60 research outputs found

    Optimal Substring-Equality Queries with Applications to Sparse Text Indexing

    Full text link
    We consider the problem of encoding a string of length nn from an integer alphabet of size σ\sigma so that access and substring equality queries (that is, determining the equality of any two substrings) can be answered efficiently. Any uniquely-decodable encoding supporting access must take nlogσ+Θ(log(nlogσ))n\log\sigma + \Theta(\log (n\log\sigma)) bits. We describe a new data structure matching this lower bound when σnO(1)\sigma\leq n^{O(1)} while supporting both queries in optimal O(1)O(1) time. Furthermore, we show that the string can be overwritten in-place with this structure. The redundancy of Θ(logn)\Theta(\log n) bits and the constant query time break exponentially a lower bound that is known to hold in the read-only model. Using our new string representation, we obtain the first in-place subquadratic (indeed, even sublinear in some cases) algorithms for several string-processing problems in the restore model: the input string is rewritable and must be restored before the computation terminates. In particular, we describe the first in-place subquadratic Monte Carlo solutions to the sparse suffix sorting, sparse LCP array construction, and suffix selection problems. With the sole exception of suffix selection, our algorithms are also the first running in sublinear time for small enough sets of input suffixes. Combining these solutions, we obtain the first sublinear-time Monte Carlo algorithm for building the sparse suffix tree in compact space. We also show how to derandomize our algorithms using small space. This leads to the first Las Vegas in-place algorithm computing the full LCP array in O(nlogn)O(n\log n) time and to the first Las Vegas in-place algorithms solving the sparse suffix sorting and sparse LCP array construction problems in O(n1.5logσ)O(n^{1.5}\sqrt{\log \sigma}) time. Running times of these Las Vegas algorithms hold in the worst case with high probability.Comment: Refactored according to TALG's reviews. New w.h.p. bounds and Las Vegas algorithm

    Universal Compressed Text Indexing

    Get PDF
    The rise of repetitive datasets has lately generated a lot of interest in compressed self-indexes based on dictionary compression, a rich and heterogeneous family that exploits text repetitions in different ways. For each such compression scheme, several different indexing solutions have been proposed in the last two decades. To date, the fastest indexes for repetitive texts are based on the run-length compressed Burrows-Wheeler transform and on the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on the other hand, are based on the Lempel-Ziv parsing and on grammar compression. Indexes for more universal schemes such as collage systems and macro schemes have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed that all dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor, that is, a set of text positions capturing all distinct substrings. Starting from this observation, in this paper we develop the first universal compressed self-index, that is, the first indexing data structure based on string attractors, which can therefore be built on top of any dictionary-compressed text representation. Let γ\gamma be the size of a string attractor for a text of length nn. Our index takes O(γlog(n/γ))O(\gamma\log(n/\gamma)) words of space and supports locating the occocc occurrences of any pattern of length mm in O(mlogn+occlogϵn)O(m\log n + occ\log^{\epsilon}n) time, for any constant ϵ>0\epsilon>0. This is, in particular, the first index for general macro schemes and collage systems. Our result shows that the relation between indexing and compression is much deeper than what was previously thought: the simple property standing at the core of all dictionary compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment

    Computing LZ77 in Run-Compressed Space

    Get PDF
    In this paper, we show that the LZ77 factorization of a text T {\in\Sigma^n} can be computed in O(R log n) bits of working space and O(n log R) time, R being the number of runs in the Burrows-Wheeler transform of T reversed. For extremely repetitive inputs, the working space can be as low as O(log n) bits: exponentially smaller than the text itself. As a direct consequence of our result, we show that a class of repetition-aware self-indexes based on a combination of run-length encoded BWT and LZ77 can be built in asymptotically optimal O(R + z) words of working space, z being the size of the LZ77 parsing

