567 research outputs found

    Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors

    Get PDF
    Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial–mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers

    The molecular landscape of colitis-associated carcinogenesis

    Get PDF
    In spite of the well-established histopathological phenotyping of IBD-associated preneoplastic and neoplastic lesions, their molecular landscape remains to be fully elucidated. Several studies have pinpointed the initiating role of longstanding/relapsing inflammatory insult on the intestinal mucosa, with the activation of different pro-inflammatory cytokines (TNF-\u3b1, IL-6, IL-10, IFN-\u3b3), chemokines and metabolites of arachidonic acid resulting in the activation of key transcription factors such as NF-\u3baB. Longstanding inflammation may also modify the intestinal microbiota, prompting the overgrowth of genotoxic microorganisms, which may act as further cancer promoters. Most of the molecular dysregulation occurring in sporadic colorectal carcinogenesis is documented in colitis-associated adenocarcinoma too, but marked differences have been established in both their timing and prevalence. Unlike sporadic cancers, TP53 alterations occur early in IBD-related carcinogenesis, while APC dysregulation emerges mainly in the most advanced stages of the oncogenic cascade. From the therapeutic standpoint, colitis-associated cancers are associated with a lower prevalence of KRAS mutations than the sporadic variant. Epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, are significantly involved in colitis-associated cancer development and progression. The focus now is on identifying diagnostic and prognostic biomarkers, with a view to ultimately designing patient-tailored therapie

    Oligometastatic gastric cancer: an emerging clinical entity with distinct therapeutic implications

    Get PDF
    Gastric cancer (GC) remains responsible for a high burden worldwide being the third leading cause of cancer-related mortality. Most of patients present at an advanced stage at diagnosis and are thus candidates to standard chemotherapy resulting in median survival of less than 1 year. Oligometastatic gastric cancer is an increasingly recognized clinical entity characterized by limited metastatic spread that has been showing to benefit from aggressive multimodality strategies encompassing chemotherapy and surgery. The ongoing RENAISSANCE/AIO-FLOT5 (NCT02578368) phase III trial is aimed at evaluating if perioperative chemotherapy with FLOT in combination with surgical resection of the primary tumour and metastases could become the new standard of care for oligometastatic GC. In the meantime, in addition to currently available clinical parameters, the emerging predictive/prognostic role of biomarkers such mismatch repair deficiency/microsatellite instability high status needs to be specifically addressed also in this subgroup of GC to assist in patient selection

    c-Src drives intestinal regeneration and transformation

    Get PDF
    The non‐receptor tyrosine kinase c‐Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult <i>Drosophila</i> and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage‐induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self‐renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non‐redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation <i>in vivo.</i&gt

    Analysing Molecular Mechanism Related to Therapy- Resistance in In-vitro Models of Ovarian Cancer

    Get PDF
    Ovarian cancer is among the most common cause of cancer death and ranks first in the number of deaths each year in the field of gynaecological malignancies. This is due to its late diagnosis and the development of chemoresistance. Platinum derivates, including cisplatinum and carboplatin in combination with paclitaxel, are the first-line chemotherapeutic agents. Platinum derivates irreversibly intercalates into the DNA and creates inter- and intra-strand DNA cross-links. During cell division, platinum-DNA-adducts block the replication machinery, inducing DNA damage and apoptosis. Nearly all patients respond to first-line chemotherapy before it comes later to recurrence of the disease. At time of recurrence, tumours are usually more aggressive, form metastasis in secondary tissues and acquire resistance to conventional chemotherapeutics. Drug resistance is a common problem in tumour therapy not only restricted to ovarian cancer. It is characterized by gene mutations, increased DNA repair, reduced drug efficacy and enhanced drug clearance and detoxification. Up to now the complex molecular mechanism of chemoresistance is not well understood. Increasing evidence points towards AKT over-expression and alteration of the PI3K/AKT/mTOR cascade as a central mechanistic reason for this resistance

    Characterisation of the immune-related transcriptome in resected biliary tract cancers

    Get PDF
    Although biliary tract cancers (BTCs) are known to have an inflammatory component, a detailed characterisation of immune-related transcripts has never been performed. In these studies, nCounter PanCancer Immune Profiling Panel was used to assess the expression of 770 immune-related transcripts in the tumour tissues (TTs) and matched adjacent tissues (ATs) of resected BTCs. Cox regression analysis and Kaplan-Meier methods were used to correlate findings with relapse-free survival (RFS). The first analysis in the TT and AT of an exploratory set (n = 22) showed deregulation of 39 transcripts associated with T-cell activation. Risk of recurrence was associated with a greater number of genes deregulated in AT in comparison to TT. Analysis in the whole set (n = 53) showed a correlation between AT cytotoxic T-lymphocyte antigen-4 (CTLA4) expression and RFS, which maintained statistical significance at multivariate analysis. CTLA4 expression correlated with forkhead box P3 (FOXP3) expression, suggesting enrichment in T regulatory cells. CTLA4 is known to act by binding to the cluster of differentiation 80 (CD80). No association was seen between AT CD80 expression and RFS. However, CD80 expression differentiated prognosis in patients who received adjuvant chemotherapy. We showed that the immunomodulatory transcriptome is deregulated in resected BTCs. Our study includes a small number of patients and does not enable to draw definitive conclusions; however, it provides useful insights into potential transcripts that may deserve further investigation in larger cohorts of patients. TRANSCRIPT PROFILING: Nanostring data have been submitted to GEO repository: GSE90698 and GSE906

