dependent vasorelaxation. Co-incubation of aortic rings with TNF-alpha and proteasome inhibitor MG132 dose-dependently prevented endothelial dysfunction. Similar results were obtained by incubation with proteasome inhibitor MG262. Further investigations showed a reduced expression of NAD(P)H oxidase subunits and enhanced expression of the superoxide dismutase (SOD1), leading to a significantly reduced superoxide anion production. Despite improved endothelium-dependent vasorelaxation of rat aortic rings under proteasome inhibition, expression of endothelial nitric oxide synthase (eNOS) was reduced. On the other hand, expression of the potent vasoconstrictor endothelin-1 was reduced in proteasome inhibitor treated rings. In conclusion, proteasome inhibition prevents TNF-alpha induced vascular dysfunction in rat aortic rings. Potential mechanisms involve antioxidative properties and suppression of endothelin-1 levels

    Effect of a probiotic on blood pressure in grade 1 hypertension (HYPRO): protocol of a randomized controlled study

    Get PDF
    Background: Arterial hypertension is a major risk factor for cardiovascular disease and leads to target organ damage including stroke, heart failure, and kidney disease. About 1.5 billion people worldwide have hypertension, and it is estimated that it causes about 8 million deaths each year. Although there are several drugs available to lower blood pressure (BP), a great proportion of treated patients does not reach recommended treatment targets. Typical antihypertensive drugs target the vessels, the kidneys, and the heart. However, our gut microbiota also influences cardiovascular health, and gut dysbiosis is associated with hypertension. In this study protocol, we investigate the potential BP-lowering effect of a probiotic in patients with grade 1 hypertension. Methods: This study is an exploratory, randomized, double-blind, placebo-controlled, parallel-group study. One hundred ten patients with grade 1 hypertension (treated or untreated) will be randomized to either the probiotic Vivomixx® or placebo. The primary endpoint is the nocturnal systolic BP measured by ambulatory blood pressure monitoring after 8 weeks adjusted for the baseline value. The secondary endpoints are changes from baseline in nocturnal diastolic BP, antihypertensive medication, fecal microbiome composition, fecal and serum metabolome, immune cell phenotypes, glucose variability after three standardized breakfasts, and health-related quality of life (PROMIS-29). We also assess the safety profile of the intervention. Discussion: We postulate that various administrated bacteria (Lactobacilli, Bifidobacteria, and Streptococcus thermophilus) convert dietary components into active metabolites that positively affect immune cell function. A reduction of pro-inflammatory immune cell function could promote a BP-lowering effect. Trial registration: ClinicalTrials.gov NCT03906578. Registered on 08 April 201

    G<sub>q</sub>-Mediated Arrhythmogenic Signaling Promotes Atrial Fibrillation

    Get PDF
    Background: Atrial fibrillation (AF) is promoted by various stimuli like angiotensin II, endothelin-1, epinephrine/norepinephrine, vagal activation, or mechanical stress, all of which activate receptors coupled to G-proteins of the Gαq/Gα11-family (Gq). Besides pro-fibrotic and pro-inflammatory effects, Gq-mediated signaling induces inositol trisphosphate receptor (IP3R)-mediated intracellular Ca2+ mobilization related to delayed after-depolarisations and AF. However, direct evidence of arrhythmogenic Gq-mediated signaling is absent. Methods and results: To define the role of Gq in AF, transgenic mice with tamoxifen-inducible, cardiomyocyte-specific Gαq/Gα11-deficiency (Gq-KO) were created and exposed to intracardiac electrophysiological studies. Baseline electrophysiological properties, including heart rate, sinus node recovery time, and atrial as well as AV nodal effective refractory periods, were comparable in Gq-KO and control mice. However, inducibility and mean duration of AF episodes were significantly reduced in Gq-KO mice—both before and after vagal stimulation. To explore underlying mechanisms, left atrial cardiomyocytes were isolated from Gq-KO and control mice and electrically stimulated to study Ca2+-mobilization during excitation–contraction coupling using confocal microscopy. Spontaneous arrhythmogenic Ca2+ waves and sarcoplasmic reticulum content-corrected Ca2+ sparks were less frequent in Gq-KO mice. Interestingly, nuclear but not cytosolic Ca2+ transient amplitudes were significantly decreased in Gq-KO mice. Conclusion: Gq-signaling promotes arrhythmogenic atrial Ca2+-release and AF in mice. Targeting this pathway, ideally using Gq-selective, biased receptor ligands, may be a promising approach for the treatment and prevention of AF. Importantly, the atrial-specific expression of the Gq-effector IP3R confers atrial selectivity mitigating the risk of life-threatening ventricular pro-arrhythmic effects

    Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia

    No full text
    KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (K(V)) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout (Kcne5(-/0)) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5(+/0) mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte K(V) current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current (I(to,f)). The current increases arose from an apex-specific increase in slow transient outward current-1 (I(Kslow,1)) (conducted by K(V)1.5) and I(to,f) (conducted by K(V)4) and an increase in I(Kslow,2) (conducted by K(V)2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where K(V)2.1 was also detected in both Kcne5(-/0) and Kcne5(+/0) mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and K(V)2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases I(K,slow2) by reducing K(V)2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of K(V)2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in K(V)2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of K(V)2.1 in mouse heart. Increased K(V) current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS

    Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular K-V currents and predisposes to ventricular arrhythmia

    No full text
    KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (K(V)) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout (Kcne5(-/0)) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5(+/0) mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte K(V) current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current (I(to,f)). The current increases arose from an apex-specific increase in slow transient outward current-1 (I(Kslow,1)) (conducted by K(V)1.5) and I(to,f) (conducted by K(V)4) and an increase in I(Kslow,2) (conducted by K(V)2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where K(V)2.1 was also detected in both Kcne5(-/0) and Kcne5(+/0) mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and K(V)2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases I(K,slow2) by reducing K(V)2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of K(V)2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in K(V)2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of K(V)2.1 in mouse heart. Increased K(V) current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS

    Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis

    Get PDF
    Abstract Management of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit β5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of β5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease. LDLR−/−LMP7−/− and LDLR−/− mice were fed a Western-type diet for either 6 or 24 weeks to induce early and advanced stage atherosclerosis, respectively. Lesion burden was similar between genotypes in both stages. Macrophage content and abundance of polyubiquitin conjugates in aortic root plaques were unaltered by β5i/LMP7-deficiency. In vitro experiments using bone marrow-derived macrophages (BMDM) showed that β5i/LMP7-deficiency did not influence macrophage polarization or accumulation of polyubiquitinated proteins and cell survival upon hydrogen peroxide and interferon-γ treatment. Analyses of proteasome core particle composition by Western blot revealed incorporation of standard proteasome subunits in β5i/LMP7-deficient BMDM and spleen. Chymotrypsin-, trypsin- and caspase-like activities assessed by using short fluorogenic peptides in BMDM whole cell lysates were similar in both genotypes. Taken together, deficiency of IP subunit β5i/LMP7 does not disturb protein homeostasis and does not aggravate atherogenesis in LDLR−/− mice

    IA-PACS-CFS: a double-blinded, randomized, sham-controlled, exploratory trial of immunoadsorption in patients with chronic fatigue syndrome (CFS) including patients with post-acute COVID-19 CFS (PACS-CFS)

    No full text
    Abstract Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severely debilitating condition which markedly restricts activity and function of affected people. Since the beginning of the COVID-19 pandemic ME/CFS related to post-acute COVID-19 syndrome (PACS) can be diagnosed in a subset of patients presenting with persistent fatigue 6 months after a mostly mild SARS-CoV-2 infection by fulfillment of the Canadian Consensus Criteria (CCC 2003). Induction of autoimmunity after viral infection is a mechanism under intensive investigation. In patients with ME/CFS, autoantibodies against thyreoperoxidase (TPO), beta-adrenergic receptors (ß2AR), and muscarinic acetylcholine receptors (MAR) are frequently found, and there is evidence for effectiveness of immunomodulation with B cell depleting therapy, cyclophosphamide, or intravenous immunoglobulins (IVIG). Preliminary studies on the treatment of ME/CFS patients with immunoadsorption (IA), an apheresis that removes antibodies from plasma, suggest clinical improvement. However, evidence from placebo-controlled trials is currently missing. Methods In this double-blinded, randomized, sham-controlled, exploratory trial the therapeutic effect of five cycles of IA every other day in patients with ME/CFS, including patients with post-acute COVID-19 chronic fatigue syndrome (PACS-CFS), will be evaluated using the validated Chalder Fatigue Scale, a patient-reported outcome measurement. A total of 66 patients will be randomized at a 2:1 ratio: 44 patients will receive IA (active treatment group) and 22 patients will receive a sham apheresis (control group). Moreover, safety, tolerability, and the effect of IA on patient-reported outcome parameters, biomarker-related objectives, cognitive outcome measurements, and physical parameters will be assessed. Patients will be hospitalized at the clinical site from day 1 to day 10 to receive five IA treatments and medical visits. Four follow-up visits (including two visits at site and two visits via telephone call) at month 1 (day 30), 2 (day 60), 4 (day 120), and 6 (day 180; EOS, end of study visit) will take place. Discussion Although ME/CFS including PACS-CFS causes an immense individual, social, and economic burden, we lack efficient therapeutic options. The present study aims to investigate the efficacy of immunoadsorption and to contribute to the etiological understanding and establishment of diagnostic tools for ME/CFS. Trial registration Registration Number: NCT05710770 . Registered on 02 February 2023

    Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications

    Get PDF
    Recent preclinical and observational cohort studies have implicated imbalances in gut microbiota composition as a contributor to atrial fibrillation (AF). The gut microbiota is a complex and dynamic ecosystem containing trillions of microorganisms, which produces bioactive metabolites influencing host health and disease development. In addition to host-specific determinants, lifestyle-related factors such as diet and drugs are important determinants of the gut microbiota composition. In this review, we discuss the evidence suggesting a potential bidirectional association between AF and gut microbiota, identifying gut microbiota-derived metabolites as possible regulators of the AF substrate. We summarize the effect of gut microbiota on the development and progression of AF risk-factors, including heart failure, hypertension, obesity and coronary artery disease. We also discuss the potential antiarrhythmic effects of pharmacological and diet-induced modifications of gut microbiota composition, which may modulate and prevent the progression to AF. Finally, we highlight important gaps in knowledge and areas requiring future investigation. Although data supporting a direct relationship between gut microbiota and AF are very limited at the present time, emerging preclinical and clinical research dealing with mechanistic interactions between gut microbiota and AF is important as it may lead to new insights into AF pathophysiology and the discovery of novel therapeutic targets for AF

    Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients.

    Get PDF
    Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet. Here we show in the substudy of NCT02099968, investigating the clinical parameters, the immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syndrome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index at three months post intervention compared to a modified Dietary Approach to Stop Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene modules associated with short-chain fatty acid production. Cross-system analyses reveal a positive correlation of circulating mucosa-associated invariant T cells, non-classical monocytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells positively correlate with body-mass index and weight. Machine learning analysis of baseline immunome or microbiome data predicts sustained systolic blood pressure response within the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as important contributors to the model. Here we report that the high-resolution multi-omics data highlight fasting as a promising non-pharmacological intervention for the treatment of high blood pressure in metabolic syndrome patients
    corecore