    Algorithms for Massive Data -- Lecture Notes

    Full text link
    These are the lecture notes for the course CM0622 - Algorithms for Massive Data, Ca' Foscari University of Venice. The goal of this course is to introduce algorithmic techniques for dealing with massive data: data so large that it does not fit in the computer's memory. Broadly speaking, there are two main solutions to deal with massive data: (lossless) compressed data structures and (lossy) data sketches. These notes cover the latter topic: probabilistic filters, sketching under various metrics, Locality Sensitive Hashing, nearest neighbour search, algorithms on streams (pattern matching, counting).Comment: refactored structure; refactored variable names in section 2 for consistency with the rest of the notes (m is number of elements and n is universe size); refactored hashing chapter; improved proof of Lem 1.3.11; improved explanation of Counting Bloom filters; added pointer to paper [22]; refactored section 3.

    Optimal-Time Text Indexing in BWT-runs Bounded Space

    Full text link
    Indexing highly repetitive texts --- such as genomic databases, software repositories and versioned text collections --- has become an important problem since the turn of the millennium. A relevant compressibility measure for repetitive texts is rr, the number of runs in their Burrows-Wheeler Transform (BWT). One of the earliest indexes for repetitive collections, the Run-Length FM-index, used O(r)O(r) space and was able to efficiently count the number of occurrences of a pattern of length mm in the text (in loglogarithmic time per pattern symbol, with current techniques). However, it was unable to locate the positions of those occurrences efficiently within a space bounded in terms of rr. Since then, a number of other indexes with space bounded by other measures of repetitiveness --- the number of phrases in the Lempel-Ziv parse, the size of the smallest grammar generating the text, the size of the smallest automaton recognizing the text factors --- have been proposed for efficiently locating, but not directly counting, the occurrences of a pattern. In this paper we close this long-standing problem, showing how to extend the Run-Length FM-index so that it can locate the occocc occurrences efficiently within O(r)O(r) space (in loglogarithmic time each), and reaching optimal time O(m+occ)O(m+occ) within O(rlog(n/r))O(r\log(n/r)) space, on a RAM machine of w=Ω(logn)w=\Omega(\log n) bits. Within O(rlog(n/r))O(r\log (n/r)) space, our index can also count in optimal time O(m)O(m). Raising the space to O(rwlogσ(n/r))O(r w\log_\sigma(n/r)), we support count and locate in O(mlog(σ)/w)O(m\log(\sigma)/w) and O(mlog(σ)/w+occ)O(m\log(\sigma)/w+occ) time, which is optimal in the packed setting and had not been obtained before in compressed space. We also describe a structure using O(rlog(n/r))O(r\log(n/r)) space that replaces the text and extracts any text substring of length \ell in almost-optimal time O(log(n/r)+log(σ)/w)O(\log(n/r)+\ell\log(\sigma)/w). (...continues...

    Subpath Queries on Compressed Graphs: A Survey

    Get PDF
    Text indexing is a classical algorithmic problem that has been studied for over four decades: given a text T, pre-process it off-line so that, later, we can quickly count and locate the occurrences of any string (the query pattern) in T in time proportional to the query’s length. The earliest optimal-time solution to the problem, the suffix tree, dates back to 1973 and requires up to two orders of magnitude more space than the plain text just to be stored. In the year 2000, two breakthrough works showed that efficient queries can be achieved without this space overhead: a fast index be stored in a space proportional to the text’s entropy. These contributions had an enormous impact in bioinformatics: today, virtually any DNA aligner employs compressed indexes. Recent trends considered more powerful compression schemes (dictionary compressors) and generalizations of the problem to labeled graphs: after all, texts can be viewed as labeled directed paths. In turn, since finite state automata can be considered as a particular case of labeled graphs, these findings created a bridge between the fields of compressed indexing and regular language theory, ultimately allowing to index regular languages and promising to shed new light on problems, such as regular expression matching. This survey is a gentle introduction to the main landmarks of the fascinating journey that took us from suffix trees to today’s compressed indexes for labeled graphs and regular languages
    corecore