    Phosgene distribution derived from MIPAS ESA v8 data: intercomparisons and trends

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measured the middle-infrared limb emission spectrum of the atmosphere from 2002 to 2012 on board ENVISAT, a polar-orbiting satellite. Recently, the European Space Agency (ESA) completed the final reprocessing of MIPAS measurements, using version 8 of the level 1 and level 2 processors, which include more accurate models, processing strategies, and auxiliary data. The list of retrieved gases has been extended, and it now includes a number of new species with weak emission features in the MIPAS spectral range. The new retrieved trace species include carbonyl chloride (COCl2), also called phosgene. Due to its toxicity, its use has been reduced over the years; however, it is still used by chemical industries for several applications. Besides its direct injection in the troposphere, stratospheric phosgene is mainly produced from the photolysis of CCl4, a molecule present in the atmosphere because of human activity. Since phosgene has a long stratospheric lifetime, it must be carefully monitored as it is involved in the ozone destruction cycles, especially over the winter polar regions. In this paper we exploit the ESA MIPAS version 8 data in order to discuss the phosgene distribution, variability, and trends in the middle and lower stratosphere and in the upper troposphere. The zonal averages show that phosgene volume mixing ratio is larger in the stratosphere, with a peak of 40 pptv (parts per trillion by volume) between 50 and 30 hPa at equatorial latitudes, while at middle and polar latitudes it varies from 10 to 25 pptv. A moderate seasonal variability is observed in polar regions, mostly between 80 and 50 hPa. The comparison of MIPAS–ENVISAT COCl2 v8 profiles with the ones retrieved from MIPAS balloon and ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) measurements highlights a negative bias of about 2 pptv, mainly in polar and mid-latitude regions. Part of this bias is attributed to the fact that the ESA level 2 v8 processor uses an updated spectroscopic database. For the trend computation, a fixed pressure grid is used to interpolate the phosgene profiles, and, for each pressure level, VMR (volume mixing ratio) monthly averages are computed in pre-defined 10∘ wide latitude bins. Then, for each latitudinal bin and pressure level, a regression model has been fitted to the resulting time series in order to derive the atmospheric trends. We find that the phosgene trends are different in the two hemispheres. The analysis shows that the stratosphere of the Northern Hemisphere is characterized by a negative trend of about −7 pptv per decade, while in the Southern Hemisphere phosgene mixing ratios increase with a rate of the order of +4 pptv per decade. This behavior resembles the stratospheric trend of CCl4, which is the main stratospheric source of COCl2. In the upper troposphere a positive trend is found in both hemispheres.</p

    Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis

    Get PDF
    open12siAberrant let-7c microRNA (miRNA) expression has been observed in Helicobacter pylori-related gastric cancer (GC) but fragmentary information is available on the let-7c dysregulation occurring with each phenotypic change involved in gastric carcinogenesis. Let-7c expression was assessed (qRT-PCR) in a series of 175 gastric biopsy samples representative of the whole spectrum of phenotypic changes involved in H. pylori-related gastric oncogenesis including: i) normal gastric mucosa, as obtained from dyspeptic controls (40 biopsy samples); ii) non-atrophic gastritis (40 samples); iii) atrophic-metaplastic gastritis (35 samples); iv) intra-epithelial neoplasia (30 samples); v) GC (30 samples). Let-7c expression was also tested in 20 biopsy samples obtained from 10 patients before and after H. pylori eradication therapy (median follow-up: 10 weeks; range: 7-14). The results obtained were further validated by in situ hybridization on multiple tissue specimens obtained from 5 surgically treated H. pylori-related GCs. The study also included 40 oxyntic biopsy samples obtained from serologically/histologically confirmed autoimmune gastritis (AIG: 20 corpus-restricted, non-atrophic; 20 corpus-restricted, atrophic-metaplastic). Let-7c expression dropped from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-epithelial neoplasia, and invasive GC (p<0.001). It rose again significantly following H. pylori eradication (p=0.009). As in the H. pylori model, AIG also featured a significant let-7c down-regulation (p<0.001). The earliest phases of the two pathways to gastric oncogenesis (H. pylori-environmental and autoimmune host-related) are characterized by similar let-7c dysregulations. In H. pylori infection, let-7c down-regulation regresses after the bacterium's eradication, while it progresses significantly with the increasing severity of the histological lesions.openFassan, Matteo; Saraggi, Deborah; Balsamo, Laura; Cascione, Luciano; Castoro, Carlo; Coati, Irene; DE BERNARD, Marina; Farinati, Fabio; Guzzardo, Vincenza; Valeri, Nicola; Zambon, CARLO-FEDERICO; Rugge, MassimoFassan, Matteo; Saraggi, Deborah; Balsamo, Laura; Cascione, Luciano; Castoro, Carlo; Coati, Irene; DE BERNARD, Marina; Farinati, Fabio; Guzzardo, Vincenza; Valeri, Nicola; Zambon, CARLO-FEDERICO; Rugge, Massim

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment
    • 

    corecore